共查询到20条相似文献,搜索用时 0 毫秒
1.
Urwyler S Nyfeler Y Ragaz C Lee H Mueller LN Aebersold R Hilbi H 《Traffic (Copenhagen, Denmark)》2009,10(1):76-87
Legionella pneumophila , the causative agent of Legionnaires' disease, replicates in macrophages and amoebae within ' Legionella -containing vacuoles' (LCVs), which communicate with the early secretory pathway and the endoplasmic reticulum. Formation of LCVs requires the bacterial Icm/Dot type IV secretion system. The Icm/Dot-translocated effector protein SidC selectively anchors to LCVs by binding the host lipid phosphatidylinositol-4-phosphate (PtdIns(4) P ). Here, we describe a novel and simple approach to purify intact vacuoles formed by L. pneumophila within Dictyostelium discoideum by using magnetic immunoseparation with an antibody against SidC, followed by density gradient centrifugation. To monitor LCV purification by fluorescence microscopy, we used Dictyostelium producing the LCV marker calnexin-GFP and L. pneumophila labeled with the red fluorescent protein DsRed. A proteome analysis of purified LCVs by liquid chromatography coupled to tandem mass spectrometry revealed 566 host proteins, including known LCV components, such as the small GTPases Arf1, Rab1 and Rab7. Rab8, an endosomal regulator of the late secretory pathway originating from the trans Golgi network, and the endosomal GTPase Rab14 were identified as novel LCV components, which were found to be present on vacuoles harboring wild-type but not Icm/Dot-deficient L. pneumophila . Thus, LCVs also communicate with the late secretory and endosomal pathways. Depletion of Rab8 or Arf1 by RNA interference reduced the amount of SidC on LCVs, indicating that the GTPases promote the recruitment of Legionella effectors by regulating the level of PtdIns(4) P . 相似文献
2.
Primary cilia are sensory structures involved in morphogen signalling during development, liquid flow in the kidney, mechanosensation, sight, and smell (Badano, J.L., N. Mitsuma, P.L. Beales, and N. Katsanis. 2006. Annu. Rev. Genomics Hum. Genet. 7:125-148; Singla, V., and J.F. Reiter. 2006. Science. 313:629-633.). Mutations that affect primary cilia are responsible for several diseases, including neural tube defects, polycystic kidney disease, retinal degeneration, and cancers (Badano et al., 2006; Singla and Reiter, 2006). Primary cilia formation and function requires tight integration of the microtubule cytoskeleton with membrane trafficking (Singla and Reiter, 2006), and this is poorly understood. We show that the Rab GTPase membrane trafficking regulators Rab8a, -17, and -23, and their cognate GTPase-activating proteins (GAPs), XM_037557, TBC1D7, and EVI5like, are involved in primary cilia formation. However, other human Rabs and GAPs are not. Additionally, Rab8a specifically interacts with cenexin/ODF2, a basal body and microtubule binding protein required for cilium biogenesis (Ishikawa, H., A. Kubo, S. Tsukita, and S. Tsukita. 2005. Nat. Cell Biol. 7:517-524), and is the sole Rab enriched at primary cilia. These findings provide a basis for understanding how specific membrane trafficking pathways cooperate with the microtubule cytoskeleton to give rise to the primary cilia. 相似文献
3.
Shintaro Seto Sohkichi Matsumoto Kunio Tsujimura Yukio Koide 《Microbiology and immunology》2010,54(3):170-174
M.tb is an intracellular pathogen which survives within the phagosomes of host macrophages by inhibiting their fusion with lysosomes. Here, it has been demonstrated that a lysosomal glycoprotein, CD63, is recruited to the majority of M.tb phagosomes, while RILP shows limited localization. This is consistent with the author's findings that CD63, but not RILP, is recruited to the phagosomes in macrophages expressing the dominant negative form of Rab7. These results suggest that M.tb phagosomes selectively fuse with endosomes and lysosomes to escape killing activity while acquiring nutrients. 相似文献
4.
Legionella pneumophila requires the Dot/Icm translocation system to replicate in a vacuolar compartment within host cells. Strains lacking the translocated substrate SdhA form a permeable vacuole during residence in the host cell, exposing bacteria to the host cytoplasm. In primary macrophages, mutants are defective for intracellular growth, with a pyroptotic cell death response mounted due to bacterial exposure to the cytosol. To understand how SdhA maintains vacuole integrity during intracellular growth, we performed high‐throughput RNAi screens against host membrane trafficking genes to identify factors that antagonise vacuole integrity in the absence of SdhA. Depletion of host proteins involved in endocytic uptake and recycling resulted in enhanced intracellular growth and lower levels of permeable vacuoles surrounding the ΔsdhA mutant. Of interest were three different Rab GTPases involved in these processes: Rab11b, Rab8b and Rab5 isoforms, that when depleted resulted in enhanced vacuole integrity surrounding the sdhA mutant. Proteins regulated by these Rabs are responsible for interfering with proper vacuole membrane maintenance, as depletion of the downstream effectors EEA1, Rab11FIP1, or VAMP3 rescued vacuole integrity and intracellular growth of the sdhA mutant. To test the model that specific vesicular components associated with these effectors could act to destabilise the replication vacuole, EEA1 and Rab11FIP1 showed increased density about the sdhA mutant vacuole compared with the wild type (WT) vacuole. Depletion of Rab5 isoforms or Rab11b reduced this aberrant redistribution. These findings are consistent with SdhA interfering with both endocytic and recycling membrane trafficking events that act to destabilise vacuole integrity during infection. 相似文献
5.
Rab22 and Rab31 belong to the Rab5 subfamily of GTPases that regulates endocytic traffic and endosomal sorting. Rab22 and Rab31 (a.k.a. Rab22b) are closely related and share 87% amino acid sequence similarity, but they show distinct intracellular localization and function in the cell. Rab22 is localized to early endosomes and regulates early endosomal recycling, while Rab31 is mostly localized to the Golgi complex with only a small fraction in the endosomes at steady state. The specific determinants that affect this differential localization, however, are unclear. In this study, we identify a novel membrane targeting domain (MTD) consisting of the C-terminal hypervariable domain (HVD), interswitch loop (ISL), and N-terminal domain as a major determinant of endosomal localization for Rab22 and Rab31, as well as Rab5. Rab22 and Rab31 share the same N-terminal domain, but we find Rab22 chimeras with Rab31 HVD exhibit phenotypic Rab31 localization to the Golgi complex, while Rab31 chimeras with the Rab22 HVD localize to early endosomes, similar to wildtype Rab22. We also find that the Rab22 HVD favors interaction with the early endosomal effector protein Rabenosyn-5, which may stabilize the Rab localization to the endosomes. The importance of effector interaction in endosomal localization is further demonstrated by the disruption of Rab22 endosomal localization in Rabenosyn-5 knockout cells and by the shift of Rab31 to the endosomes in Rabenosyn-5-overexpressing cells. Taken together, we have identified a novel MTD that mediates localization of Rab5 subfamily members to early endosomes via interaction with an effector such as Rabenosyn-5. 相似文献
6.
Invasive bacterial pathogens are engulfed upon host cell entry in a vacuolar environment called the bacteria‐containing vacuole (BCV). BCVs directly contact with numerous host compartments, mainly vesicles of the endocytic pathway, such as endosomes or lysosomes. In addition, they also interact with the endoplasmic reticulum and endomembranes of the secretory pathway. These connections between the pathogen and the host occur either through heterotypic membrane fusions or through membrane contact sites. The precise regulation of BCV contacts with host compartments defines the constitution of the intracellular bacterial niche. It emerges that the associated pathways may control the stability of the BCV resulting either in vacuolar or cytoplasmically growing bacteria. Here, we will portray how the usage of novel proteomics and imaging technologies allows comparison of the communication of different host cell compartments with four relevant intracellular human pathogens, namely Salmonella enterica, Legionella pneumophila, Shigella flexneri and Francisella tularensis. The first two remain mainly within the BCV, and the latter two escape into the cytoplasm. 相似文献
7.
Fusion of organelles in the endomembrane system depends on Rab GTPases that interact with tethering factors before lipid bilayer mixing. In yeast, the Rab5 GTPase Vps21 controls fusion and membrane dynamics between early and late endosomes. Here we identify Msb3/Gyp3 as a specific Vps21 GTPase-activating protein (GAP). Loss of Msb3 results in an accumulation of Vps21 and one of its effectors Vps8, a subunit of the CORVET complex, at the vacuole membrane in vivo. In agreement, Msb3 forms a specific transition complex with Vps21, has the highest activity of all recombinant GAPs for Vps21 in vitro, and is found at vacuoles despite its predominant localization to bud tips and bud necks at the plasma membrane. Surprisingly, Msb3 also inhibits vacuole fusion, which can be rescued by the Ypt7 GDP-GTP exchange factor (GEF), the Mon1-Ccz1 complex. Consistently, msb3 vacuoles fuse more efficiently than wild-type vacuoles in vitro, suggesting that GAP can also act on Ypt7. Our data indicate that GAPs such as Msb3 can act on multiple substrates in vivo at both ends of a trafficking pathway. This ensures specificity of the subsequent GEF-mediated activation of the Rab that initiates the next transport event. 相似文献
8.
From a mRNA of the brain of Bombyx mori, we isolated 8 cDNA clones (BRabs), each of which encodes a different member of Rab-protein family. Four of them have more than 80% amino acid identity to the corresponding members of Drosophila Rab proteins. The other 4 proteins show low sequence similarity to any of the known Rab proteins. However, all of them contain the region conserved in rab protein. Using RACE (Rapid Amplification of cDNA ends), the one full-length cDNA clone (BRab14) was isolated. The clone was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein. After purification, the fusion protein was cut with protease to remove GST-Tag and applied to a glutathione S-Sepharose column. The protein bound [(3)H]-GDP with association constant of 1.02 x 10(11) M(-1). Further, the protein was phosphorylated by protein kinase. This result suggests that Rab protein in the brain of Bombyx mori binds GDP or GTP and its function is regulated by phosphorylation. 相似文献
9.
J A Gustafsson J Carlstedt-Duke O Wrange S Okret A C Wikstr?m 《Journal of steroid biochemistry》1986,24(1):63-68
Glucocorticoid-receptor complex (GR) has been purified from rat liver by differential affinity for DNA before and after activation, followed by ion-exchange chromatography. The purified GR has mol. wt 94,000 dalton. The protein contains three functional domains: (A) a steroid-binding domain; (B) a DNA-binding domain; and (C) a domain necessary for normal biological function. A second protein, with mol. wt 72,000 dalton, copurifies with the GR. This protein does not bind steroid, does not interact with antibodies raised against the GR and does not show the same susceptibility to limited proteolytic cleavage as the 94,000 dalton protein. Analysis of the specific interaction of the purified GR with the mouse mammary tumour virus gene, assayed by glycerol-gradient centrifugation, shows that one molecule of 94,000 dalton protein binds to each of the specific binding sites in the long terminal repeat region. Analysis of the fractions from the glycerol gradients show that the 72,000 dalton protein is associated to the binding species (94,000 dalton receptor protein) in about equimolar amounts. Analysis of the molybdate-stabilized non-activated receptor complex using monoclonal antibodies raised against the 94,000 dalton receptor protein indicates that the molybdate-stabilized complex is a hetero-oligomer. The hetero-oligomer consists of only one molecule of the 94,000 dalton receptor protein, in association with other non-steroid-binding proteins. 相似文献
10.
Camila Valenzuela Magdalena Gil Ítalo M. Urrutia Andrea Sabag Jost Enninga Carlos A. Santiviago 《Cellular microbiology》2021,23(1)
The ability of Salmonella to survive and replicate within mammalian host cells involves the generation of a membranous compartment known as the Salmonella‐containing vacuole (SCV). Salmonella employs a number of effector proteins that are injected into host cells for SCV formation using its type‐3 secretion systems encoded in SPI‐1 and SPI‐2 (T3SS‐1 and T3SS‐2, respectively). Recently, we reported that S. Typhimurium requires T3SS‐1 and T3SS‐2 to survive in the model amoeba Dictyostelium discoideum. Despite these findings, the involved effector proteins have not been identified yet. Therefore, we evaluated the role of two major S. Typhimurium effectors SopB and SifA during D. discoideum intracellular niche formation. First, we established that S. Typhimurium resides in a vacuolar compartment within D. discoideum. Next, we isolated SCVs from amoebae infected with wild type or the ΔsopB and ΔsifA mutant strains of S. Typhimurium, and we characterised the composition of this compartment by quantitative proteomics. This comparative analysis suggests that S. Typhimurium requires SopB and SifA to modify the SCV proteome in order to generate a suitable intracellular niche in D. discoideum. Accordingly, we observed that SopB and SifA are needed for intracellular survival of S. Typhimurium in this organism. Thus, our results provide insight into the mechanisms employed by Salmonella to survive intracellularly in phagocytic amoebae. 相似文献
11.
Uno T Hata K Hiragaki S Isoyama Y Trang le TD Uno Y Kanamaru K Yamagata H Nakamura M Takagi M Takeda M 《Histochemistry and cell biology》2010,134(6):615-622
Small GTPases of the Rab family are key regulators of membrane trafficking. We produced antibodies against the Rab7 protein of Bombyx mori (BRab7) in rabbits, and against the Rab11 protein of B. mori (BRab11) in mice. The antibodies recognized BRab7 and BRab11 proteins, but did not recognize other Rab proteins. Immunoblotting of samples from brain tissue of B. mori revealed a single band for each antibody. Rab11 was expressed in most tissues, whereas Rab7 was expressed in the brain, ovary, and testis. Immunohistochemical reactivity of Rab7 and Rab11 in the brain of B. mori was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum. Double-labeling experiments demonstrated that immunohistochemical reactivity of Rab7 co-localized with that of Rab11 and partially with that of Rab8. Immunohistochemical reactivity of Rab11 and Rab8 co-localized with that of PERIOD, one of the proteins associated with circadian rhythm. These findings suggest that Rab7, Rab8, and Rab11 are involved in protein transport in the neurons of the brain of B. mori and might play a role in the control of circadian rhythm. 相似文献
12.
13.
Functional characterization of novel melanocortin-3 receptor mutations identified from obese subjects 总被引:2,自引:0,他引:2
Tao YX 《Biochimica et biophysica acta》2007,1772(10):1167-1174
It is controversial whether mutation in the melancortin-3 receptor (MC3R) gene is a cause for monogenic obesity in humans. Three novel mutations in the MC3R, A293T, I335S, and X361S, were identified from morbidly obese subjects. We investigated whether these mutations caused loss-of-function and the molecular defects if any. Ligand binding, signaling, and cell surface expression of the mutant MC3Rs were studied. I335S resulted in a complete loss of ligand binding and signaling due to intracellular retention. A293T and X361S MC3Rs had normal ligand binding and signaling as wild type MC3R. Co-expression studies showed that the mutants did not affect wild type MC3R signaling. Hence the I335S variant previously identified from obese patients is not expressed at the cell surface when expressed in vitro, suggesting that it might contribute to obesity in carriers of this variant. Whether A293T and X361S cause obesity remains to be investigated. Additional mutations at I335 showed that I335, part of the highly conserved N/DPxxY motif, was critical for multiple aspects of the MC3R function, including cell surface expression, ligand binding, and signaling. 相似文献
14.
Ebert MP Krüger S Fogeron ML Lamer S Chen J Pross M Schulz HU Lage H Heim S Roessner A Malfertheiner P Röcken C 《Proteomics》2005,5(6):1693-1704
We aimed to validate an analytical approach based on proteomics on gastric cancer specimens for the identification of new putative diagnostic or prognostic markers. Primary screening was performed on gastrectomy specimens obtained from ten consecutive patients with gastric cancer. Gastric epithelial cells were obtained with an epithelial cell enrichment technique, homogenized and then separated by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). The differential protein expression pattern was verified stepwise by Western blotting and immunohistochemistry on samples from 28 and 46 cancer patients, respectively. The putative clinical applicability and prognostic use were tested by an enzyme-linked immunoabsorbent assay on serum samples obtained from 149 cancer patients. One hundred-ninety-one differentially expressed protein spots were found by 2-D PAGE and identified by mass spectrometry, including cathepsin B, which was over-expressed in six (60%) patients. Western blotting confirmed that the active form of cathepsin B is over-expressed, while immunohistochemistry showed strong cytoplasmic staining in cancer tissues of 45 (98%) patients. The serum level of cathepsin B was increased in patients with gastric cancer compared to healthy controls (P = 0.0026) and correlated with T-category and the presence of distant metastases (P < 0.05). Serum levels above 129 pmol x L(-1) were associated with a reduced survival rate (P = 0.0297). Proteome analysis is a valuable tool for the identification of prognostic markers in gastric cancer: Increased cathepsin B serum levels are associated with advanced tumor stages and progressive disease, which enables the classification of some gastric cancer patients into a subgroup that should undergo aggressive therapy. 相似文献
15.
Coxon FP Helfrich MH Larijani B Muzylak M Dunford JE Marshall D McKinnon AD Nesbitt SA Horton MA Seabra MC Ebetino FH Rogers MJ 《The Journal of biological chemistry》2001,276(51):48213-48222
Nitrogen-containing bisphosphonate drugs inhibit bone resorption by inhibiting FPP synthase and thereby preventing the synthesis of isoprenoid lipids required for protein prenylation in bone-resorbing osteoclasts. NE10790 is a phosphonocarboxylate analogue of the potent bisphosphonate risedronate and is a weak anti-resorptive agent. Although NE10790 was a poor inhibitor of FPP synthase, it did inhibit prenylation in J774 macrophages and osteoclasts, but only of proteins of molecular mass approximately 22-26 kDa, the prenylation of which was not affected by peptidomimetic inhibitors of either farnesyl transferase (FTI-277) or geranylgeranyl transferase I (GGTI-298). These 22-26-kDa proteins were shown to be geranylgeranylated by labelling J774 cells with [(3)H]geranylgeraniol. Furthermore, NE10790 inhibited incorporation of [(14)C]mevalonic acid into Rab6, but not into H-Ras or Rap1, proteins that are modified by FTase and GGTase I, respectively. These data demonstrate that NE10790 selectively prevents Rab prenylation in intact cells. In accord, NE10790 inhibited the activity of recombinant Rab GGTase in vitro, but did not affect the activity of recombinant FTase or GGTase I. NE10790 therefore appears to be the first specific inhibitor of Rab GGTase to be identified. In contrast to risedronate, NE10790 inhibited bone resorption in vitro without markedly affecting osteoclast number or the F-actin "ring" structure in polarized osteoclasts. However, NE10790 did alter osteoclast morphology, causing the formation of large intracellular vacuoles and protrusion of the basolateral membrane into large, "domed" structures that lacked microvilli. The anti-resorptive activity of NE10790 is thus likely due to disruption of Rab-dependent intracellular membrane trafficking in osteoclasts. 相似文献
16.
《Protein science : a publication of the Protein Society》2018,27(8):1450-1463
Viruses are the most abundant life form and infect practically all organisms. Consequently, these obligate parasites are a major cause of human suffering and economic loss. Rossmann‐like fold is the most populated fold among α/β‐folds in the Protein Data Bank and proteins containing Rossmann‐like fold constitute 22% of all known proteins 3D structures. Thus, analysis of viral proteins containing Rossmann‐like domains could provide an understanding of viral biology and evolution as well as could propose possible targets for antiviral therapy. We provide functional and evolutionary analysis of viral proteins containing a Rossmann‐like fold found in the evolutionary classification of protein domains (ECOD) database developed in our lab. We identified 81 protein families of bacterial, archeal, and eukaryotic viruses in light of their evolution‐based ECOD classification and Pfam taxonomy. We defined their functional significance using enzymatic EC number assignments as well as domain‐level family annotations. 相似文献
17.
Joanna Gawinecka Franco Cardone Abdul R. Asif Angela De Pascalis Wiebke M. Wemheuer Walter J. Schulz‐Schaeffer Maurizio Pocchiari Inga Zerr 《Proteomics》2012,12(23-24):3610-3620
Sporadic Creutzfeldt–Jakob disease (sCJD) is characterized by wide clinical and pathological variability, which is mainly influenced by the conformation of the misfolded prion protein, and by the methionine and valine polymorphism at codon 129 of the prion protein gene. This heterogeneity likely implies differences in the molecular cascade that leads to the development of certain disease phenotypes. In this study, we investigated the proteome of the frontal cortex of patients with the two most common sCJD subtypes (MM1 and VV2) using 2D‐DIGE and MS. Analysis of 2D maps revealed that 46 proteins are differentially expressed in the sCJD. Common differential expression was detected for seven proteins, four showed opposite direction of differential expression, and the remaining ones displayed subtype‐specific alteration. The highest number of differentially expressed proteins was associated with signal transduction and neuronal activity. Moreover, functional groups of proteins involved in cell cycle and death, as well as in structure and motility included subtype‐specific expressed proteins exclusively. The expression of Rab GDP dissociation inhibitor alpha, which regulates Rab3a‐mediated neurotransmitter release, was affected in both sCJD subtypes that were analyzed. Therefore, we also investigated as to whether Rab3a recycling is altered. Indeed, we found an accumulation of the membrane‐associated form, thus the active one, which suggests that dysfunction of the Rab3a‐mediated exocytosis might be implicated in sCJD pathology. 相似文献
18.
Conformational heterogeneity in the Hsp70 chaperone‐substrate ensemble identified from analysis of NMR‐detected titration data 下载免费PDF全文
Ashok Sekhar Jayashree Nagesh Rina Rosenzweig Lewis E. Kay 《Protein science : a publication of the Protein Society》2017,26(11):2207-2220
The Hsp70 chaperone system plays a critical role in cellular homeostasis by binding to client protein molecules. We have recently shown by methyl‐TROSY NMR methods that the Escherichia coli Hsp70, DnaK, can form multiple bound complexes with a small client protein, hTRF1. In an effort to characterize the interactions further we report here the results of an NMR‐based titration study of hTRF1 and DnaK, where both molecular components are monitored simultaneously, leading to a binding model. A central finding is the formation of a previously undetected 3:1 hTRF1‐DnaK complex, suggesting that under heat shock conditions, DnaK might be able to protect cytosolic proteins whose net concentrations would exceed that of the chaperone. Moreover, these results provide new insight into the heterogeneous ensemble of complexes formed by DnaK chaperones and further emphasize the unique role of NMR spectroscopy in obtaining information about individual events in a complex binding scheme by exploiting a large number of probes that report uniquely on distinct binding processes. 相似文献
19.
Ruchi Kakar‐Bhanot Krupanshi Brahmbhatt Vipin Kumar Amol R. Suryawanshi Sanjeeva Srivastava Uddhav Chaudhari Geetanjali Sachdeva 《Molecular reproduction and development》2020,87(1):17-29
Human endometrial epithelium (EE) is composed of a multitude of proteins, amongst which those localized on the plasma membrane [plasma membrane proteins (PMPs)] are of critical relevance in the early stages of implantation. Evidence supports the key role of few PMPs in implantation. However, many remain unidentified, as efforts have not been made till date to generate the plasma membrane proteome of human EE cells, using a gel‐free approach. This study presents a protein catalog of the PMP enriched fraction of Ishikawa cell line; often used as an in vitro model for embryo‐adhesive EE. Liquid chromatography with tandem mass spectrometry identified 3,598 proteins. Of these, 1,963 proteins were annotated for their membrane localization. Of 1,963 proteins, 1,321 were found to have a transmembrane domain and 43 proteins had glycophosphatidylinositol (GPI) anchor. Extensive data mining revealed endometrial expression of 943 proteins reported in humans and/or rodents. Further, quantitative alterations were observed in the plasma membrane proteome on the perturbation of intracellular trafficking. Silencing of Rab11a (known for its role in plasma membrane organization) expression caused alteration in the abundance of 74 proteins. Caveolin‐1 and EpCAM levels were reduced whereas Rab4a abundance increased in the PMP extracts of Rab11a deficient cells, compared with control cells. Briefly, the study reports the identity of several novel plasma membrane‐localized proteins. A major spin‐off of the study is the identification of novel proteins trafficked by Rab11a to the plasma membrane. Targeted analysis of novel PMPs may reveal their specific roles in endometrial receptivity and implantation. 相似文献
20.
Cellular sophistication is not exclusive to multicellular organisms, and unicellular eukaryotes can resemble differentiated animal cells in their complex network of membrane-bound structures. These comparisons can be illuminated by genome-wide surveys of key gene families. We report a systematic analysis of Rabs in a complex unicellular Ciliate, including gene prediction and phylogenetic clustering, expression profiling based on public data, and Green Fluorescent Protein (GFP) tagging. Rabs are monomeric GTPases that regulate membrane traffic. Because Rabs act as compartment-specific determinants, the number of Rabs in an organism reflects intracellular complexity. The Tetrahymena Rab family is similar in size to that in humans and includes both expansions in conserved Rab clades as well as many divergent Rabs. Importantly, more than 90% of Rabs are expressed concurrently in growing cells, while only a small subset appears specialized for other conditions. By localizing most Rabs in living cells, we could assign the majority to specific compartments. These results validated most phylogenetic assignments, but also indicated that some sequence-conserved Rabs were co-opted for novel functions. Our survey uncovered a rare example of a nuclear Rab and substantiated the existence of a previously unrecognized core Rab clade in eukaryotes. Strikingly, several functionally conserved pathways or structures were found to be associated entirely with divergent Rabs. These pathways may have permitted rapid evolution of the associated Rabs or may have arisen independently in diverse lineages and then converged. Thus, characterizing entire gene families can provide insight into the evolutionary flexibility of fundamental cellular pathways. 相似文献