首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How the complexity of food webs relates to stability has been a subject of many studies. Often, unweighted connectance is used to express complexity. Unweighted connectance is measured as the proportion of realized links in the network. Weighted connectance, on the other hand, takes link weights (fluxes or feeding rates) into account and captures the shape of the flux distribution. Here, we used weighted connectance to revisit the relation between complexity and stability. We used 15 real soil food webs and determined the feeding rates and the interaction strength matrices. We calculated both versions of connectance, and related these structural properties to food web stability. We also determined the skewness of both flux and interaction strength distributions with the Gini coefficient. We found no relation between unweighted connectance and food web stability, but weighted connectance was positively correlated with stability. This finding challenges the notion that complexity may constrain stability, and supports the ‘complexity begets stability’ notion. The positive correlation between weighted connectance and stability implies that the more evenly flux rates were distributed over links, the more stable the webs were. This was confirmed by the Gini coefficients of both fluxes and interaction strengths. However, the most even distributions of this dataset still were strongly skewed towards small fluxes or weak interaction strengths. Thus, incorporating these distribution with many weak links via weighted instead of unweighted food web measures can shed new light on classical theories.  相似文献   

2.
Global change affects individual phenotypes and biotic interactions, which can have cascading effects up to the ecosystem level. However, the role of environmentally induced phenotypic plasticity in species interactions is poorly understood, leaving a substantial gap in our knowledge of the impacts of global change on ecosystems. Using a cladoceran–dragonfly system, we experimentally investigated the effects of thermal acclimation, acute temperature change and enrichment on predator functional response and metabolic rate. Using our experimental data, we next parameterized a population dynamics model to determine the consequences of these effects on trophic interaction strength and food‐chain stability. We found that (1) predation and metabolic rates of the dragonfly larvae increase with acute warming, (2) warm‐acclimated larvae have a higher maximum predation rate than cold‐acclimated ones, and (3) long‐term interaction strength increases with enrichment but decreases with both acclimation and acute temperatures. Overall, our experimental results show that thermal acclimation can buffer negative impacts of environmental change on predators and increase food‐web stability and persistence. We conclude that the effect of acclimation and, more generally, phenotypic plasticity on trophic interactions should not be overlooked if we aim to understand the effects of climate change and enrichment on species interaction strength and food‐web stability.  相似文献   

3.
This paper discusses the advantages and disadvantages of the different methods that separate net ecosystem exchange (NEE) into its major components, gross ecosystem carbon uptake (GEP) and ecosystem respiration (Reco). In particular, we analyse the effect of the extrapolation of night‐time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long‐term data sets. For this analysis, we used 16 one‐year‐long data sets of carbon dioxide exchange measurements from European and US‐American eddy covariance networks. These sites span from the boreal to Mediterranean climates, and include deciduous and evergreen forest, scrubland and crop ecosystems. We show that the temperature sensitivity of Reco, derived from long‐term (annual) data sets, does not reflect the short‐term temperature sensitivity that is effective when extrapolating from night‐ to daytime. Specifically, in summer active ecosystems the long‐term temperature sensitivity exceeds the short‐term sensitivity. Thus, in those ecosystems, the application of a long‐term temperature sensitivity to the extrapolation of respiration from night to day leads to a systematic overestimation of ecosystem respiration from half‐hourly to annual time‐scales, which can reach >25% for an annual budget and which consequently affects estimates of GEP. Conversely, in summer passive (Mediterranean) ecosystems, the long‐term temperature sensitivity is lower than the short‐term temperature sensitivity resulting in underestimation of annual sums of respiration. We introduce a new generic algorithm that derives a short‐term temperature sensitivity of Reco from eddy covariance data that applies this to the extrapolation from night‐ to daytime, and that further performs a filling of data gaps that exploits both, the covariance between fluxes and meteorological drivers and the temporal structure of the fluxes. While this algorithm should give less biased estimates of GEP and Reco, we discuss the remaining biases and recommend that eddy covariance measurements are still backed by ancillary flux measurements that can reduce the uncertainties inherent in the eddy covariance data.  相似文献   

4.
Natural populations often show variation in traits that can affect the strength of interspecific interactions. Interaction strengths in turn influence the fate of pairwise interacting populations and the stability of food webs. Understanding the mechanisms relating individual phenotypic variation to interaction strengths is thus central to assess how trait variation affects population and community dynamics. We incorporated nonheritable variation in attack rates and handling times into a classical consumer–resource model to investigate how variation may alter interaction strengths, population dynamics, species persistence, and invasiveness. We found that individual variation influences species persistence through its effect on interaction strengths. In many scenarios, interaction strengths decrease with variation, which in turn affects species coexistence and stability. Because environmental change alters the direction and strength of selection acting upon phenotypic traits, our results have implications for species coexistence in a context of habitat fragmentation, climate change, and the arrival of exotic species to native ecosystems.  相似文献   

5.
Global mean temperature is predicted to increase by 2–7 °C and precipitation to change across the globe by the end of this century. To quantify climate effects on ecosystem processes, a number of climate change experiments have been established around the world in various ecosystems. Despite these efforts, general responses of terrestrial ecosystems to changes in temperature and precipitation, and especially to their combined effects, remain unclear. We used meta‐analysis to synthesize ecosystem‐level responses to warming, altered precipitation, and their combination. We focused on plant growth and ecosystem carbon (C) balance, including biomass, net primary production (NPP), respiration, net ecosystem exchange (NEE), and ecosystem photosynthesis, synthesizing results from 85 studies. We found that experimental warming and increased precipitation generally stimulated plant growth and ecosystem C fluxes, whereas decreased precipitation had the opposite effects. For example, warming significantly stimulated total NPP, increased ecosystem photosynthesis, and ecosystem respiration. Experimentally reduced precipitation suppressed aboveground NPP (ANPP) and NEE, whereas supplemental precipitation enhanced ANPP and NEE. Plant productivity and ecosystem C fluxes generally showed higher sensitivities to increased precipitation than to decreased precipitation. Interactive effects of warming and altered precipitation tended to be smaller than expected from additive, single‐factor effects, though low statistical power limits the strength of these conclusions. New experiments with combined temperature and precipitation manipulations are needed to conclusively determine the importance of temperature–precipitation interactions on the C balance of terrestrial ecosystems under future climate conditions.  相似文献   

6.
A common approach to analyse stability of biological communities is to calculate the interaction strength matrix. Problematic in this approach is defining intraspecific interaction strengths, represented by diagonal elements in the matrix, due to a lack of empirical data for these strengths. Theoretical studies have shown that an overall increase in these strengths enhances stability. However, the way in which the pattern in intraspecific interaction strengths, i.e. the variation in these strengths between species, influences stability has received little attention. We constructed interaction strength matrices for 11 real soil food webs in which four patterns for intraspecific interaction strengths were chosen, based on the ecological literature. These patterns included strengths that were (1) similar for all species, (2) trophic level dependent, (3) biomass dependent, or (4) death rate dependent. These four patterns were analysed for their influence on (1) ranking food webs by their stability and (2) the response in stability to variation of single interspecific interaction strengths. The first analysis showed that ranking the 11 food webs by their stability was not strongly influenced by the choice of diagonal pattern. In contrast, the second analysis showed that the response of food web stability to variation in single interspecific interaction strengths was sensitive to the choice of diagonal pattern. Notably, stability could increase using one pattern and decrease using another. This result asks for deliberate approaches to choose diagonal element values in order to make predictions on how particular species, interactions, or other food web parameters affect food web stability.  相似文献   

7.
Body‐size reduction is a ubiquitous response to global warming alongside changes in species phenology and distributions. However, ecological consequences of temperature‐size (TS) responses for community persistence under environmental change remain largely unexplored. Here, we investigated the interactive effects of warming, enrichment, community size structure and TS responses on a three‐species food chain using a temperature‐dependent model with empirical parameterisation. We found that TS responses often increase community persistence, mainly by modifying consumer‐resource size ratios and thereby altering interaction strengths and energetic efficiencies. However, the sign and magnitude of these effects vary with warming and enrichment levels, TS responses of constituent species, and community size structure. We predict that the consequences of TS responses are stronger in aquatic than in terrestrial ecosystems, especially when species show different TS responses. We conclude that considering the links between phenotypic plasticity, environmental drivers and species interactions is crucial to better predict global change impacts on ecosystem diversity and stability.  相似文献   

8.
Knowledge of feeding rates is the basis to understand interaction strength and subsequently the stability of ecosystems and biodiversity. Feeding rates, as all biological rates, depend on consumer and resource body masses and environmental temperature. Despite five decades of research on functional responses as quantitative models of feeding rates, a unifying framework of how they scale with body masses and temperature is still lacking. This is perplexing, considering that the strength of functional responses (i.e. interaction strengths) is crucially important for the stability of simple consumer–resource systems and the persistence, sustainability and biodiversity of complex communities. Here, we present the largest currently available database on functional response parameters and their scaling with body mass and temperature. Moreover, these data are integrated across ecosystems and metabolic types of species. Surprisingly, we found general temperature dependencies that differed from the Arrhenius terms predicted by metabolic models. Additionally, the body-mass-scaling relationships were more complex than expected and differed across ecosystems and metabolic types. At local scales (taxonomically narrow groups of consumer–resource pairs), we found hump-shaped deviations from the temperature and body-mass-scaling relationships. Despite the complexity of our results, these body-mass- and temperature-scaling models remain useful as a mechanistic basis for predicting the consequences of warming for interaction strengths, population dynamics and network stability across communities differing in their size structure.  相似文献   

9.
10.
Trophic interactions are important determinants of the structure and functioning of ecosystems. Because the metabolism and consumption rates of ectotherms increase sharply with temperature, there are major concerns that global warming will increase the strength of trophic interactions, destabilizing food webs, and altering ecosystem structure and function. We used geothermally warmed streams that span an 11°C temperature gradient to investigate the interplay between temperature‐driven selection on traits related to metabolism and resource acquisition, and the interaction strength between the keystone gastropod grazer, Radix balthica, and a common algal resource. Populations from a warm stream (~28°C) had higher maximal metabolic rates and optimal temperatures than their counterparts from a cold stream (~17°C). We found that metabolic rates of the population originating from the warmer stream were higher across all measurement temperatures. A reciprocal transplant experiment demonstrated that the interaction strengths between the grazer and its algal resource were highest for both populations when transplanted into the warm stream. In line with the thermal dependence of respiration, interaction strengths involving grazers from the warm stream were always higher than those with grazers from the cold stream. These results imply that increases in metabolism and resource consumption mediated by the direct, thermodynamic effects of higher temperatures on physiological rates are not mitigated by metabolic compensation in the long term, and suggest that warming could increase the strength of algal–grazer interactions with likely knock‐on effects for the biodiversity and productivity of aquatic ecosystems.  相似文献   

11.
In the face of stochastic climatic perturbations, the overall stability of an ecosystem will be determined by the balance between its resilience and its resistance, but their relative importance is still unknown. Using aquatic food web models we study ecosystem stability as a function of food web complexity. We measured three dynamical stability properties: resilience, resistance, and variability. Specifically, we evaluate how a decrease in the strength of predator-prey interactions with food web complexity, reflecting a decrease in predation efficiency with the number of prey per predator, affects the overall stability of the ecosystem. We find that in mass conservative ecosystems, a lower interaction strength slows down the mass cycling rate in the system and this increases its resistance to perturbations of the growth rate of primary producers. Furthermore, we show that the overall stability of the food webs is mostly given by their resistance, and not by their resilience. Resilience and resistance display opposite trends, although they are shown not to be simply opposite concepts but rather independent properties. The ecological implication is that weaker predator-prey interactions in closed ecosystems can stabilize food web dynamics by increasing its resistance to climatic perturbations.  相似文献   

12.
生态群落中不同物种间发生多样化的相互作用, 形成了复杂的种间互作网络。复杂生态网络的结构如何影响群落的生态系统功能及稳定性是群落生态学的核心问题之一。种间互作直接影响到物质和能量在生态系统不同组分之间的流动和循环以及群落构建过程, 使得网络结构与生态系统功能和群落稳定性密切相关。在群落及生态系统水平上开展种间互作网络研究将为群落的构建机制、生物多样性维持、生态系统稳定性、物种协同进化和性状分化等领域提供新的视野。当前生物多样性及生态系统功能受到全球变化的极大影响, 研究种间互作网络的拓扑结构、构建机制、稳定性和生态功能也可为生物多样性的保护和管理提供依据。该文从网络结构、构建机制、网络结构和稳定性关系、种间互作对生态系统功能的影响等4个方面综述当前种间网络研究进展, 并提出在今后的研究中利用机器学习和多层网络等来探究环境变化对种间互作网络结构和功能的影响, 并实现理论和实证研究的有效整合。  相似文献   

13.
Death, detritus, and energy flow in aquatic ecosystems   总被引:16,自引:0,他引:16  
1. Pelagic trophic structure and energy fluxes are evaluated predominantly on the basis of ingestion of particulate organic matter by living organisms and the effects of consumption on the population dynamics of trophic levels. 2. Population fluxes are not representative of the material and energy fluxes of either the composite pelagic region or the lake ecosystem. Metabolism of particulate and especially dissolved organic detritus from many pelagic and non-pelagic autochthonous and from allochthonous sources dominates both material and energy fluxes. Because of the very large magnitudes and relative chemical recalcitrance of these detrital sources, the large but slow metabolism of detritus provides an inherent ecosystem stability that energetically dampens the ephemeral, volatile fluctuations of higher trophic levels. 3. The annual time period is the only meaningful interval in comparative quantitative analyses of material and energy fluxes at population, community, and ecosystem levels. 4. Non-predatory death and metabolism by prokaryotic and protistian heterotrophs dominate. Continued application of animal-orientated relationships to the integrated, process-driven couplings of the aquatic ecosystems impedes understanding of quantitative ecosystem pathways and control mechanisms.  相似文献   

14.
In the last years, a remarkable theoretical effort has been made in order to understand the relation between stability and complexity in ecological communities. Yet, what maintains species diversity in real ecological communities is still an open question. The non‐random structures of ecological interaction networks have been recognized as one key ingredient impacting the maximum number of coexisting species within the ecological community. However most of the earlier theoretical studies have considered communities with only one interaction type (either antagonistic, competitive or mutualistic). Recently, it has been proposed that multiple interaction types might stabilize ecosystems and that, in this hybrid case, increasing complexity increases stability. Here we show that these results depend on ad hoc hypothesis that the authors used in their model and we highlight the need to disentangle the role of multiple interaction types and constant interaction effort allocation on community stability. Indeed, we find that mixing of mutualistic and predator–prey interaction types does not stabilize the community dynamics and we demonstrate that a positive correlation between complexity and stability is observed only if a constant effort allocation is imposed in the ecological interactions. Synthesis In recent years a sparkling research has been devoted to the search of new theoretical mechanisms to explain way ecosystems may persist despite their complexity. Here we show that, contrary to what recently suggested (Mougi et al. 2012), the mismatch between theoretical results and empirical evidences on the stability of ecological community is still there also for communities with both mutualistic and antagonistic interactions, and the ‘complexity‐stability’ paradox is still alive. Indeed, we demonstrate that their results arise as an artifact of the peculiar rescaling of the interaction strengths they imposed. Our study suggests that further theoretical studies and experimental evidences are still needed to better understand the role of interaction strengths in real ecological communities.  相似文献   

15.
Ecologists have long debated the properties that confer stability to complex, species‐rich ecological networks. Species‐level soil food webs are large and structured networks of central importance to ecosystem functioning. Here, we conducted an analysis of the stability properties of an up‐to‐date set of theoretical soil food web models that account both for realistic levels of species richness and the most recent views on the topological structure (who is connected to whom) of these food webs. The stability of the network was best explained by two factors: strong correlations between interaction strengths and the blocked, nonrandom trophic structure of the web. These two factors could stabilize our model food webs even at the high levels of species richness that are typically found in soil, and that would make random systems very unstable. Also, the stability of our soil food webs is well‐approximated by the cascade model. This result suggests that stability could emerge from the hierarchical structure of the functional organization of the web. Our study shows that under the assumption of equilibrium and small perturbations, theoretical soil food webs possess a topological structure that allows them to be complex yet more locally stable than their random counterpart. In particular, results strongly support the general hypothesis that the stability of rich and complex soil food webs is mostly driven by correlations in interaction strength and the organization of the soil food web into functional groups. The implication is that in real‐world food web, any force disrupting the functional structure and distribution pattern of interaction strengths (i.e., energy fluxes) of the soil food webs will destabilize the dynamics of the system, leading to species extinction and major changes in the relative abundances of species.  相似文献   

16.
Effects of climate warming and changing precipitation on ecosystem carbon fluxes have been intensively studied. However, how they co‐regulate carbon fluxes is still elusive for some understudied ecosystems. To fill the gap, we examined net ecosystem productivity (NEP), gross ecosystem productivity (GEP,) and ecosystem respiration (ER) responses to multilevel of temperature increments (control, warming 1, warming 2, warming 3, warming 4) in three contrasting hydrological growing seasons in a typical semiarid alpine meadow. We found that carbon fluxes responded to precipitation variations more strongly in low‐level warming treatments than in high‐level ones. The distinct responses were attributable to different soil water conditions and community composition under low‐level and high‐level warming during the three growing seasons. In addition, carbon fluxes were much more sensitive to decreased than to increased precipitation in low‐level warming treatments, but not in high‐level ones. At a regional scale, this negative asymmetry was further corroborated. This study reveals that future precipitation changes, particularly decreased precipitation would induce significant change in carbon fluxes, and the effect magnitude is regulated by climate warming size.  相似文献   

17.
Understanding non‐trophic interactions is critical to mechanistically linking community structure and ecosystem functioning. Despite the widespread occurrence of territoriality across animal taxa and ecosystems, the cascading ecological consequences of non‐trophic interactions between territorial animals and intruders have been poorly studied. We experimentally investigated the non‐trophic interaction between territorial ants and members of a dung decomposer community (i.e. predatory arthropods, maggots and coprophagous beetles) in an alpine meadow. We further examined how this non‐trophic interaction cascaded to influence ecosystem properties including dung removal rate, soil nutrient status and aboveground plant biomass surrounding dung pats. Results indicated that territorial interference of ants on key decomposers cascaded to affect plant growth. Specifically, ants significantly decreased the abundance of coprophagous beetles at the time of their peak‐abundance and hence decreased dung removal rates and soil nitrogen concentrations, ultimately decreasing aboveground plant biomass. The strength of this non‐trophic cascading effect was comparable to those reported in studies addressing trophic cascades triggered by predator–prey interactions. Our findings suggest that the non‐trophic interactions and associated cascading effects stemming from territorial behavior should be incorporated into ecological network modeling and research addressing biodiversity–ecosystem functioning relationships.  相似文献   

18.
The connectedness of species in a trophic web has long been a key structural characteristic for both theoreticians and empiricists in their understanding of community stability. In the past decades, there has been a shift from focussing on determining the number of interactions to taking into account their relative strengths. The question is: How do the strengths of the interactions determine the stability of a community? Recently, a metric has been proposed which compares the stability of observed communities in terms of the strength of three‐ and two‐link feedback loops (cycles of interaction strengths). However, it has also been suggested that we do not need to go beyond the pairwise structure of interactions to capture stability. Here, we directly compare the performance of the feedback and pairwise metrics. Using observed food‐web structures, we show that the pairwise metric does not work as a comparator of stability and is many orders of magnitude away from the actual stability values. We argue that metrics based on pairwise‐strength information cannot capture the complex organization of strong and weak links in a community, which is essential for system stability.  相似文献   

19.
Process‐based models can be classified into: (a) terrestrial biogeochemical models (TBMs), which simulate fluxes of carbon, water and nitrogen coupled within terrestrial ecosystems, and (b) dynamic global vegetation models (DGVMs), which further couple these processes interactively with changes in slow ecosystem processes depending on resource competition, establishment, growth and mortality of different vegetation types. In this study, four models – RHESSys, GOTILWA+, LPJ‐GUESS and ORCHIDEE – representing both modelling approaches were compared and evaluated against benchmarks provided by eddy‐covariance measurements of carbon and water fluxes at 15 forest sites within the EUROFLUX project. Overall, model‐measurement agreement varied greatly among sites. Both modelling approaches have somewhat different strengths, but there was no model among those tested that universally performed well on the two variables evaluated. Small biases and errors suggest that ORCHIDEE and GOTILWA+ performed better in simulating carbon fluxes while LPJ‐GUESS and RHESSys did a better job in simulating water fluxes. In general, the models can be considered as useful tools for studies of climate change impacts on carbon and water cycling in forests. However, the various sources of variation among models simulations and between models simulations and observed data described in this study place some constraints on the results and to some extent reduce their reliability. For example, at most sites in the Mediterranean region all models generally performed poorly most likely because of problems in the representation of water stress effects on both carbon uptake by photosynthesis and carbon release by heterotrophic respiration (Rh). The use of flux data as a means of assessing key processes in models of this type is an important approach to improving model performance. Our results show that the models have value but that further model development is necessary with regard to the representation of the some of the key ecosystem processes.  相似文献   

20.
Measuring and modeling carbon (C) stock changes in terrestrial ecosystems are pivotal in addressing global C‐cycling model uncertainties. Difficulties in detecting small short‐term changes in relatively large C stocks require the development of robust sensitive flux measurement techniques. Net ecosystem exchange (NEE) ground‐level chambers are increasingly used to assess C dynamics in low vegetation ecosystems but, to date, have lacked formal rigorous field validation against measured C stock changes. We developed and deployed an automated and multiplexed C‐flux chamber system in grassland mesocosms in order rigorously to compare ecosystem total C budget obtained using hourly C‐flux measurements versus destructive net C balance. The system combines transparent NEE and opaque respiration chambers enabling partitioning of photosynthetic and respiratory fluxes. The C‐balance comparison showed good agreement between the two methods, but only after NEE fluxes were corrected for light reductions due to chamber presence. The dark chamber fluxes allowed assessing temperature sensitivity of ecosystem respiration (Reco) components (i.e., heterotrophic vs. autotrophic) at different growth stages. We propose that such automated flux chamber systems can provide an accurate C balance, also enabling pivotal partitioning of the different C‐flux components (e.g., photosynthesis and respiration) suitable for model evaluation and developments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号