首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The “Great American Biotic Interchange” (GABI) is regarded as a defining event in the biogeography of the Americas. It is hypothesized to have occurred when the Isthmus of Panama closed ca three million years ago (Ma), ending the isolation of South America and permitting the mixing of its biota with that of North America. This view of the GABI is based largely upon the animal fossil record, but recent molecular biogeographic studies of plants that show repeated instances of long‐distance dispersal over major oceanic barriers suggest that perhaps the land bridge provided by the isthmus may have been less necessary for plant migration. Here we show that plants have significantly earlier divergence time estimates than animals for historical migration events across the Isthmus of Panama region. This difference in timing indicates that plants had a greater propensity for dispersal over the isthmus before its closure compared with animals. The GABI was therefore asynchronous for plants and animals, which has fundamental implications for the historical assembly of tropical biomes in the most species‐rich forests on the planet.  相似文献   

2.
The completion of the land bridge between North and South America approximately 3.5-3.1 million years ago (Ma) initiated a tremendous biogeographic event called the Great American Biotic Interchange (GABI), described principally from the mammalian fossil record. The history of biotic interchange between continents for taxonomic groups with poor fossil records, however, is not well understood. Molecular and fossil data suggest that a number of plant and animal lineages crossed the Isthmus of Panama well before 3.5 Ma, leading biologists to speculate about trans-oceanic dispersal mechanisms. Here we present a molecular phylogenetic analysis of the frog genus Pristimantis based on 189 individuals of 137 species, including 71 individuals of 31 species from Panama and Colombia. DNA sequence data were obtained from three mitochondrial (COI, 12S, 16S) and two nuclear (RAG-1 and Tyr) genes, for a total of 4074 base pairs. The resulting phylogenetic hypothesis showed statistically significant conflict with most recognized taxonomic groups within Pristimantis, supporting only the rubicundus Species Series, and the Pristimantis myersi and Pristimantis pardalis Species Groups as monophyletic. Inference of ancestral areas based on a likelihood model of geographic range evolution via dispersal, local extinction, and cladogenesis (DEC) suggested that the colonization of Central America by South American Pristimantis involved at least 11 independent events. Relaxed-clock analyses of divergence times suggested that at least eight of these invasions into Central America took place prior to 4 Ma, mainly in the Miocene. These findings contribute to a growing list of molecular-based biogeographic studies presenting apparent temporal conflicts with the traditional GABI model.  相似文献   

3.
Separated throughout most of the Cenozoic era, North and South America were joined during the mid‐Pliocene when the uplift of Panama formed a land bridge between these two continents. The fossil record indicates that this connection allowed an unprecedented degree of inter‐continental exchange to occur between unique, previously isolated biotic assemblages, a phenomenon now recognized as the “Great American Biotic Interchange”. However, a relatively poor avian fossil record has prevented our understanding the role of the land bridge in shaping New World avian communities. To address the question of avian participation in the GABI, we compiled 64 avian phylogenetic studies and applied a relaxed molecular clock to estimate the timing of trans‐isthmus diversification events. Here, we show that a significant pulse of avian interchange occurred in concert with the isthmus uplift. The avian exchange was temporally consistent with the well understood mammalian interchange, despite the presumed greater vagility of birds. Birds inhabiting a variety of habitats and elevational zones responded to the newly available corridor. Within the tropics, exchange was equal in both directions although between extratropical and tropical regions it was not. Avian lineages with Nearctic origins have repeatedly invaded the tropics and radiated throughout South America; whereas, lineages with South American tropical origins remain largely restricted to the confines of the Neotropical region. This previously unrecognized pattern of asymmetric niche conservatism may represent an important and underappreciated contributor to the latitude diversity gradient.  相似文献   

4.
We describe sloth assemblages from the Cocinetas Basin (La Guajira peninsula, Colombia), found in the Neogene Castilletes and Ware formations, located in northernmost South America, documenting otherwise poorly known biotas. The tentative referral of a specimen to a small megatherioid sloth, Hyperleptus?, from the early–middle Miocene Castilletes Formation, suggests affinities of this fauna with the distant Santa Cruz Formation and documents a large latitudinal distribution for this taxon. The late Pliocene Ware Formation is much more diverse, with five distinct taxa representing every family of ‘ground sloths’. This diversity is also remarkable at the ecological level, with sloths spanning over two orders of magnitude of body mass and probably having different feeding strategies. Being only a few hundred kilometres away from the Isthmus of Panama, and a few hundred thousand years older than the classically recognized first main pulse of the Great American Biotic interchange (GABI 1), the Ware Formation furthermore documents an important fauna for the understanding of this major event in Neogene palaeobiogeography. The sloths for which unambiguous affinities were recovered are not closely related to the early immigrants found in North America before GABI 1.  相似文献   

5.
The wild common bean (Phaseolus vulgaris) is widely but discontinuously distributed from northern Mexico to northern Argentina on both sides of the Isthmus of Panama. Little is known on how the species has reached its current disjunct distribution. In this research, chloroplast DNA polymorphisms in seven non-coding regions were used to study the history of migration of wild P. vulgaris between Mesoamerica and South America. A penalized likelihood analysis was applied to previously published Leguminosae ITS data to estimate divergence times between P. vulgaris and its sister taxa from Mesoamerica, and divergence times of populations within P. vulgaris. Fourteen chloroplast haplotypes were identified by PCR-RFLP and their geographical associations were studied by means of a Nested Clade Analysis and Mantel Tests. The results suggest that the haplotypes are not randomly distributed but occupy discrete parts of the geographic range of the species. The current distribution of haplotypes may be explained by isolation by distance and by at least two migration events between Mesoamerica and South America: one from Mesoamerica to South America and another one from northern South America to Mesoamerica. Age estimates place the divergence of P. vulgaris from its sister taxa from Mesoamerica at or before 1.3 Ma, and divergence of populations from Ecuador-northern Peru at or before 0.6 Ma. As these ages are taken as minimum divergence times, the influence of past events, such as the closure of the Isthmus of Panama and the final uplift of the Andes, on the migration history and population structure of this species cannot be disregarded.  相似文献   

6.
Aim The closure of the Central American land‐bridge connection between North and South America 3.5 million years ago was a major biogeographic event that allowed considerable interchange of the previously isolated faunas of these continents. However, the role that this connection may have had in diversification of North and South American faunas is less well understood. The goal of this study was to evaluate the potential role of the formation of this land connection in generating diversity, through repeated rare dispersal events followed by isolation. Location North and South America. Methods We evaluated the role of the Central American land‐bridge connection in avian diversification using a molecular phylogeny based on four gene regions for mid‐sized New World doves. Diversification events were dated using a Bayesian relaxed clock analysis and internal calibration points for endemic island taxa with known island ages. Results The reconstructed phylogenetic tree was well supported and recovered monophyly of the genera Leptotila and Zenaida, but the quail‐doves (Geotrygon) were paraphyletic, falling into three separate lineages. The phylogeny indicated at least nine dispersal‐driven divergence events between North and South America. There were also five dispersal events in the recent past that have not yet led to differentiation of taxa (polymorphic taxa). Main conclusions Most of these dispersal‐driven diversification events occurred at the time of or after the formation of the Central American land bridge, indicating that this land connection played a role in facilitating divergence via dispersal of doves between continents.  相似文献   

7.
Aim Similar regimes of selection in different geographical settings can deterministically produce similar adaptive morphologies. We tested the hypothesis that the evolutionary trajectories of fish in upwelling zones can be altered by biogeographic contingencies in the biological and physical environment. Location Eastern Pacific and western Atlantic oceans. Methods We estimated phylogenetic relationships among eastern Pacific temperate anchovies (genus Engraulis) and tropical anchovies (genus Cetengraulis) with neighbour‐joining and Bayesian tree analysis of a 521‐bp segment of mitochondrial DNA cytochrome b. Available sequences for five additional engraulid taxa were included to establish polarity of the tree. Bayesian estimates (BEAST) of time to most recent common ancestor (TMRCA) for the nodes in the phylogeny were calibrated with divergence between Cetengraulis edentulus and Cetengraulis mysticetus precipitated by the rise of the Panama Isthmus 2.8–3.2 Ma. Results Neighbour‐joining and Bayesian trees indicate that South American Engraulis anchoita (Argentina) and Engraulis ringens (Chile) together are basal sister taxa to the California anchovy (Engraulis mordax) and Old World anchovies (Engraulis japonicas, Engraulis australis, Engraulis capensis and Engraulis encrasicolus). The two tropical species of Cetengraulis are sister‐taxa to Californian E. mordax, even though their phenotypes and ecologies differ markedly. A relaxed molecular clock indicates a TMRCA between Californian E. mordax and Cetengraulis at about 4.2 Ma (3.0–6.3 Ma 95% highest probability density). Main conclusions The TMRCA between the California anchovy, E. mordax, and tropical Cetengraulis coincides with the formation of the Gulf of California, which provided opportunities for allopatric isolation during climate oscillations. Mid‐Pliocene warming (3.1–2.9 Ma) may have trapped ancestors of Cetengraulis in the Gulf of California, where they evolved digestive tract morphologies to exploit inshore tropical habitats with low plankton productivities. While populations of several other temperate fishes have become isolated in the Gulf of California, few of these derived species show strong adaptive shifts from temperate sister taxa or range expansions into the tropical provinces of the western Atlantic and eastern Pacific.  相似文献   

8.
The extant distribution of sigmodontine rodents encompasses most of the New World, and the majority of the species in this subfamily inhabit South America. Nevertheless, the basal lineages of the Sigmodontinae are distributed in North and Central America, and the fossil record indicates a North American origin. This evidence has produced contentious theories concerning the evolution of these rodents. The dispute usually stems from a disagreement about the way in which sigmodontines reached South America, which was an isolated landmass during most of the Cenozoic. Fundamentally, the debate is associated with the role of Panamanian Isthmus formation and the Great American Biotic Interchange (GABI) in the diversification of the clade. An early hypothesis implies that sigmodontines arrived in South America before the complete rise of the Panamanian Isthmus, whereas a late hypothesis directly correlates the diversification of the lineage with this event. To address this question, we have sequenced nuclear and mitochondrial sequences, as well as the first Sigmodontinae mitochondrial genomes (Akodon montensis and Wiedomys cerradensis) and performed a Bayesian dating analysis. Our results showed that the most recent common ancestor of the subfamily lived at approximately 15 Ma. Although the diversification of sigmodontines was not associated with the complete rise of the Panamanian Isthmus, we cannot exclude the hypothesis that this event played a relevant role in the evolution of the lineage during the Miocene.  相似文献   

9.
About 3 million years ago (Ma), the Isthmus of Panama joined the Americas, forming a land bridge over which inhabitants of each America invaded the other—the Great American Biotic Interchange. These invasions transformed land ecosystems in South and Middle America. Humans invading from Asia over 12000 years ago killed most mammals over 44 kg, again transforming tropical American ecosystems. As a sea barrier, the isthmus induced divergent environmental change off its two coasts—creating contrasting ecosystems through differential extinction and diversification. Approximately 65 Ma invading marsupials and ungulates of North American ancestry, and xenarthrans of uncertain provenance replaced nearly all South America's non‐volant mammals. There is no geological evidence for a land bridge at that time. Together with rodents and primates crossing from Africa 42 to 30 Ma, South America's mammals evolved in isolation until the interchange's first heralds less than 10 Ma. Its carnivores were ineffective marsupials. Meanwhile, North America was invaded by more competitive Eurasian mammals. The Americas had comparable expanses of tropical forest 55 Ma; later, climate change confined North American tropical forest to a far smaller area. When the isthmus formed, North American carnivores replaced their marsupial counterparts. Although invaders crossed in both directions, North American mammals spread widely, diversified greatly, and steadily replaced South American open‐country counterparts, unused to effective predators. Invading South American mammals were less successful. South America's birds, bats, and smaller rainforest mammals, equally isolated, mostly survived invasion. Its vegetation, enriched by many overseas invaders, remained intact. This vegetation resists herbivory effectively. When climate permitted, South America's rainforest, with its bats, birds and mammals, spread to Mexico. Present‐day tropical American vegetation is largely zoned by trade‐offs between exploiting well‐watered settings versus surviving droughts, exploiting fertile versus coping with poor soil, and exploiting lowland warmth versus coping with cooler altitudes. At the start of the Miocene, a common marine biota extended from Trinidad to Ecuador and western Mexico, which evolved in isolation from the Indo‐Pacific until the Pleistocene. The seaway between the Americas began shoaling over 12 Ma. About 10 Ma the land bridge was briefly near‐complete, allowing some interchange of land mammals between the continents. By 7 Ma, the rising sill had split deeper‐water populations. Sea temperature, salinity and sedimentary carbon content had begun to increase in the Southern Caribbean, but not the Pacific. By 4 Ma, the seaway's narrowing began to extinguish Caribbean upwellings. By 2 Ma, upwellings remained only along Venezuela; Caribbean plankton, suspension‐feeding molluscs and their predators had declined sharply, largely replaced by bottom‐dwelling corals and calcareous algae and magnificent coral reefs. Closing the seaway extinguished the Eastern Pacific's reef corals (successors recolonized from the Indo‐Pacific 6000 years ago), whereas many molluscs of productive waters that once thrived in the Caribbean now survive only in the Eastern Pacific. The present‐day productive Eastern Pacific, with few, small coral reefs and a plankton‐based ecosystem contrasts with the Caribbean, whose clear water favours expansive coral reefs and bottom‐dwelling primary producers. These ecosystems reflect the trade‐off between fast growth and effective defence with attendant longevity. Overfishing with new technologies during the last few centuries, however, has caused population crashes of ever‐smaller marine animals, devastating Caribbean ecosystems.  相似文献   

10.
Prior studies on the latitudinal extent and ecological impact of exotic plant species suggest that areas of high diversity, such as the Neotropics, may be relatively 'resistant' to invasions. To explore the generality of this assertion and assess the impact of alien species on continental tropical faunas, I compiled data for threatened Neotropical animals from the red data books of Bolivia, Brazil, Minas Gerais (a Brazilian state), Peru, and Venezuela. A total of 378 species (including both vertebrates and invertebrates) were considered. For each taxon, I recorded whether it is threatened by habitat conversion, overexploitation, and/or exotic species. As suggested by other researchers, exotic species introductions appear to be relatively unimportant in South America, threatening only 6% of animal taxa. However, many South American animals are themselves either recent invaders or survivors of the Great American Biotic Interchange (GABI) which began during the Pliocene. Here, I hypothesize that the GABI may have acted as an 'extinction filter', leaving faunal groups of mostly South American origin relatively more threatened by the current wave of exotic invaders than those with prominent North American representation. The data support this prediction. For taxa whose current diversity patterns were not strongly influenced by the GABI, exotic species are indeed an important threat. For example, alien invaders threaten 29% of continental fishes and 30% of amphibians, figures comparable to those recorded in temperate areas. As more information on these less-studied taxa becomes available, the magnitude of the threat posed by exotic species introductions will probably reveal itself to be large. Of critical importance is to assess the impact of invasions on biological realms that have only been recently exposed to alien taxa, such as the aquatic faunas of the numerous drainages that occur along the eastern and western slopes of the South American Andes. The results of these investigations provide predictions for similar research focussed on other continental tropical regions of the world.  相似文献   

11.
Aim The rise of the Isthmus of Panama and the formation of ‘geminate’ species pairs serves as an important model of allopatric speciation. However, to function as a model system, hypothesized geminates must first be shown to be each other’s closest living relatives. If the presence of cryptic taxa obscures true relationships, the biogeographical histories of transisthmian taxa are likely to be misinterpreted. We have therefore completed a phylogeographic survey of the transisthmian bivalve subgenus Acar in the genus Barbatia to characterize patterns of tropical American diversity and to place transisthmian taxa in a regional phylogeographic context. Location Tropical America. Methods Mitochondrial cytochrome c oxidase I (COI) and nuclear internal transcribed spacer (ITS) sequences were obtained from 233 specimens of Acar. Sequences were analysed using cladistic and Bayesian methods. Divergence times between species were inferred from net nucleotide divergences and a coalescence‐based method. Results The survey revealed 22 COI clades that were also monophyletic at ITS, indicating that the taxonomy of Acar is potentially greater than a fivefold diversity underestimate. The lone previously recognized geminate [Barbatia (Acar) gradata and Barbatia (Acar) domingensis] is composed of 15 clades. Among the four transisthmian lineages identified, two diverged more than 14 Ma; the two other geminates split just prior to the time of final seaway closure. In addition to a fourfold increase in the number of known geminates, our data show that within‐basin diversification has been more impressive, with one geminate splitting into five monophyletic clades in the Western Atlantic alone since seaway closure. Electron microscopy of the larval shells of specimens indicates that the transisthmian lineage with the greatest rate of post‐Isthmian diversification possesses non‐planktonic larvae, a life‐history feature linked to high speciation rates. Main conclusions Our analyses revealed that the identities of geminate pairs split by the Isthmus of Panama were obscured by extremely high tropical American cryptic diversity. Although we have identified four geminates, only two appear to have been split by the Isthmus. Our uncovering of extensive post‐Isthmian diversification is consistent with the palaeontological perspective that the final closure of the Central American Seaway was followed by high rates of subgeneric diversification, particularly in the tropical Western Atlantic.  相似文献   

12.
Aim Few studies of comparative phylogeography have been conducted at very large spatial scales, encompassing species that are distributed across multiple continents. Several Pan‐American butterfly species associated with weedy, human‐modified habitats were studied using comparative phylogeographic tools to test for the congruence of demographic histories across a range of spatial scales and to investigate the effects of human‐facilitated range expansion. Location North and South America, mainly the southern United States, Brazil and Argentina. Methods The mitochondrial DNA cytochrome c oxidase subunit II region (COII) was sequenced for Hylephila phyleus, Lerodea eufala, Erynnis funeralis and Agraulis vanillae across their North and South American ranges. Data from these conspecifics were compared with variation in COII sequences between allopatric congener pairs on both continents whose ranges approximate the conspecifics and also share similar weedy habitat associations: Ancyloxypha numitor versus Ancyloxypha nitedula, Vanessa annabella versus Vanessa carye, and Euptoieta claudia versus Euptoieta hortensia. We tested for similarities in demographic histories within and across continents for each species using pairwise distances, population genetic statistics, mismatch distributions and deviations from mutation‐drift equilibrium. Results Mean pairwise divergence across continents was lower for Lerodea eufala and Hylephila phyleus (with several shared Pan‐American haplotypes each) compared with Erynnis funeralis and Agraulis vanillae (both with no shared haplotypes). Differentiation between congeneric species pairs was generally significantly higher than conspecific divergence across continents, but North and South American populations of A. vanillae were more divergent than V. annabella and V. carye. We found deviations from mutation‐drift equilibrium in A. vanillae. Population‐level variation was greater than the variation across continents for H. phyleus and L. eufala. Main conclusions We find little congruence in phylogeographic patterns among these taxa across continents, although similar demographic patterns can be detected at smaller regional levels. Except for Californian populations of some species, the North American distributions of these weedy butterfly species appear to largely pre‐date the influences of human‐facilitated range expansion.  相似文献   

13.
The Glyptodontidae is one of the most conspicuous groups in the Pleistocene megafauna of the Americas. The Glyptodontinae were involved in the Great American Biotic Interchange (GABI) and their earliest records in North America are about 3.9 Ma, suggesting an earlier formation of the Panamanian landbridge. Taxonomically it is possible to recognize two Pleistocene genera of Glyptodontinae:Glyptodon (ca. 1.8 – 0.008 Ma), restricted to South America, andGlyptotherium (ca. 2.6 – 0.009 Ma), including records in both North and Central America. Here we present the first report of the genusGlyptotherium in South America, from the Late Pleistocene of several fossil localities in Falcón State, northwestern Venezuela. A comparative analysis of the material, represented by cranial and postcranial parts, including the dorsal carapace and caudal rings, suggests a close affinity withGlyptotherium cylindricum (Late Pleistocene of Central Mexico). This occurrence in the latest Pleistocene of the northernmost region of South America Supports the bidirectional faunal migration during the GABI and the repeated re-immigration from North America of South American clades, as has been reported in other members of the Cingulata (e.g., Pampatheriidae).   相似文献   

14.
The divergence date and ancestral distributional area of the psocid subfamily Speleketorinae, which includes taxa with reversed genitalia (female penis and male vagina of Afrotrogla and Neotrogla, tribe Sensitibillini), were estimated. The most basal divergence of the subfamily (between the North American Speleketor and the tribe Sensitibillini) was estimated to have occurred according to the separation between the North American continent and Gondwana, ca. 175 Ma. The most basal divergence of Sensitibillini (between African Afrotrogla + Sensitibilla and Brazilian Neotrogla) was estimated to have occurred according to the split of West Gondwana (separation between the African and South American continents), ca. 127 Ma. The biome of the ancestral distributional area of Sensitibillini (inland of West Gondwana) is believed to be arid to semi‐arid, which might strengthen the reversed sexual selection and then facilitate the origin of preadaptive features related to the evolution of a female penis. All extant Sensitibillini species inhabit carbonatic caves, but geological evidence suggested independent shifts of these genera to the carbonatic cave habitat in the Tertiary/Quaternary.  相似文献   

15.
Before the formation of the Central American Isthmus, there was a Central American Peninsula. Here we show that southern Central America existed as a peninsula as early as 19 Ma, based on new lithostratigraphic, biostratigraphic and strontium chemostratigraphic analyses of the formations exposed along the Gaillard Cut of the Panama Canal. Land mammals found in the Miocene Cucaracha Formation have similar body sizes to conspecific taxa in North America, indicating that there existed a terrestrial connection with North America that allowed gene flow between populations during this time. How long did this peninsula last? The answer hinges on the outcome of a stratigraphic dispute: To wit, is the terrestrial Cucaracha Formation older or younger than the marine La Boca Formation? Previous stratigraphic studies of the Panama Canal Basin have suggested that the Cucaracha Formation lies stratigraphically between the shallow-marine Culebra Formation and the shallow-to-upper-bathyal La Boca Formation, the latter containing the Emperador Limestone. If the La Boca Formation is younger than the Cucaracha Formation, as many think, then the peninsula was short-lived (1–2 m.y.), having been submerged in part by the transgression represented by the overlying La Boca Formation. On the other hand, our data support the view that the La Boca Formation is older than the Cucaracha Formation. Strontium dating shows that the La Boca Formation is older (23.07 to 20.62 Ma) than both the Culebra (19.83–19.12 Ma) and Cucaracha (Hemingfordian to Barstovian North American Land Mammal Ages; 19–14 Ma) formations. The Emperador Limestone is also older (21.24–20.99 Ma) than the Culebra and Cucaracha formations. What has been called the “La Boca Formation” (with the Emperador Limestone), is re-interpreted here as being the lower part of the Culebra Formation. Our new data sets demonstrate that the main axis of the volcanic arc in southern Central America more than likely existed as a peninsula connected to northern Central America and North America for much of the Miocene, which has profound implications for our understanding of the tectonic, climatic, oceanographic and biogeographic history related to the formation of the Isthmus of Panama.  相似文献   

16.
A phytogeographic analysis of the distributions of 454 species of trees native to the Osa Peninsula in 22 families revealed that 4.8% of the species are endemic to the Osa Peninsula and the adjacent mainland of Costa Rica. However, nearly one-fourth of the species might be regionally endemic to Central-South Mesoamerica (Costa Rica, Nicaragua, and Panama). Our sample suggests that 53.6% of the species occur in some part of Mesoamerica and sometimes range into northwestern South America, and that 44.5% of the species have wide distributions throughout tropical America. There is a strong affinity with the flora of northwestern South America, with 46.2% of the species on the Osa also found there. In addition, 50.6% of the tree species on the Osa occur on both the Atlantic and Pacific slopes of Central America or, if they reach South America, are sometimes found on both sides of the Andes. Major contributions to the tree flora of the Osa have been made by species arriving in the Osa by 1) dispersal from South and North America to islands in proto Central America before the formation of a dry-land connection between the two continents, and 2) migration from South America and North America after the closure of the Panamanian isthmus was made. This analysis demonstrates the importance of the Osa as a regional refuge for protecting species with distributions limited to the Osa and parts of Panama, Costa Rica, or Nicaragua. The Osa is also important because it harbors the last expanse of tropical wet forest on the Pacific slope of Central America large enough to ensure the survival of the Central American populations of widely distributed plants and animals.  相似文献   

17.
Abstract Pleistocene fragmentation of the Amazonian rainforest has been hypothesized to be a major cause of Neotropical speciation and diversity. However, the role and even the reality of Pleistocene forest refugia have attracted much scepticism. In Amazonia, previous phylogeographical studies have focused mostly on organisms found in the forests themselves, and generally found speciation events to have predated the Pleistocene. However, molecular studies of open-formation taxa found both north and south of the Amazonian forests, probably because of vicariance resulting from expansion of the rainforests, may provide novel insights into the age of continuous forest cover across the Amazon basin. Here, we analyse three mitochondrial genes to infer the phylogeography of one such trans-Amazonian vicariant, the Neotropical rattlesnake (Crotalus durissus), which occupies primarily seasonal formations from Mexico to Argentina, but avoids the rainforests of Central and tropical South America. The phylogeographical pattern is consistent with gradual dispersal along the Central American Isthmus, followed by more rapid dispersal into and across South America after the uplift of the Isthmus of Panama. Low sequence divergence between populations from north and south of the Amazon rainforest is consistent with mid-Pleistocene divergence, approximately 1.1 million years ago (Ma). This suggests that the Amazonian rainforests must have become fragmented or at least shrunk considerably during that period, lending support to the Pleistocene refugia theory as an important cause of distribution patterns, if not necessarily speciation, in Amazonian forest organisms. These results highlight the potential of nonforest species to contribute to an understanding of the history of the Amazonian rainforests themselves.  相似文献   

18.
Historical climate changes have had a major effect on the distribution and evolution of plant species in the neotropics. What is more controversial is whether relatively recent Pleistocene climatic changes have driven speciation, or whether neotropical species diversity is more ancient. This question is addressed using evolutionary rate analysis of sequence data of nuclear ribosomal internal transcribed spacers in diverse taxa occupying neotropical seasonally dry forests, including Ruprechtia (Polygonaceae), robinioid legumes (Fabaceae), Chaetocalyx and Nissolia (Fabaceae), and Loxopterygium (Anacardiaceae). Species diversifications in these taxa occurred both during and before the Pleistocene in Central America, but were primarily pre-Pleistocene in South America. This indicates plausibility both for models that predict tropical species diversity to be recent and that invoke a role for Pleistocene climatic change, and those that consider it ancient and implicate geological factors such as the Andean orogeny and the closure of the Panama Isthmus. Cladistic vicariance analysis was attempted to identify common factors underlying evolution in these groups. In spite of the similar Mid-Miocene to Pliocene ages of the study taxa, and their high degree of endemism in the different fragments of South American dry forests, the analysis yielded equivocal, non-robust patterns of area relationships.  相似文献   

19.
The modern geographic distribution of the spider family Sicariidae is consistent with an evolutionary origin on Western Gondwana. Both sicariid genera, Loxosceles and Sicarius are diverse in Africa and South/Central America. Loxosceles are also diverse in North America and the West Indies, and have species described from Mediterranean Europe and China. We tested vicariance hypotheses using molecular phylogenetics and molecular dating analyses of 28S, COI, 16S, and NADHI sequences. We recover reciprocal monophyly of African and South American Sicarius, paraphyletic Southern African Loxosceles and monophyletic New World Loxosceles within which an Old World species group that includes L. rufescens is derived. These patterns are consistent with a sicariid common ancestor on Western Gondwana. North American Loxosceles are monophyletic, sister to Caribbean taxa, and resolved in a larger clade with South American Loxosceles. With fossil data this pattern is consistent with colonization of North America via a land bridge predating the modern Isthmus of Panama.  相似文献   

20.
Plant disjunctions have provided some of the most intriguing distribution patterns historically addressed by biogeographers. We evaluated the three hypotheses that have been postulated to explain these patterns [vicariance, stepping‐stone dispersal and long‐distance dispersal (LDD)] using Munroa, an American genus of grasses with six species and a disjunct distribution between the desert regions of North and South America. The ages of clades, cytology, ancestral characters and areas of distribution were investigated in order to establish relationships among species, to determine the time of divergence of the genus and its main lineages, and to understand further the biogeographical and evolutionary history of this genus. Bayesian inference recovered the North American M. pulchella as sister species to the rest. Molecular dating and ancestral area analyses suggest that Munroa originated in North America in the late Miocene–Pliocene (7.2 Mya; 8.2–6.5 Mya). Based on these results, we postulate that two dispersal events modelled the current distribution patterns of Munroa: the first from North to South America (7.2 Mya; 8.2–6.5 Mya) and the second (1.8 Mya; 2–0.8 Mya) from South to North America. Arid conditions of the late Miocene–Pliocene in the Neogene and Quaternary climatic oscillations in North America and South America were probably advantageous for the establishment of populations of Munroa. We did not find any relationship between ploidy and dispersal events, and our ancestral character analyses suggest that shifts associated with dispersal and seedling establishment, such as habit, reproductive system, disarticulation of rachilla, and shape and texture of the glume, have been important in these species reaching new areas. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 110–125.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号