首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fibroblast growth factors (FGFs) interact with heparan sulfate glycosaminoglycans and the extracellular domains of FGF cell surface receptors (FGFRs) to trigger receptor activation and biological responses. FGF homologous factors (FHF1-FHF4; also known as FGF11-FGF14) are related to FGFs by substantial sequence homology, yet their only documented interactions are with an intracellular kinase scaffold protein, islet brain-2 (IB2) and with voltage-gated sodium channels. In this report, we show that recombinant FHFs can bind heparin with high affinity like classical FGFs yet fail to activate any of the seven principal FGFRs. Instead, we demonstrate that FHFs bind IB2 directly, furthering the contention that FHFs and FGFs elicit their biological effects by binding to different protein partners. To understand the molecular basis for this differential target binding specificity, we elucidated the crystal structure of FHF1b to 1.7-A resolution. The FHF1b core domain assumes a beta-trefoil fold consisting of 12 antiparallel beta strands (beta 1 through beta 12). The FHF1b beta-trefoil core is remarkably similar to that of classical FGFs and exhibits an FGF-characteristic heparin-binding surface as attested to by the number of bound sulfate ions. Using molecular modeling and structure-based mutational analysis, we identified two surface residues, Arg52 in the beta 4-beta 5 loop and Val95 in the beta 9 strand of FHF1b that are required for the interaction of FHF1b with IB2. These two residues are unique to FHFs, and mutations of the corresponding residues of FGF1 to Arg and Val diminish the capacity of FGF1 to activate FGFRs, suggesting that these two FHF residues contribute to the inability of FHFs to activate FGFRs. Hence, FHFs and FGFs bear striking structural similarity but have diverged to direct related surfaces toward interaction with distinct protein targets.  相似文献   

2.
In mammals, fibroblast growth factors (FGFs) are encoded by 22 genes. FGFs bind and activate alternatively spliced forms of four tyrosine kinase FGF receptors (FGFRs 1-4). The spatial and temporal expression patterns of FGFs and FGFRs and the ability of specific ligand-receptor pairs to actively signal are important factors regulating FGF activity in a variety of biological processes. FGF signaling activity is regulated by the binding specificity of ligands and receptors and is modulated by extrinsic cofactors such as heparan sulfate proteoglycans. In previous studies, we have engineered BaF3 cell lines to express the seven principal FGFRs and used these cell lines to determine the receptor binding specificity of FGFs 1-9 by using relative mitogenic activity as the readout. Here we have extended these semiquantitative studies to assess the receptor binding specificity of the remaining FGFs 10-23. This study completes the mitogenesis-based comparison of receptor specificity of the entire FGF family under standard conditions and should help in interpreting and predicting in vivo biological activity.  相似文献   

3.
Binding of heparin/heparan sulfate to fibroblast growth factor receptor 4   总被引:4,自引:0,他引:4  
Fibroblast growth factors (FGFs) are heparin-binding polypeptides that affect the growth, differentiation, and migration of many cell types. FGFs signal by binding and activating cell surface FGF receptors (FGFRs) with intracellular tyrosine kinase domains. The signaling involves ligand-induced receptor dimerization and autophosphorylation, followed by downstream transfer of the signal. The sulfated glycosaminoglycans heparin and heparan sulfate bind both FGFs and FGFRs and enhance FGF signaling by mediating complex formation between the growth factor and receptor components. Whereas the heparin/heparan sulfate structures involved in FGF binding have been studied in some detail, little information has been available on saccharide structures mediating binding to FGFRs. We have performed structural characterization of heparin/heparan sulfate oligosaccharides with affinity toward FGFR4. The binding of heparin oligosaccharides to FGFR4 increased with increasing fragment length, the minimal binding domains being contained within eight monosaccharide units. The FGFR4-binding saccharide domains contained both 2-O-sulfated iduronic acid and 6-O-sulfated N-sulfoglucosamine residues, as shown by experiments with selectively desulfated heparin, compositional disaccharide analysis, and a novel exoenzyme-based sequence analysis of heparan sulfate oligosaccharides. Structurally distinct heparan sulfate octasaccharides differed in binding to FGFR4. Sequence analysis suggested that the affinity of the interaction depended on the number of 6-O-sulfate groups but not on their precise location.  相似文献   

4.
The fibroblast growth factors (FGFs) exert their diverse (or pleiotropic) biological responses through the binding and activation of specific cell surface receptors (FGFRs). While FGFRs are known to initiate intracellular signaling through receptor tyrosine phosphorylation, the precise mechanisms by which the FGFRs regulate pleiotropic biological responses remain unclear. We now identify a new mechanism by which FGFR2 is able to regulate intracellular signaling and cellular responses. We show that FGFR2 is phosphorylated on serine 779 (S779) in response to FGF2. S779, which lies adjacent to the phospholipase Cgamma binding site at Y766, provides a docking site for the 14-3-3 phosphoserine-binding proteins and is essential for the full activation of the phosphatidylinositol 3-kinase and Ras/mitogen-activated protein kinase pathways. Furthermore, S779 signaling is essential for promoting cell survival and proliferation in both Ba/F3 cells and BALB/c 3T3 fibroblasts. This new mode of FGFR2 phosphoserine signaling via the 14-3-3 proteins may provide an increased repertoire of signaling outputs to allow the regulation of pleiotropic biological responses. In this regard, we have identified conserved putative phosphotyrosine/phosphoserine motifs in the cytoplasmic domains of diverse cell surface receptors, suggesting that they may perform important functional roles beyond the FGFRs.  相似文献   

5.
Fibroblast growth factors and their receptors in the central nervous system   总被引:22,自引:0,他引:22  
Fibroblast growth factors (FGFs) and their receptors constitute an elaborate signaling system that participates in many developmental and repair processes of virtually all mammalian tissues. Among the 23 FGF members, ten have been identified in the brain. Four FGF receptors (FGFRs), receptor tyrosine kinases, are known so far. Ligand binding of these receptors greatly depends on the presence of heparan sulfate proteoglycans, which act as low affinity FGFRs. Ligand binding specificity of FGFRs depends on the third extracellular Ig-like domain, which is subject to alternative splicing. Activation of FGFRs triggers several intracellular signaling cascades. These include phosphorylation of src and PLC leading finally to activation of PKC, as well as activation of Crk and Shc. SNT/FRS2 serves as an alternative link of FGFRs to the activation of PKC and, in addition, activates the Ras signaling cascade. In the CNS, FGFs are widely expressed; FGF-2 is predominantly synthesized by astrocytes, whereas other FGF family members, e.g., FGF-5, FGF-8, and FGF-9, are primarily synthesized by neurons. During CNS development FGFs play important roles in neurogenesis, axon growth, and differentiation. In addition, FGFs are major determinants of neuronal survival both during development and during adulthood. Adult neurogenesis depends greatly on FGF-2. Finally, FGF-1 and FGF-2 seem to be involved in the regulation of synaptic plasticity and processes attributed to learning and memory.  相似文献   

6.
Signalling by fibroblast growth factors (FGFs) through FGF receptors (FGFRs) depends on the cell-surface polysaccharide heparan sulphate (HS) [1] [2]. HS has an ordered domain structure of highly diverse saccharide motifs that present unique displays of sulphate, carboxyl and hydroxyl groups [3]. These motifs interact with many proteins, particularly growth factors. HS binds both to FGFs [4] [5] [6] and FGFRs [7], and probably activates signalling by facilitating ligand-induced receptor dimerisation [8] [9]. Nevertheless, the extent to which specific HS saccharide sequences play a regulatory role has not been established. By screening a library of structurally diverse HS decasaccharides in bioassays of FGF signalling mediated by three different FGFR isoforms, we found that saccharides showed specificity for both ligands and receptors; some saccharides selectively activated FGF signalling through different FGFR isoforms, others acted as negative regulators. We conclude that HS saccharides play critical roles in dictating the specificity of ligand-receptor interactions in FGFR signalling. Controlled alterations in HS structures [10] would provide a mechanism for regulation of cellular responsiveness to growth factors that bind HS.  相似文献   

7.
BACKGROUND: Fibroblastic growth factors (FGFs) are a family of cytokines involved in regulation of cell growth, differentiation and chemotaxis in a variety of tissue types. High-affinity FGF receptors (FGFRs) are transmembrane proteins that consist of three extracellular immunoglobulin-like domains, a transmembrane helix and an intracellular protein tyrosine kinase signalling domain. FGFRs are activated through ligand-dependent dimerization that allows trans-autophosphorylation of the tyrosine kinase domains. Heparin or heparin-like molecules, such as heparan sulphate proteoglycans, bind to both FGFs and FGFRs and are required for FGF signal transduction. At present no structure of the ternary complex for FGFR, FGF and heparin exists. RESULTS: We have used the type-1 interleukin-1 receptor-interleukin-1 beta complex crystal structure, in which both the ligand and the receptor are homologous to those of the FGF-FGFR pair, to identify potential interactions in the FGFR-heparin-FGF ternary complex. A key feature of the modelled complex is the 'electrostatic sandwich' that is formed between the positively charged surfaces of FGF and the receptor, with the negatively charged heparin captured in between. The ternary complex places limits on the range of likely modes of receptor dimerization: one of five different dimeric receptor complexes built from the ternary complex correlates best with the experimental data. CONCLUSIONS: The ternary complex of FGFR, FGF and heparin, derived on the basis of the homologous interleukin-1 receptor complex, is in agreement with much of the published experimental data, as is the dimeric receptor complex (FGFR-heparin-FGF)2. This work suggests that the FGF interactions seen in crystal structures, which have previously been used to predict the mode of FGF dimerization, might not be relevant to the biologically active dimeric FGFR-heparin-FGF complex.  相似文献   

8.
The roles of the FGF family growth factors and their receptors (FGFRs) in zebrafish embryos were examined using variously modified versions of the four FGFR genes (fgfr1–4). Constitutively active forms of all of the examined FGFRs (ca-FGFRs) caused dorsalization, brain caudalization, and secondary axis formation, indicating that the main FGF signal transduction downstream of the receptor is highly similar among FGFRs. All of the membrane-bound type of dominant-negative FGFRs (mdn-FGFRs) derived from the four fgfr genes, which interfere with endogenous FGFRs, produced posterior truncation, as previously reported in both Xenopus and zebrafish. mdn-FGFR3c had the strongest effects on embryos, progressively disrupting the posterior structure as the dose increased. At the highest dose, only the forebrain was formed. At lower doses, mdn-FGFR3c mainly suppressed the paraxial mesoderm. The co-injection of mRNA for different mdn-FGFRs and FGFs resulted in diverse suppression spectra of the respective FGFRs against FGFs. Only mdn-FGFR3c severely suppressed all of the FGFs examined. We also examined the effects of the secretory type of dominant-negative FGFRs (sdn-FGFRs), which are released from cells and trap FGF ligands. Only sdn-FGFR3c resulted in the characteristic effect of selectively disrupting the isthmic development, as well as the tailbud. The co-injection of the mRNA for sdn-FGFRs and FGFs suggested that sdn-FGFR3c inhibits FGFs of the FGF8 subfamily, which is consistent with its specific effects on development. We discuss the implications of our findings obtained in the present study.  相似文献   

9.
Fibroblast growth factors (FGFs) signal through high-affinity tyrosine kinase receptors to regulate a diverse range of cellular processes, including cell growth, differentiation and migration, as well as cell death. Here we identify XFLRT3, a member of a leucine-rich-repeat transmembrane protein family, as a novel modulator of FGF signalling. XFLRT3 is co-expressed with FGFs, and its expression is both induced after activation and downregulated after inhibition of FGF signalling. In gain- and loss-of function experiments, FLRT3 and FLRT2 phenocopy FGF signalling in Xenopus laevis. XFLRT3 signalling results in phosphorylation of ERK and is blocked by MAPK phosphatase 1, but not by expression of a dominant-negative phosphatidyl inositol 3-OH kinase (PI(3)K) mutant. XFLRT3 interacts with FGF receptors (FGFRs) in co-immunoprecipitation experiments in vitro and in bioluminescence resonance energy transfer assays in vivo. The results indicate that XFLRT3 is a transmembrane modulator of FGF-MAP kinase signalling in vertebrates.  相似文献   

10.
Cellular signaling by fibroblast growth factor receptors   总被引:20,自引:0,他引:20  
The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. A variety of human skeletal dysplasias have been linked to specific point mutations in FGFR1, FGFR2 and FGFR3 leading to severe impairment in cranial, digital and skeletal development. Gain of function mutations in FGFRs were also identified in a variety of human cancers such as myeloproliferative syndromes, lymphomas, prostate and breast cancers as well as other malignant diseases. The binding of FGF and HSPG to the extracellular ligand domain of FGFR induces receptor dimerization, activation and autophosphorylation of multiple tyrosine residues in the cytoplasmic domain of the receptor molecule. A variety of signaling proteins are phosphorylated in response to FGF stimulation including Shc, phospholipase-Cgamma, STAT1, Gab1 and FRS2alpha leading to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape. The docking proteins FRS2alpha and FRS2beta are major mediators of the Ras/MAPK and PI-3 kinase/Akt signaling pathways as well as negative feedback mechanisms that fine-tune the signal that is initiated at the cell surface following FGFR stimulation.  相似文献   

11.
The cysteine-rich FGF receptor (CFR) is a 150-kD membrane-associated glycoprotein that specifically binds FGFs. CFR protein is not detectable at the cell surface and immunocytochemistry with anti-CFR antibodies demonstrates that CFR is concentrated in the Golgi apparatus. These data suggest CFR does not function as a plasma membrane FGF receptor. CFR expressed in chinese hamster ovary cells reduces the intracellular accumulation of exogenously applied FGF-1 and FGF-2. A mutant CFR lacking the juxtamembrane, transmembrane and intracellular domains is unable to alter intracellular FGF levels. Mutant CFR is detected throughout the cell, indicating that the domains absent in mutant CFR are required for appropriate subcellular localization and the regulation of intracellular FGF levels. Although the activation of plasma membrane receptors is necessary for cellular responses to FGFs, a requirement for intracellular FGF has also been proposed. The subcellular localization of CFR and its ability to regulate the levels of intracellular FGFs suggests that CFR may be involved in intracellular FGF trafficking and the regulation of cellular responses to FGFs. J. Cell. Physiol. 170:217–227, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Quantitative assessment of FGF regulation by cell surface heparan sulfates   总被引:1,自引:0,他引:1  
Heparin/heparan sulfate-like glycosaminoglycans (HSGAGs) modulate the activity of the fibroblast growth factor (FGF) family of proteins. Through interactions with both FGFs and FGF receptors (FGFRs), HSGAGs mediate FGF-FGFR binding and oligomerization leading to FGFR phosphorylation and initiation of intracellular signaling cascades. We describe a methodology to examine the impact of heparan sulfate fine structure and source on FGF-mediated signaling. Mitogenic assays using BaF3 cells transfected with specific FGFR isoforms allow for the quantification of FGF1 and FGF2 induced responses independent of conflicting influences. As such, this system enables a systematic investigation into the role of cell surface HSGAGs on FGF signaling. We demonstrate this approach using cell surface-derived HSGAGs and find that distinct HSGAGs elicit differential FGF response patterns through FGFR1c and FGFR3c. We conclude that this assay system can be used to probe the ability of distinct HSGAG species to regulate the activity of specific FGF-FGFR pairs.  相似文献   

13.
The stimulation of cellular metabolism by the nine fibroblast growth factors (FGFs) is mediated by a dual-receptor system. This comprises a family of four receptor tyrosine kinases (FGFR) and heparan sulphate proteoglycans (HSPG). The stimulation of cell division by FGFs has an obligate requirement for both partners of the dual-receptor system. The binding of the nine FGFs to the FGFRs is marked by a pattern of overlapping specificity despite alternative splicing events generating a large number of FGFR proteins. Thus many of the FGFR isoforms bind several FGFs. It is likely that each FGF requires a different pattern of sulphation within the heparan sulphate chains for binding. Therefore, the HSPG receptors may provide additional specificity, allowing a cell to fine tune its response to the FGFs present in the extracellular milieu. The HSPG receptors also control the availability of FGFs and hence regulate the transport of FGFs within a tissue. FGF-stimulated cell division would appear to have a mandatory requirement for the FGFs to be translocated to the nucleus via the cytosol after interacting with the dual-receptor system. The consequences of the potential direct action of FGFs in stimulating cell division are examined in the light of current models of signal transduction.  相似文献   

14.
Fibroblast growth factor (FGF) receptors (FGFRs) are structurally related receptor protein tyrosine kinases encoded by four distinct genes. Activation of FGFR-1, -2, and -3 by FGFs induces mitogenic responses in various cell types, but the mitogenic potential of FGFR-4 has not been previously explored. We have compared the properties of BaF3 murine lymphoid cells and L6 rat myoblast cells engineered to express FGFR-1 or FGFR-4. Acidic FGF binds with high affinity to and elicits tyrosine phosphorylation of FGFR-1 or FGFR-4 receptors displayed on BaF3 cells, but only FGFR-1 activation leads to cell survival and growth. FGFR-4 activation also fails to elicit detectable signals characteristic of the FGFR-1 response: tyrosine phosphorylation of SHC and extracellular signal-related kinase (ERK) proteins and induction of fos and tis11 RNA expression. The only detected response to FGFR-4 activation was weak phosphorylation of phospholipase C gamma. A chimeric receptor containing the extracellular domain of FGFR-4 and the intracellular domain of FGFR-1 confers FGF-dependent growth upon transfected BaF3 cells, demonstrating that the intracellular domains of the receptors dictate their functional capacity. Activation of FGFR-1 in transfected L6 myoblasts induced far stronger phosphorylation of phospholipase C gamma, SHC, and ERK proteins than could activation of FGFR-4 in L6 cells, and only FGFR-1 activation induced tyrosine phosphorylation of a characteristic 80-kD protein. Hence, the signaling and biological responses elicited by different FGF receptors substantially differ.  相似文献   

15.
成纤维细胞生长因子家族(fibroblast growth factors,FGFs)及其受体FGFRs系统影响骨骼发育和形成过程,FGF与细胞表面FGFR结合,激活信号通路调控多种细胞生长、分化和凋亡。骨是FGF的重要靶器官,研究表明FGFs/FGFRs系统对骨组织成骨细胞、破骨细胞、软骨细胞的增殖和分化起重要调控作用,本文就FGFs/FGFRs系统对骨组织调节研究进展进行综述。  相似文献   

16.
The role of fibroblast growth factors (FGFs) in neural induction is controversial [1,2]. Although FGF signalling has been implicated in early neural induction [3-5], a late role for FGFs in neural development is not well established. Indeed, it is thought that FGFs induce a precursor cell fate but are not able to induce neuronal differentiation or late neural markers [6-8]. It is also not known whether the same or distinct FGFs and FGF receptors (FGFRs) mediate the effects on mesoderm and neural development. We report that Xenopus embryos expressing ectopic FGF-8 develop an abundance of ectopic neurons that extend to the ventral, non-neural, ectoderm, but show no ectopic or enhanced notochord or somitic markers. FGF-8 inhibited the expression of an early mesoderm marker, Xbra, in contrast to eFGF, which induced ectopic Xbra robustly and neuronal differentiation weakly. The effect of FGF-8 on neurogenesis was blocked by dominant-negative FGFR-4a (DeltaXFGFR-4a). Endogenous neurogenesis was also blocked by DeltaXFGFR-4a and less efficiently by dominant-negative FGFR-1 (XFD), suggesting that it depends preferentially on signalling through FGFR-4a. The results suggest that FGF-8 and FGFR-4a signalling promotes neurogenesis and, unlike other FGFs, FGF-8 interferes with mesoderm induction. Thus, different FGFs show specificity for mesoderm induction versus neurogenesis and this may be mediated, at least in part, by the use of distinct receptors.  相似文献   

17.
Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs), which are a sub-family of the superfamily of receptor tyrosine kinases, to regulate human development and metabolism. Uncontrolled FGF signaling is responsible for diverse array of developmental disorders, most notably skeletal syndromes due to FGFR gain-of-function mutations. Studies in the last few years have provided significant evidence for the importance of FGF signaling in the pathogenesis of diverse cancers, including endometrial and bladder cancers. FGFs are both potent mitogenic and angiogenic factors and can contribute to carcinogenesis by stimulating cell proliferation and tumor angiogenesis. Gene knockout and pharmacological inhibition of FGFRs in in vivo and in vitro models validate FGFRs as a target for cancer treatment. Considerable efforts are being expended to develop specific, small-molecule inhibitors for treating FGFR-driven cancers. Recent reviews on the FGF/FGFR system have focused primarily on signaling, pathophysiology, and functions in cancer. In this article, we review the key roles of FGFR in cancer, provide an update on the status of clinical trials with small-molecule FGFR inhibitors, and discuss how the current structural data on FGFR kinases guide the design and characterization of new FGFR inhibitors.  相似文献   

18.
FGFs, in a complex with their receptors (FGFRs) and heparan sulfate (HS), are responsible for a range of cellular functions, from embryogenesis to metabolism. Both germ line and somatic FGFR mutations are known to play a role in a range of diseases, most notably craniosynestosis dysplasias, dwarfism and cancer. Because of the ability of FGFR signalling to induce cell proliferation, migration and survival, FGFRs are readily co-opted by cancer cells. Mutations in, and amplifications of, these receptors are found in a range of cancers with some of the most striking clinical findings relating to their contribution to pathogenesis and progression of female cancers. Here, we outline the molecular mechanisms of FGFR signalling and discuss the role of this pathway in women's cancers, focusing on breast, endometrial, ovarian and cervical carcinomas, and their associated preclinical and clinical data. We also address the rationale for therapeutic intervention and the need for FGFR-targeted therapy to selectively target cancer cells in view of the fundamental roles of FGF signalling in normal physiology.  相似文献   

19.
The development and maintenance of multicellular organisms requires a complex interplay between cells in different tissues. Many of the factors mediating cell-cell communication are polypeptides, which were originally identified because of their ability to stimulate cell growth. In addition to growth signalling several of these factors have been observed to modulate cell survival, chemotaxis and differentiation both in vitro and in vivo. Fibroblast growth factors are a good example of polypeptide mitogens eliciting a wide variety of responses depending on the target cell type. Our knowledge of the cell surface receptors mediating the effects of FGFs has recently expanded remarkably. Perhaps not surprisingly, the complexity of the FGF family and FGF induced responses is reflected as diversity and redundancy of the FGF receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号