The Australian freshwater fish fauna is very unique, but poorly understood. In the Australian Monsoonal Tropics (AMT) biome of northern Australia, the number of described and candidate species has nearly doubled since the last attempt to analyse freshwater fish species composition patterns and determine a bioregionalisation scheme. Here, we utilise the most complete database of catchment‐scale freshwater fish distributions from the AMT to date to: (a) reanalyze spatial patterns of species richness, endemism and turnover of freshwater fishes; (b) propose a biogeographic regionalisation based on species turnover; (c) assess the relationship between species turnover and patterns of environmental change and historic drainage connectivity; and (d) identify sampling gaps. Biogeographic provinces were identified using an agglomerative cluster analysis of a Simpson's beta (βsim) dissimilarity matrix. A generalised dissimilarity model incorporating eighteen environmental variables was used to investigate the environmental correlates of species turnover. Observed and estimated species richness and endemism were calculated and inventory completeness was estimated based on the ratio of observed to estimated species richness. Three major freshwater fish biogeographic provinces and 14 subprovinces are proposed. These differ substantially from the current bioregionalisation scheme. Species turnover was most strongly influenced by environmental variables that are interpreted to reflect changes in terrain (catchment relief and confinement), geology and climate (runoff perenniality, stream density), and biotic responses to climate (net primary productivity). Past connectivity between rivers during low sea‐level events is also influential highlighting the importance of historical processes in explaining contemporary patterns of biodiversity in the AMT. The inclusion of 49 newly discovered species and candidate species only reinforced known focal points of species richness and endemism in the AMT. However, a number of key sampling gaps remain that need to be filled to fully characterise the proposed bioregionalisation. 相似文献
Delineating biogeographical regions is one of the primary steps when analysing biogeographical patterns. In their proposed quantitative framework, Kreft & Jetz (2010, Journal of Biogeography, 37 , 2029–2053) recommended the use of the βsim index to delineate biogeographical regions because this turnover measure is weakly affected by differences in species richness between localities. A recent study by Carvalho et al. (2012, Global Ecology and Biogeography, 21 , 760–771) critiziced the use of βsim in ecological and biogeographical studies, and proposed the β‐3 index. Here we used simple numerical examples and an empirical case study (European freshwater fishes) to highlight potential pitfalls associated with the use of β‐3 for bioregionalization. We show that β‐3 is not a richness‐independent measure of species turnover. We also show that this index violates the ‘complementarity’ property, namely that localities without species in common have the largest dissimilarity, which is an essential prerequisite for beta diversity studies. 相似文献
Alzheimer's disease (AD ) is a neurodegenerative pathology characterized by aggregates of amyloid‐β (Aβ) and phosphorylated tau protein, synaptic dysfunction, and spatial memory impairment. The Wnt signaling pathway has several key functions in the adult brain and has been associated with AD , mainly as a neuroprotective factor against Aβ toxicity and tau phosphorylation. However, dysfunction of Wnt/β‐catenin signaling might also play a role in the onset and development of the disease. J20 APP swInd transgenic (Tg) mouse model of AD was treated i.p. with various Wnt signaling inhibitors for 10 weeks during pre‐symptomatic stages. Then, cognitive, biochemical and histochemical analyses were performed. Wnt signaling inhibitors induced severe changes in the hippocampus, including alterations in Wnt pathway components and loss of Wnt signaling function, severe cognitive deficits, increased tau phosphorylation and Aβ1–42 peptide levels, decreased Aβ42/Aβ40 ratio and Aβ1–42 concentration in the cerebral spinal fluid, and high levels of soluble Aβ species and synaptotoxic oligomers in the hippocampus, together with changes in the amount and size of senile plaques. More important, we also observed severe alterations in treated wild‐type (WT ) mice, including behavioral impairment, tau phosphorylation, increased Aβ1–42 in the hippocampus, decreased Aβ1–42 in the cerebral spinal fluid, and hippocampal dysfunction. Wnt inhibition accelerated the development of the pathology in a Tg AD mouse model and contributed to the development of Alzheimer's‐like changes in WT mice. These results indicate that Wnt signaling plays important roles in the structure and function of the adult hippocampus and suggest that inhibition of the Wnt signaling pathway is an important factor in the pathogenesis of AD .
Read the Editorial Highlight for this article on page 356 . 相似文献
Insulin receptor (IR) in the brain plays a role in synaptic plasticity and cognitive functions. Phosphorylation of α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid (AMPA) receptors GluR1 subunit at Serine 831 is regulated by calcium–calmodulin‐dependent protein kinase II and protein kinase C that underlie long‐term potentiation and learning/memory. Recent studies have shown that the novel Protein Kinase M zeta (PKMζ) underlies synaptic plasticity and may regulate AMPAr. In this study, we show that insulin induces phosphorylation of Serine 831 GluR1 subunit of AMPAr and induces over‐expression of PKMζ; pre‐treatment with either the IR inhibitor 3‐Bromo‐5‐t‐butyl‐4‐hydroxy‐benzylidenemalonitrile (AG1024) or PKMζ inhibitor protein kinase C zeta pseudo‐substrate inhibitor returned the phosphorylation value of GluR1 to control level. Amyloid beta (Aβ) peptide in the form of oligomers interferes with IR signaling. Pre‐treating neuronal cultures with Aβ following incubation with insulin, we found a reduction of insulin‐dependent PKMζ over‐expression and MAPK/Erk (1/2) phosphorylation, i.e., signaling pathways involved in synaptic plasticity and learning/memory. These results indicate a new intracellular insulin signaling pathway, and, additionally, that insulin resistance in Alzheimer's disease is a response to the production and accumulation of Aβ.
Beta diversity may be determined by dispersal limitation, environment, and phylogeographic history. Our objective was to advance the understanding of plant species turnover in rain forests in northern South America and determine which factors are affecting species beta diversity. We evaluated the relative effect of environmental variables (i.e., soil, climate, fragmentation, and flooding frequency) and dispersal limitation (i.e., geographical distance and resistance distance due mountain barriers) on tree beta diversity in 32 1‐ha lowland forest plots. We found that tree species turnover was better explained by environmental distance than by geographical distance. Although soil conditions and flooding regime were good predictors of tree species composition, almost half of the variance remained unexplained. In our study system, the eastern Andean ridge had no significant effect on plant beta diversity, probably because of its young age in relation to the phylogeny. Our results provide support for the importance of environmental factors and suggest a more restricted role of dispersal limitation. Therefore, we advise that conservation strategies of lowland trees should consider specific forest types (e.g., seasonally flooded vs. terra firme, as well as piedmont vs. central Amazonian forests). 相似文献
Characterization of the molecular signaling pathways underlying protein synthesis‐dependent forms of synaptic plasticity, such as late long‐term potentiation (L‐LTP ), can provide insights not only into memory expression/maintenance under physiological conditions but also potential mechanisms associated with the pathogenesis of memory disorders. Here, we report in mice that L‐LTP failure induced by the mammalian (mechanistic) target of rapamycin complex 1 (mTORC 1) inhibitor rapamycin is reversed by brain‐specific genetic deletion of PKR ‐like ER kinase, PERK (PERK KO ), a kinase for eukaryotic initiation factor 2α (eIF 2α). In contrast, genetic removal of general control non‐derepressible‐2, GCN 2 (GCN 2 KO ), another eIF 2α kinase, or treatment of hippocampal slices with the PERK inhibitor GSK 2606414, does not rescue rapamycin‐induced L‐LTP failure, suggesting mechanisms independent of eIF 2α phosphorylation. Moreover, we demonstrate that phosphorylation of eukaryotic elongation factor 2 (eEF 2) is significantly decreased in PERK KO mice but unaltered in GCN 2 KO mice or slices treated with the PERK inhibitor. Reduction in eEF 2 phosphorylation results in increased general protein synthesis, and thus could contribute to the mTORC 1‐independent L‐LTP in PERK KO mice. We further performed experiments on mutant mice with genetic removal of eEF 2K (eEF 2K KO ), the only known kinase for eEF 2, and found that L‐LTP in eEF 2K KO mice is insensitive to rapamycin. These data, for the first time, connect reduction in PERK activity with the regulation of translation elongation in enabling L‐LTP independent of mTORC 1. Thus, our findings indicate previously unrecognized levels of complexity in the regulation of protein synthesis‐dependent synaptic plasticity.
Read the Editorial Highlight for this article on page 119 . Cover Image for this issue: doi: 10.1111/jnc.14185 . 相似文献
Our previous work showed that Zbed3 is overexpressed in nonsmall cell lung cancer and that down‐regulation of Zbed3 inhibited β‐catenin expression and cancer cell proliferation and invasiveness. Here, we investigated Zbed3's ability to promote lung cancer cell proliferation and invasion and the involvement of the Axin/TPC/glycogen synthase kinase 3β (Gsk‐3β) complex to the response. Coimmunoprecipitation assays showed that wild‐type Zbed3 bound to Axin but a Zbed3 mutant lacking the Axin binding site did not. In A549 and H1299 lung cancer cells, Zbed3 overexpression promoted cancer cell proliferation and invasiveness, as well as Wnt signalling and expression of downstream mediators, including β‐catenin, cyclin D1 and MMP7 (P < 0.05). In contrast, the Zbed3 mutant failed to enhance β‐catenin expression (P > 0.05), and its ability to promote cancer cell proliferation and invasiveness was much less than wild‐type Zbed3 (P < 0.05). The ability of Zbed3 to increase β‐catenin levels was abolished by Axin knockdown in A549 cells (P > 0.05). Similarly, treating the cells with a GSK‐3β inhibitor abolished Zbed3's ability to increase β‐catenin levels and Wnt signalling. These results indicate that Zbed3 enhances lung cancer cell proliferation and invasiveness at least in part by inhibiting Axin/adenomatous polyposis coli/GSK‐3β‐mediated negative regulation of β‐catenin levels. 相似文献
Radiotherapy is the major treatment modality for primary and metastatic brain tumors which involves the exposure of brain to ionizing radiation. Ionizing radiation can induce various detrimental pathophysiological effects in the adult brain, and Alzheimer's disease and related neurodegenerative disorders are considered to be late effects of radiation. In this study, we investigated whether ionizing radiation causes changes in tau phosphorylation in cultured primary neurons similar to that in Alzheimer's disease. We demonstrated that exposure to 0.5 or 2 Gy γ rays causes increased phosphorylation of tau protein at several phosphorylation sites in a time‐ and dose‐dependent manner. Consistently, we also found ionizing radiation causes increased activation of GSK3β, c‐Jun N‐terminal kinase and extracellular signal‐regulated kinase before radiation‐induced increase in tau phosphorylation. Specific inhibitors of these kinases almost fully blocked radiation‐induced tau phosphorylation. Our studies further revealed that oxidative stress plays an important role in ionizing radiation‐induced tau phosphorylation, likely through the activation of c‐Jun N‐terminal kinase and extracellular signal‐regulated kinase, but not GSK3β. Overall, our studies suggest that ionizing radiation may cause increased risk for development of Alzheimer's disease by promoting abnormal tau phosphorylation.
Eucalypts cover most of Australia. Here, we investigate the relative contribution of climate and geochemistry to the distribution and diversity of eucalypts. Using geostatistics, we estimate major element concentrations, pH, and electrical conductivity at sites where eucalypts have been recorded. We compare the median predicted geochemistry and reported substrate for individual species that appear associated with extreme conditions; this provides a partial evaluation of the predictions. We generate a site‐by‐species matrix by aggregating observations to the centroids of 100‐km‐wide grid cells, calculate diversity indices, and use numerical ecology methods (ordination, variation partitioning) to investigate the ecology of eucalypts and their response to climatic and geochemical gradients. We find that β‐diversity coincides with variations in climatic and geochemical patterns. Climate and geochemistry together account for less than half of the variation in eucalypt species assemblages across Australia but for greater than 80% in areas of high species richness. Climate is more important than geochemistry in explaining eucalypts species distribution and change in assemblages across Australia as a whole but there are correlations between the two sets of environmental variables. Many individual eucalypt species and entire taxonomic sections (Aromatica, Longistylus of subgenus Eucalyptus, Dumaria, and Liberivalvae of subgenus Symphyomyrtus) have distributions affected strongly by geochemistry. We conclude that eucalypt diversity is driven by steep geochemical gradients that have arisen as climate patterns have fluctuated over Australia over the Cenozoic, generally aridifying since the Miocene. The diversification of eucalypts across Australia is thus an excellent example of co‐evolution of landscapes and biota in space and time and challenges accepted notions of macroecology. 相似文献
A major hallmark feature of Alzheimer's disease is the accumulation of amyloid β (Aβ), whose formation is regulated by the γ‐secretase complex and its activating protein (also known as γ‐secretase activating protein, or GSAP). Because GSAP interacts with the γ‐secretase without affecting the cleavage of Notch, it is an ideal target for a viable anti‐Aβ therapy. GSAP derives from a C‐terminal fragment of a larger precursor protein of 98 kDa via a caspase 3‐mediated cleavage. However, the mechanism(s) involved in its degradation remain unknown. In this study, we show that GSAP has a short half‐life of approximately 5 h. Neuronal cells treated with proteasome inhibitors markedly prevented GSAP protein degradation, which was associated with a significant increment in Aβ levels and γ‐secretase cleavage products. In contrast, treatment with calpain blocker and lysosome inhibitors had no effect. In addition, we provide experimental evidence that GSAP is ubiquitinated. Taken together, our findings reveal that GSAP is degraded through the ubiquitin–proteasome system. Modulation of the GSAP degradation pathway may be implemented as a viable target for a safer anti‐Aβ therapeutic approach in Alzheimer's disease.