首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult female bethylid parasitoids (Hymenoptera: Bethylidae) commonly guard their offspring until they develop into later immature stages to protect them from competing parasitoids and predators. Another possible mortality factor is from caterpillar larvae that cannibalize parasitized conspecific larvae. This study determined the effect of brood guarding on the occurrence of host cannibalism by using a brood guarding bethylid parasitoid Goniozus legneri and a non-guarding braconid parasitoid Habrobracon gelechiae (Hymenoptera: Braconidae), both are gregarious ectoprasitoids that attack the obliquebanded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae). When a C. rosaceana larva parasitized by G. legneri was presented to a live conspecific larva, the frequency of cannibalism on the parasitized conspecific was lower in the presence than in the absence of a guarding female G. legneri. In contrast, when a C. rosaceana larva parasitized by H. gelechiae was presented to a live conspecific larva, the presence or absence of H. gelechiae did not affect cannibalism frequency. Cannibals did not gain a fitness advantage in terms of larval survival, developmental time, or body mass of developed pupae; therefore, cannibalism by the host larva may be a group defense against increased parasitism in subsequent population generations. We suggest that brood guarding by parasitoids can act as a broad defense strategy to protect offspring from the cannibalism of parasitized conspecifics by the host larvae.  相似文献   

2.
In natural populations of insect herbivores, genetic differentiation is likely to occur due to variation in host plant utilization and selection by the local community of organisms with which they interact. In parasitoids, engaging in intimate associations with their host during immature development, local variation may exist in host quality for parasitoid development. We compared the development of a gregarious endoparasitoid, Cotesia glomerata L. (Hymenoptera: Braconidae), collected in The Netherlands, in three strains and three caterpillar instars (L1–L3) of its main host, Pieris brassicae L. (Lepidoptera: Pieridae). Hosts had been collected in The Netherlands and France, and were reared in the laboratory for one generation. We also used an established Dutch laboratory strain that had not been exposed to parasitoids for at least 24 generations. Parasitoid survival to adulthood was inversely correlated with host instar at parasitism. Adult parasitoid body mass was largest when hosts were parasitized as L1 and smallest when hosts were parasitized as L3, whereas egg‐to‐adult development time was quickest on L3 hosts and slowest on L1 hosts. Higher survival and faster development of C. glomerata on French L2 hosts also showed that there is variation in host‐instar‐related suitability. Many L2 and most L3 caterpillars that were parasitized exhibited signs of pathogen infection and perished within a few days of parasitism, whereas this never happened when hosts were parasitized as L1 or in non‐parasitized control caterpillars. Our results reveal that, irrespective of the host strain, L1 hosts are optimally synchronized with C. glomerata development. By contrast, the high precocious mortality of L3 larvae may be due to stress‐induced regulation by the parasitoid in order to ‘force’ its developmental program into synchrony with the developing parasitoid larvae. Our results underscore a potentially important role played by pathogens in mediating herbivore–parasitoid interactions that are host‐instar‐dependent in their expression.  相似文献   

3.
Volatile organic compounds (VOCs) mediate communication between plants and insects. Plants under insect herbivore attack release VOCs either at the site of attack or systemically, indicating within‐plant communication. Some of these VOCs, which may be induced only upon herbivore attack, recruit parasitoids and predatory insects to feed on the attacking insects. Moreover, some plants are able to ‘eavesdrop’ on herbivore‐induced plant volatiles (HIPVs) to prime themselves against impending attack; such eavesdropping exemplifies plant–plant communication. In apple orchards, the beetle Melolontha melolontha L. (Coleoptera: Scarabaeidae) is an important insect pest whose larvae live and feed on roots for about 4 years. In this study, we investigated whether the feeding activity of M. melolontha larvae (1) alters the volatile profile of apple roots, (2) induces the release of HIPVs systemically in the leaves, and (3) whether infested plants communicate to neighbouring non‐infested conspecifics through HIPVs. To answer these questions, we collected constitutive VOCs from intact M9 roots as well as M. melolontha larvae‐damaged roots using a newly designed ‘rhizobox’, to collect root‐released volatiles in situ, without damaging the plant root system. We also collected VOCs from the leaf‐bearing shoots of M9 whose roots were under attack by M. melolontha larvae and from shoots of neighbouring non‐infested conspecifics. Gas chromatography‐mass spectrometry analysis showed that feeding activity of M. melolontha larvae induces the release of specific HIPVs; for instance, camphor was found in the roots only after larvae caused root damage. Melolontha melolontha also induced the systemic release of methyl salicylate and (E,E)‐α‐farnesene from the leaf‐bearing shoots. Methyl salicylate and (E,E)‐α‐farnesene were also released by the shoots of non‐infested neighbouring conspecifics. These phenomena indicate the induction of specific VOCs below‐ and above‐ground upon M. melolontha larvae feeding on apple roots as well as plant–plant communication in apple plants.  相似文献   

4.
Abstract 1. When offered a choice, female diamondback moths (Plutella xylostella) oviposited more eggs on plants with non‐parasitised conspecific larvae than on plants with parasitised larvae. 2. The leaf area consumed by parasitised larvae was significantly lower than that by non‐parasitised larvae. However, this quantitative difference in larval damage did not explain the female’s ability to discriminate between plants with parasitised and non‐parasitised larvae, as females showed an equal oviposition preference for plants infested by higher or lower densities of non‐parasitised larvae. 3. Pupal weight and duration of the larval stage of P. xylostella were independent of whether larvae were reared on plants that were previously infested by either non‐parasitised or parasitised larvae. 4. The larval parasitoid Cotesia vestalis did not distinguish between plants infested by non‐parasitised larvae and plants infested by larvae that had already been parasitised by conspecific wasps. 5. Based on these data, it can be concluded that the moth oviposition preference for plants infested by non‐parasitised conspecifics relative to plants infested by parasitised conspecifics was not explained by plant quality or by the attractiveness of plants towards wasps. It is hypothesised that one of the reasons for this preference is avoidance of plants where a relatively high risk of parasitism is expected due to the emergence of parasitoids from the parasitised host larvae.  相似文献   

5.
Although the impact of elevated carbon dioxide and rising temperature on plants and animals has been extensively documented recently, only limited understanding exists regarding their combined effects. The objective of this research was to address the consequences of using combinations of elevated CO2 and elevated temperature on a plant's defensive chemistry, and subsequent utilization of the plant as insect food. Our results indicated that elevated CO2 and increased temperature, for the most part, act independently on the production of defensive compounds in broccoli leaves (Brassica oleracea L. var. italica). CO2 concentrations had significant effects on the foliar water content, total phenolic compounds, polyphenol oxidase and trypsin inhibitor concentrations. The herbivore Spodoptera litura (Fabricius; Lepidoptera: Noctuidae) responded to changes in the plant secondary chemistry, with larvae consuming more plant materials that had been exposed to elevated CO2. The food utilization efficiencies of second‐instar larvae were more sensitive to CO2‐treated foliage than those of the third‐ and fourth‐instar larvae. Temperature did exert a significant effect on food utilization (ECD) by the larvae. Our study will provide important information in future predictions on plant–insect interactions as a result of climate change. The study also demonstrated that since various larval stages might respond differently to climate change, this possibility needs to be considered in future forecasting and monitoring.  相似文献   

6.
Host shifts by specialist insects can lead to reproductive isolation between insect populations that use different hosts, promoting diversification. When both a phytophagous insect and its ancestrally associated parasitoid shift to the same novel host plant, they may cospeciate. However, because adult parasitoids are free living, they can also colonize novel host insects and diversify independent of their ancestral host insect. Although shifts of parasitoids to new insect hosts have been documented in ecological time, the long‐term importance of such shifts to parasitoid diversity has not been evaluated. We used a genus of flies with a history of speciation via host shifting (Rhagoletis [Diptera: Tephritidae]) and three associated hymenopteran parasitoid genera (Diachasma, Coptera and Utetes) to examine cophylogenetic relationships between parasitoids and their host insects. We inferred phylogenies of Rhagoletis, Diachasma, Coptera and Utetes and used distance‐based cophylogenetic methods (ParaFit and PACo) to assess congruence between fly and parasitoid trees. We used an event‐based method with a free‐living parasitoid cost model to reconstruct cophylogenetic histories of each parasitoid genus and Rhagoletis. We found that the current species diversity and host–parasitoid associations between the Rhagoletis flies and parasitoids are the primary result of ancient cospeciation events. Parasitoid shifts to ancestrally unrelated hosts primarily occur near the branch tips, suggesting that host shifts contribute to recent parasitoid species diversity but that these lineages may not persist over longer time periods. Our analyses also stress the importance of biologically informed cost models when investigating the coevolutionary histories of hosts and free‐living parasitoids.  相似文献   

7.
Cotesia kariyai Watanabe (Hymenoptera: Braconidae) is a specialist larval parasitoid of Mythimna separata Walker (Lepidoptera: Noctuidae). Cotesia kariyai wasps use herbivore‐induced plant volatiles (HIPVs) to locate hosts. However, complex natural habitats are full of volatiles released by both herbivorous host‐ and non‐host‐infested plants at various levels of intensity. Therefore, the presence of non‐hosts may affect parasitoid decisions while foraging. Here, the host‐finding efficiency of naive C. kariyai from HIPVs influenced by host‐ and non‐host‐infested maize [Zea mays L. (Poaceae)] plants was investigated with a four‐arm olfactometer. Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) was selected as a non‐host species. One unit (1 U) of host‐ or non‐host‐infested plant was prepared by infesting a potted plant with five host or seven non‐host larvae. In two‐choice bioassays, host‐infested plants fed upon by different numbers of larvae, and various units of host‐ and non‐host‐infested plants (infestation units; 1 U, 2 U, and 3 U) were arranged to examine the effects of differences in volatile quantity and quality on the olfactory responses of C. kariyai with the assumption that volatile quantity and quality changes with differences in numbers of insects and plants. Cotesia kariyai was found to perceive quantitative differences in volatiles from host‐infested plants, preferring larger quantities of volatiles from larger numbers of larvae or plants. Also, the parasitoids discriminated between healthy plants, host‐infested plants, and non‐host‐infested plants by recognising volatiles released from those plants. Cotesia kariyai showed a reduced preference for host‐induced volatiles, when larger numbers of non‐host‐infested plants were present. Therefore, quantitative and qualitative differences in volatiles from host‐ and non‐host‐infested plants appear to affect the decision of C. kariyai during host‐habitat searching in multiple tritrophic systems.  相似文献   

8.
9.
By definition, insect parasitoids kill their host during their development. Data are presented showing that ladybirds not only can survive parasitism by Dinocampus coccinellae, but also can retain their capacity to reproduce following parasitoid emergence. We hypothesize that host behaviour manipulation constitutes a preadaptation leading to the attenuation of parasitoid virulence. Following larval development, the parasitoid egresses from the host and spins a cocoon between the ladybird's legs. Throughout parasitoid pupation, the manipulated host acts as a bodyguard to protect the parasitoid cocoon from predation. The parasitoid has evolved mechanisms to avoid killing the host prematurely so that its own survival is not compromised. Bodyguard manipulation may thus constitute a selective trait for the evolution of true parasitism in some host–parasitoid associations.  相似文献   

10.
Resources added to agroecosystems to enhance biological control are potentially available to multiple members of the resident insect community—not only the biological control agents for which the resources are intended. Many studies have examined the effects of sugar feeding on the efficacy of biological control agents. However, such information is lacking for other, interacting species such as facultative hyperparasitoids, which may contribute to pest suppression but can also interfere with introduced biological control agents. Under greenhouse conditions, we tested the direct effects of sugar and nectar provisioning on the longevity, host‐killing impact and offspring production of two pupal parasitoids associated with leek moth, Acrolepiopsis assectella: the introduced biological control agent, Diadromus pulchellus, and the native facultative hyperparasitoid, Conura albifrons. Adding sucrose, buckwheat or a combination of buckwheat and common vetch to a sugar‐deprived system (potted leek plants in cages) increased parasitoid longevity and resulted in higher leek moth parasitism and mortality compared to water or common vetch treatments. However, the two parasitoid species exhibited a distinct temporal response to the treatments, likely influenced by differences in their life histories. This study provides insight into how integrating conservation biological control techniques could affect the success of a classical biological control programme.  相似文献   

11.
Coevolution between hosts and parasites may promote the maintenance of genetic variation in both antagonists by negative frequency‐dependence if the host–parasite interaction is genotype‐specific. Here we tested for specificity in the interaction between parasitoids (Lysiphlebus fabarum) and aphid hosts (Aphis fabae) that are protected by a heritable defensive endosymbiont, the γ‐proteobacterium Hamiltonella defensa. Previous studies reported a lack of genotype specificity between unprotected aphids and parasitoids, but suggested that symbiont‐conferred resistance might exhibit a higher degree of specificity. Indeed, in addition to ample variation in host resistance as well as parasitoid infectivity, we found a strong aphid clone‐by‐parasitoid line interaction on the rates of successful parasitism. This genotype specificity appears to be mediated by H. defensa, highlighting the important role that endosymbionts can play in host–parasite coevolution.  相似文献   

12.
Trophic interactions and environmental conditions determine the structure of food webs and the host expansion of parasitoids into novel insect hosts. In this study, we investigate plant–insect–parasitoid food web interactions, specifically the effect of trophic resources and environmental factors on the presence of the parasitoids expanding their host range after the invasion of Chrysodeixis chalcites (Esper) (Lepidoptera: Noctuidae). We also consider potential candidates for biological control of this non‐native pest. A survey of larval stages of Plusiinae (Lepidoptera: Noctuidae) and their larval parasitoids was conducted in field and vegetable greenhouse crops in 2009 and 2010 in various locations of Essex and Chatham‐Kent counties in Ontario, Canada. Twenty‐one plant–host insect–host parasitoid associations were observed among Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), C. chalcites, and larval parasitoids in three trophic levels of interaction. Chrysodeixis chalcites, an old‐world species that had just arrived in the region, was the most common in our samples. The larval parasitoids Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae), Cotesia vanessae (Reinhard), Cotesia sp., Microplitis alaskensis (Ashmead), and Meteorus rubens (Nees) (all Hymenoptera: Braconidae) expanded their host range into C. chalcites changing the structure of the food web. Copidosoma floridanum (Ashmead) (Hymenoptera: Encyrtidae) was the most common parasitoid of T. ni that was not found in the invasive species. Plant species, host abundance, and agro‐ecosystem were the most common predictors for the presence of the parasitoids expanding their host range into C. chalcites. Our results indicate that C. sonorensis, C. vanessae, and C. floridanum should be evaluated for their potential use in biological control of C. chalcites and T. ni.  相似文献   

13.
We evaluated the effectiveness of 2‐phenylethanol (PET) in combination with acetic acid (AA) as a binary lure for monitoring male and female obliquebanded leafroller, Choristoneura rosaceana (Harris). Studies were conducted in apple, Malus domestica Borkhausen, orchards treated with or without sex pheromone dispensers for mating disruption (MD). Open polypropylene vials, closed membrane cups, and rubber septa loaded with AA and/or PET in varying amounts were first evaluated in a series of trapping experiments. Membrane cups loaded with 800 mg of PET were as effective as 10‐mg septa, but longer lasting, and were comparable to the open vials. A membrane cup AA lure was effective in tests, but further work is needed to increase its release rate and extend its activity. Catches of codling moth, Cydia pomonella (L.), and C. rosaceana were unaffected by combining PET with (E,E)‐8,10‐dodecadien‐1‐ol, the sex pheromone of codling moth, pear ester, (E,Z)‐2,4‐ethyl‐decadienoate and AA lures. Adding (E)‐4,8‐dimethyl‐1,3,7‐nonatriene to this blend to enhance codling moth catch significantly reduced catches of C. rosaceana. PET + AA was a more attractive binary lure than AA plus phenylacetonitrile (PAN) for C. rosaceana. The addition of PET or PAN to traps already baited with the sex pheromone of C. rosaceana significantly reduced male catches. Traps baited with PET + AA placed in blocks not treated with MD caught significantly fewer C. rosaceana than traps baited with sex pheromone. In comparison, sex pheromone‐baited traps in MD blocks caught ≤1 male moth per season which was significantly lower than total moth (>10) or female moth (≥3) catch in these blocks with PET + AA. A high proportion (>70%) of trapped females were mated in both untreated and MD‐treated orchards. Further refinement of this binary, bisexual lure using membrane cup technology may allow the establishment of action thresholds and improve management timings for C. rosaceana.  相似文献   

14.
Nitrogen is a critical factor for plant development and nitrogen input is one of the important tactics to enhance the development and yield of crops. Nevertheless, nitrogen input could influence the occurrence of insects positively or negatively. Nitrogen is also one of the main elements composing the insecticidal crystal (Cry) protein. Cry protein production could affect nitrogen partitioning in Bt plants and as such nitrogen input may influence insect pest management in transgenic Bt rice, Oryza sativa L. (Poaceae). To test this possibility, we evaluated the impacts of nitrogen regimes on the main insect pests and their predators on two Bt rice lines, T2A‐1 and T1C‐19, expressing Cry2A and Cry1C, respectively, and their non‐transgenic parental counterpart MH63. The results showed that Cry proteins with different nitrogen regimes have enough insecticidal activity on rice leaffolder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Crambidae), in both laboratory and field experiments. Laboratory studies indicated that relevant parameters of ecological fitness in brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a non‐target insect pest, were significantly affected by nitrogen input both on Bt and MH63 rice lines. Nymphal survival, female adult longevity, and egg hatchability in N. lugens differed significantly among rice varieties. The experiments conducted in rice fields also demonstrated that nitrogen was positively correlated with the abundance of N. lugens on Bt rice, similar to that on MH63 rice. The abundances of two predators – the wolf spider Pirata subpiraticus (Boesenberg & Strand) (Araneae: Lycosidae) and the bug Cyrthorhinus lividipennis Reuter (Hemiptera: Miridae) – were significantly affected by rice growth stages but not by nitrogen input and rice varieties. In conclusion, the above results indicate that high nitrogen regimes for Bt rice (T2A‐1 and T1C‐19) and non‐Bt rice (MH63) cannot facilitate the management of insect pests.  相似文献   

15.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae occasionally have been reported to survive at management threshold levels in fields of Bollgard II® cotton, Gossypium hirsutum L. (Malvaceae). The pattern and degree of larval survival is not easily predicted but depends on the ability of first instars to establish on host plants. Experiments were conducted with Bacillus thuringiensis Berliner (Bt)‐susceptible and Bt‐resistant larvae of H. armigera to understand how physiologically Bt‐susceptible H. armigera survive on Bt cotton plants, and examine how their first meal influences survival rates. In assays using cotton plant parts, both strains of larvae displayed similar tendencies to drop‐off specific plant parts of Bt and non‐Bt cotton. However, significantly more Bt‐susceptible larvae dropped off young leaves, mature leaves, and squares of Bt cotton compared to non‐Bt cotton plants. Egg cannibalism significantly improved the survival of Bt‐susceptible H. armigera larvae on Bt cotton plants. Larvae were more likely to eat live aged eggs, than newly laid or dead eggs. Survival significantly improved when larvae cannibalized eggs before feeding on Bt leaves. The behavior of Bt‐susceptible larvae with respect to drop‐off and egg cannibalism may help enhance their survival on Bt cotton plants.  相似文献   

16.
Sclerodermus pupariae Yang et Yao (Hymenoptera: Bethylidae) is used as a potential biocontrol agent for several buprestid and cerambycid larvae. This study aimed to enhance the efficiency of mass‐rearing of this parasitoid by investigating the fitness gain of this bethylid wasp, including the proportion of successful parasitism and development, brood size, sex ratio, proportion of winged female offspring, body size and longevity of female offspring, under eight different maternal parasitoid density treatments using Thyestilla gebleri Faldermann as host in the laboratory. The results indicated that the foundress densities did not affect the parasitism or emergence rate of this parasitoid. Brood size of the parasitoids increased significantly when the number of maternal wasps ranged from one to four. However, further increases in foundress number did not affect the parasitoid brood size. The sex ratios of S. pupariae were always female‐biased. The proportions of male in the progeny colonies were <10% throughout all experimental treatments. The percentage of winged female progeny was not significantly influenced by the density of adult maternal parasitoids. Body sizes of parasitoids significantly declined with increasing maternal parasitoid densities. Although the parasitoid body size reduced when maternal wasp number was higher, it could be compromised by the relatively higher number of female offspring produced. Further, more than 70% of the parasitoids remained alive when they were stored at 12°C for four months throughout the experiments. These findings suggest that exposure of four female wasps to a single host larva would result in the highest fitness of S. pupariae. Our findings might provide a new approach to enhance the efficiency of mass‐rearing of this bethylid wasp.  相似文献   

17.
Natural enemies of insect pests of annual crops have been hypothesized either to lag, or alternatively not to lag, behind their prey in dispersing to and colonizing new habitat. We examined parasitoid dispersal and parasitism of the cereal leaf beetle (Oulema melanopus [L.]; Coleoptera: Chrysomelidae) by the host‐specific wasp Tetrastichus julis [Walker] (Hymenoptera: Eulophidae) in wheat fields of northern Utah to assess whether a colonization lag occurred. Equally high rates of parasitism of beetle larvae (including second instars early in the year) occurred in 2010 and 2011 in fields that were newly planted to wheat vs. in fields where wheat had been grown also the previous year. A caging experiment demonstrated that parasitism in these newly planted wheat fields did not arise from parasitoid adults that had matured within the fields; instead, upon emerging in other fields, parasitoid females dispersed a minimum of 100–250 m to parasitize beetle larvae early in the spring in the newly planted fields. A transect study in 2012 revealed that T. julis females dispersed rapidly at least 600 m into a newly planted wheat field to parasitize most of the early maturing beetle larvae, which occurred at very low density. Thus, the parasitoid has very strong ability to match its host in dispersal over long distances across a highly disturbed agricultural landscape, and colonization lag appears of little importance in affecting biological control associated with this host–parasitoid interaction.  相似文献   

18.
The yearly timing of the life cycle of a parasitoid is a key element of its life‐history strategy. I examine here factors influencing the expression of partial bivoltinism in Tetrastichus julis Walker (Hymenoptera: Eulophidae), a specialist parasitoid introduced to North America to attack its univoltine host, the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae). The varying tendency was assessed of individuals of this gregarious larval parasitoid to either emerge as adults in the same summer they mature, or to enter diapause to emerge the following year. Parasitized hosts were obtained by rearing cereal leaf beetles collected as mature larvae from grain fields in northern Utah (western USA) throughout the growing seasons in 2013 and 2014. Cocoons spun by these beetles were held to determine patterns over the spring and summer in the tendency of the parasitoid to forgo larval diapause. A high percentage (nearly 90% in 2013) of parasitoid individuals were found to forgo diapause and emerge in the same summer from earliest maturing hosts. This percentage rapidly declined to 20% or less of individuals forgoing diapause and emerging from cocoons as the summer advanced. The percentage of parasitoid individuals forgoing diapause increased significantly at a given time of season (early or late) as the number of conspecifics with which an individual shared a host larva increased. These results may reflect a trade‐off for individual parasitoids in which greater success in finding – and ovipositing in – host larvae the following spring vs. in summer, is countered by reduced survivorship in diapausing over the winter vs. emerging in the same summer in which the parasitoid matures. Expression of partial bivoltinism of T. julis, as affected strongly by both season and within‐host density, results in high rates of parasitism of cereal leaf beetles both early and late in the season.  相似文献   

19.
The sustainability of genetically engineered insecticidal Bacillus thuringiensis Berliner (Bt) maize, Zea mays L. (Poaceae), is threatened by the evolution of resistance by target pest species. Several Lepidoptera species have evolved resistance to Cry proteins expressed by Bt maize over the last decade, including the African maize stem borer, Busseola fusca (Fuller) (Lepidoptera: Noctuidae). The insect resistance management (IRM) strategy (i.e., the high‐dose/refuge strategy) deployed to delay resistance evolution is grounded on certain assumptions about the biology and ecology of a pest species, for example, the interactions between the insect pest and crop plants. Should these assumptions be violated, the evolution of resistance within pest populations will be rapid. This study evaluated the assumption that B. fusca adults and larvae select and colonize maize plants at random, and do not show any preference for either Bt or non‐Bt maize. Gravid female B. fusca moths of a resistant and susceptible population were subjected to two‐choice oviposition preference tests using stems of Bt and non‐Bt maize plants. Both the number of egg batches as well as the total number of eggs laid on each stem were recorded. The feeding preference of Bt‐resistant and susceptible neonate B. fusca larvae were evaluated in choice test bioassays with whorl leaf samples of specific maize cultivars. Although no differential oviposition preference was observed for either resistant or susceptible female moths, leaf damage ratings indicated that neonate larvae were able to detect Bt toxins and that they displayed feeding avoidance behaviour on Bt maize leaf samples.  相似文献   

20.
Sibling cannibalism—the killing and consumption of conspecifics within broods—carries a high risk of direct and inclusive fitness loss for parents and offspring. We reported previously that a unique vibrational behavior shown by the mother of the subsocial burrower bug, Adomerus rotundus (Heteroptera: Cydnidae), induced synchronous hatching. Maternal regulation may be one of the most effective mechanisms for preventing or limiting sibling cannibalism. Here, we tested the hypothesis that synchronous hatching induced by maternal vibration in A. rotundus prevents sibling cannibalism. Mothers and their mature egg masses were allocated to three groups: synchronous hatching by maternal vibration (SHmv), synchronous hatching by artificial vibration (SHav), and asynchronous hatching (AH). We then investigated the influence of each hatching strategy on the occurrence of sibling cannibalism of eggs and early‐instar nymphs in the laboratory. No difference in the proportion of eggs cannibalized was observed among the three groups. However, the proportion of nymphs cannibalized was higher in the AH group than in the SHmv group. The difference in the number of days to first molting within clutch was significantly higher in the AH group than in the SHmv group. Junior nymphs were sometimes eaten by senior nymphs. However, immediately after molting, senior nymphs were at a high risk of being eaten by junior nymphs. Our results indicate that synchronous hatching of Arotundus is necessary to mitigate the risk of sibling cannibalism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号