首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wildlife populations in semi‐arid regions require unrestricted mobility along ecological gradients and across large landscapes to enable adaptive responses to seasonal variability and patchy resources. In the Kalahari region of Botswana, herbivore populations historically depended on seasonal access to the nutrient‐rich Schwelle area in the wet season and to water from the Boteti River during drought periods. Blue wildebeest Connochaetes taurinus in the Central Kalahari Game Reserve (CKGR) have lost access to these key habitats due to fences and encroachment of livestock and humans. We deployed satellite collars onto 10 female wildebeest in the CKGR to examine seasonal movements and habitat selection in relation to the environmental conditions and fragmented ecosystem. Wildebeest favoured open, short‐grass pan habitats in all seasons, probably in response to better forage quality and lower predation risk. The ability to remain in pan habitats during the dry season was a result of artificial water provision. A wildebeest herd that had no artificial water in its home range survived the dry season, whereas those wildebeest that were accustomed to water provision died when their water points failed in the dry season. Thus, water provision altered adaptive behaviour and reduced resilience of the population to the arid environment.  相似文献   

2.
In many areas in Africa, seasonal movements of migratory ungulates are restricted and their population numbers decline, for example in the Tarangire region, Tanzania. Here, agriculture restricts migration of ungulates to their wet season ranges. We investigated whether low forage quality or supply are possible causes of population decline of wildebeest and zebra when access to these wet season ranges is restricted and migratory herds have to reside in the dry season range year-round. We simulated grazing through a clipping experiment in the dry season range during the wet season. Clipping negatively affected forage supply and had a positive effect on forage quality by increasing proportions of live and leaf biomass as well as nutrient concentrations in the leaves. However, increase in forage quality in the dry season range due to grazing was not as such that requirements of wildebeest during the wet season, when females are lactating, could be met. We conclude that low forage quality in the dry season range during the wet season could cause the decrease in migratory ungulate populations in the Tarangire region. With this study, the necessity of protecting wet season ranges from expanding human activities to safeguard migratory systems is supported.  相似文献   

3.
We present the first scientific study of white-shouldered ibis Pseudibis davisoni habitat preferences in dry dipterocarp forest. Foraging sites included seasonal pools, forest understorey grasslands and fallow rice fields, with terrestrial sites used more following rainfall. Habitat and anthropogenic effects in logistic models of foraging site selection were examined by multimodel inference and model averaging. White-shouldered ibis preferred pools with greater cover of short vegetation (<25 cm) and less of the boundary enclosed, and forest sites with greater cover of bare substrate and lower people encounter rate. At forest sites, livestock density was positively related to bare substrate extent and thus may improve suitability for foraging ibis. At pools, livestock removed tall vegetation between the early and late dry season indicating their importance in opening up foraging habitats after wet season growth. However, by the late dry season, pools with greater livestock density had less short vegetation, the habitat favoured by ibis. Conservation strategies for white-shouldered ibis must consider a range of habitats, not just seasonal wetlands, and should incorporate extensive grazing and associated burning practises of local communities. Further understanding of the effects of these practices on vegetation, prey abundance and prey availability are therefore needed for effective conservation of this species. This will also develop our understanding of potentially beneficial anthropogenic influences in tropical environments.  相似文献   

4.
Understanding factors that influence habitat selection in heterogeneous landscapes is fundamental for establishing realistic models on animal distribution to inform rangeland management. In this study, we tested whether seasonal variation in habitat selection within the home range of a large herbivore was influenced by constraints such as, distances from water and central place using semi‐free range cattle (Bos taurus) as a case study. We also tested whether shifts in space use over time were dependent on spatial scale and on the overall abundance of resources. We predicted that distance from water significantly influenced dry season habitat selection while the influence of the central place on habitat selection was season‐independent. We also predicted that shifts in space use over time were spatial scale‐dependent, and that large herbivores would include more diverse habitats in their home ranges during the dry season, when water and food resources are less abundant. Multinomial logit models were used to construct habitat selection models with distances from water and central place as habitat‐specific constraints. Results showed significant variations in habitat selection between the dry and wet season. As predicted, the effect of distance from central place was season‐independent, while the effect of water was not included in the top dry season models contrary to expectation. A diverse range of habitats were also selected during the dry season including agricultural fields. Results also indicated that shifts in space use were spatial scale dependent, with core areas being more sensitive to changes than the home range. In addition, shifts in space use responded to temporal changes in habitat composition. Overall, our results suggest that semi‐free range herbivores adopt different foraging strategies in response to spatial‐temporal changes in habitat availability.  相似文献   

5.
The ongoing global decline in vulture populations raises major conservation concerns, but little is known about the factors that mediate scavenger habitat use, in particular the importance of abundance of live prey versus prey mortality. We test this using data from the Serengeti-Mara ecosystem in East Africa. The two hypotheses that prey abundance or prey mortality are the main drivers of vulture habitat use provide alternative predictions. If vultures select areas based only on prey abundance, we expect tracked vultures to remain close to herds of migratory wildebeest regardless of season. However, if vultures select areas where mortality rates are greatest then we expect vultures to select the driest regions, where animals are more likely to die of starvation, and to be attracted to migratory wildebeest only during the dry season when wildebeest mortality is greatest. We used data from GSM-GPS transmitters to assess the relationship between three vulture species and migratory wildebeest in the Mara-Serengeti ecosystem. Results indicate that vultures preferentially cluster around migratory herds only during the dry season, when herds experience their highest mortality. Additionally during the wet season, Ruppell’s and Lappet-faced vultures select relatively dry areas, based on Normalized Difference Vegetation Index, whereas White-backed vultures preferred wetter areas during the wet season. Differences in habitat use among species may mediate coexistence in this scavenger guild. In general, our results suggest that prey abundance is not the primary driver of avian scavenger habitat use. The apparent reliance of vultures on non-migratory ungulates during the wet season has important conservation implications for vultures in light of on-going declines in non-migratory ungulate species and use of poisons in unprotected areas.  相似文献   

6.
To understand habitat preferences, seasonal abundance and diets of rodents in wet and dry season surveys were conducted in Alage, Southern Ethiopia. Sherman and snap traps were used to capture rodents from the four habitats: bushland, Acacia woodland, maize and wheat farmlands. A total of 3312 trap nights, from the four trapping habitats, yielded 776 individuals that represented 11 species of rodents. The distribution of rodents varied between habitats and seasons. Wet season rodent abundance was 52.3% while in the dry season it was 47.7%. Seasonal differences in species abundance were insignificant. Bushland habitat had high wet and dry season abundances with 137 and 211 individuals, respectively. Abundance was low in maize farm (57 individuals) in the wet season and wheat farm (10 individuals) in the dry season. Stomach content composition analysis of snap‐trapped rodents from different habitats showed differences between species and across seasons. Six rodent species were recorded as pests on the farmlands in this study area. In conclusion, variation in habitat preferences and diet of rodents in different habitats and across seasons might be due to the role of ground cover and food sources.  相似文献   

7.
The amount (composition) and spatial arrangement (configuration) of forest patches in fragmented landscapes influence the accessibility, as well as the abundance and diversity of resources available to bats. Moreover, tropical fruit and insect abundance differ seasonally in response to changes in precipitation, and many bats in the family Phyllostomidae employ seasonal reproductive strategies. Because reproductive activities involve constraints on time and energy as well as increased nutritional demands, foraging behavior and home range size may differ between wet and dry seasons. Nonetheless, seasonal variation in response to landscape structure by bats has not been examined previously. Consequently, population‐, ensemble‐ and assemblage‐level responses of phyllostomids to landscape composition and configuration were quantified separately during the wet and dry season at three circular focal scales (1, 3 and 5 km radii) for 14 sites in fragmented lowland Amazon forest. Responses to landscape characteristics were scale‐dependent, species‐specific, and seasonal. Abundances of frugivores responded to landscape composition in the dry season and to landscape configuration in the wet season. Conversely, abundances of animalivores responded to landscape configuration in the dry season and to landscape composition in the wet season. Divergent responses to landscape structure between seasons suggest that variation in resource abundance and diversity play a significant role in structuring population‐, ensemble‐ and assemblage‐level patterns. As such, considerations of the effects of dietary flexibility and reproductive constraints on foraging strategies and habitat use may be important when designing management plans that successfully promote long‐term persistence of biodiversity in fragmented landscapes.  相似文献   

8.
Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape‐scale attributes. Generalized linear mixed‐effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment‐matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in resource abundance and consequently to local and landscape scale attributes.  相似文献   

9.
Movement is a key mean for mobile species to cope with heterogeneous environments. While in herbivorous mammals large-scale migration has been widely investigated, fine-scale movement responses to local variations in resources and predation risk remain much less studied, especially in savannah environments. We developed a novel approach based on complementary movement metrics (residence time, frequency of visits and regularity of visits) to relate movement patterns of a savannah grazer, the blue wildebeest Connochaetes taurinus, to fine-scale variations in food availability, predation risk and water availability in the Kruger National Park, South Africa. Wildebeests spent more time in grazing lawns where the grass is of higher quality but shorter than in seep zones, where the grass is of lower quality but more abundant. Although the daily distances moved were longer during the wet season compared to the dry season, the daily net displacement was lower, and the residence time higher, indicating a more frequent occurrence of area-concentred searching. In contrast, during the late dry season the foraging sessions were more fragmented and wildebeests moved more frequently between foraging areas. Surprisingly, predation risk appeared to be the second factor, after water availability, influencing movement during the dry season, when resources are limiting and thus expected to influence movement more. Our approach, using complementary analyses of different movement metrics, provided an integrated view of changes in individual movement with varying environmental conditions and predation risk. It makes it possible to highlight the adaptive behavioral decisions made by wildebeest to cope with unpredictable environmental variations and provides insights for population conservation.  相似文献   

10.
The effect of the introduction of an exotic species (cattle) into a native African herbivore assemblage was investigated by studying resource partitioning between zebu cattle, wildebeest and zebra. Resource partitioning was investigated by analysing grass sward characteristics (such as sward height and percentage nitrogen in leaves) of feeding sites selected by the different herbivore species. Linear discriminant analysis was used to determine whether a distinction could be made between feeding sites selected by the different animal species or whether the animal species showed overlap in resource use by selecting similar feeding sites. Wildebeest and zebra did not show overlap in resource use except in the wet season when resources were ample. Cattle showed overlap in resource use with zebra in the early wet season and with wildebeest in the early dry season, seasons when food limitation is likely. In the wet season, cattle showed overlap in resource use with both zebra and wildebeest. Implications of these results for competitive relationships between livestock and wildlife are discussed. We suggest that interpretation of overlap in resource use may be different for an assemblage of long-term coexisting native species as compared to an assemblage of native and exotic species. Among native herbivores, overlap in resource use is not expected based on evolutionary segregation. In a native assemblage to which an exotic species has been introduced, however, overlap in resource use can occur under food-limited conditions and consequently implies competition. Received: 1 September 1998 / Accepted: 20 April 1999  相似文献   

11.
Both top-down and bottom-up processes are common in terrestrial ecosystems, but how these opposing forces interact and vary over time is poorly understood. We tested the variation of these processes over seasonal time in a natural temperate zone grassland, a field site characterized by strong seasonal changes in abiotic and biotic conditions. Separate factorial experiments manipulating nutrients and cursorial spiders were performed in the wet and dry seasons. We also performed a water-addition experiment during the summer (dry season) to determine the degree of water limitation during this time. In the spring, nutrient addition increased plant growth and carnivore abundance, indicating a bottom-up control process. Among herbivores, sap-feeders were significantly enhanced while grazers significantly declined resulting in no net change in herbivore abundance. In the summer, water limitation was predominant increasing plants and all herbivores while nutrient (N) effects were non-significant. Top-down processes were present only in the spring season and only impacted the guild of grazing herbivores. These results show that bottom-up limitation is present throughout the season in this grassland, although the specific limiting resource changes as the season progresses. Bottom-up processes affected all trophic levels and many different guilds, while top-down effects were limited to a select group of herbivores and did not extend to the plant trophic level. Our results show that the relative strengths of top-down and bottom-up processes can shift over relatively short periods of time in habitats with a strong seasonal component.  相似文献   

12.
Habitat conversion creates a mosaic of land cover types, which affect the spatial distribution, diversity, and abundance of resources. We used abundance, functional, and phylogenetic information to determine if Neotropical bat communities exhibited phylogenetic or functional overdispersion or underdispersion in response to habitat conversion. Overdispersion suggests the operation of intraclade competition, niche partitioning, limiting similarity, or character displacement, whereas underdispersion indicates the operation of interclade competition, abiotic filtering, or biotic filtering. We expected (1) biotic filtering in landscapes with extensive forest loss to result in underdispersion; (2) niche partitioning in heterogeneous landscapes with intermediate forest loss to result in overdispersion; and (3) intraclade competition during times of low resource abundance (i.e., dry season) to increase, resulting in overdispersion. Most bat communities exhibited phylogenetic or functional underdispersion; none exhibited overdispersion. Expectations were not met: underdispersion did not increase with forest loss, heterogeneous landscapes did not induce overdispersion, and no evidence supported the contention that intraclade competition changed with season. Empirical responses were season‐specific, likely because resource availability may affect relationships between forest cover and underdispersion and between biodiversity and underdispersion. During the dry season, only high diversity sites exhibited underdispersion (i.e., functional or phylogenetic redundancy), whereas underdispersion occurred in low, intermediate, or high diversity communities during the wet season; we suggest that this difference likely arises due to changes in resource abundance. Communities with high diversity and redundancy occupied heterogeneous sites during the dry season, but communities with high redundancy were restricted to large forest reserves during the wet season.  相似文献   

13.
Extensively managed pastures are of crucial importance in sustaining biodiversity both in local- and landscape-level. Thus, re-introduction of traditional grazing management is a crucial issue in grassland conservation actions worldwide. Traditional grazing with robust cattle breeds in low stocking rates is considered to be especially useful to mimic natural grazing regimes, but well documented case-studies are surprisingly rare on this topic. Our goal was to evaluate the effectiveness of traditional Hungarian Grey cattle grazing as a conservation action in a mosaic alkali landscape. We asked the following questions: (i) How does cattle grazing affect species composition and diversity of the grasslands? (ii) What are the effects of grazing on short-lived and perennial noxious species? (iii) Are there distinct effects of grazing in dry-, mesophilous- and wet grassland types? Vegetation of fenced and grazed plots in a 200-ha sized habitat complex (secondary dry grasslands and pristine mesophilous- and wet alkali grasslands) was sampled from 2006–2009 in East-Hungary. We found higher diversity scores in grazed plots compared to fenced ones in mesophilous- and wet grasslands. Higher cover of noxious species was typical in fenced plots compared to their grazed counterparts in the last year in every studied grassland type. We found an increasing effect of grazing from the dry- towards the wet grassland types. The year-to-year differences also followed similar pattern: the site-dependent effects were the lowest in the dry grassland and an increasing effect was detected along the moisture gradient. We found that extensive Hungarian Grey cattle grazing is an effective tool to suppress noxious species and to create a mosaic vegetation structure, which enables to maintain high species richness in the landscape. Hungarian Grey cattle can feed in open habitats along long moisture gradient, thus in highly mosaic landscapes this breed can be the most suitable livestock type.  相似文献   

14.
Nutrient redistribution, deer response to areas containing dung, and plant and soil nutrient content on grazing lawns and adjacent control areas were studied on intensively grazed grasslands in humid lowland Nepal. Effects of experimental fertilisation of grasslands with different amounts of dung pellets were also studied. A high-density population of axis deer recirculated 13 tons (dry mass, DM) of dung per month in the 10 km2 study area. Because of preferential use of the grasslands for feeding while resting elsewhere, 10 tons were lost from the grassland to other habitat types per month during the dry season (February–May). The N, P, K, Na, and Mg content of grass from grazing lawns was significantly higher, probably because the grass was kept in a younger phenological stage of growth. In contrast with results from many other studies, the nutrient content of lawn soil was similar to that of adjacent, less intensively grazed areas, apart from P, which was lower in lawn soils. High plant P requirement on grazing lawns and removal of nutrients by deer may explain low soil P levels. Experiments with pellet fertilisation showed that high dung deposition increased plant P content, probably because of increased P uptake during early stages of growth. Dung deposition did not affect deer grazing preferences.  相似文献   

15.
The role of herbivores in regulating aquatic plant dynamics has received growing recognition from researchers and managers. However, the evidence for herbivore impacts on aquatic plants is largely based on short-term exclosure studies conducted within a single plant growing season. Thus, it is unclear how long herbivore impacts on aquatic plant abundance can persist for. We addressed this knowledge gap by testing whether mute swan (Cygnus olor) grazing on lowland river macrophytes could be detected in the following growing season. Furthermore, we investigated the role of seasonal changes in water current speed in limiting the temporal extent of grazing. We found no relationship between swan biomass density in 1 year and aquatic plant cover or biomass in the following spring. No such carry-over effects were detected despite observing high swan biomass densities in the previous year from which we inferred grazing impacts on macrophytes. Seasonal increases in water velocity were associated with reduced grazing pressure as swans abandoned river habitat. Furthermore, our study highlights the role of seasonal changes in water velocity in determining the length of the mute swan grazing season in shallow lowland rivers and thus in limiting the temporal extent of herbivore impacts on aquatic plant abundance.  相似文献   

16.
Differences in the selection of habitat and specific dietary items support resource partitioning and coexistence of sympatric African grazing herbivores, such as zebra and wildebeest. In Maputo Special Reserve (MSR), southern Mozambique, these two species were extirpated during the civil war (1977–1992); since 2010, they have been reintroduced into the Reserve. Identifying the resource selection by reintroduced species and how these species coexist, while utilising the same resources, is both of ecological interest and important for the management of wildlife communities and parks. This is a key application of our research. Therefore, the present study investigated resource partitioning between Burchell's zebra (Equus burchelli, Smuts 1832) and blue wildebeest (Connochaetes taurinus, Burchell 1823) in the MSR. We conducted the study from July 2016 to June 2017. The data were collected by direct observation, driving the vehicle along the reserve's roads that covered the vegetation communities where zebras and wildebeest are known to commonly occur. The composition of the diet and specific features of the grass grazed by the two species, including greenness, height, and the number of stems, were assessed. The widely available grass, Aristida barbicollis, contributed most to the diet of both herbivores. The dietary overlap between the two herbivores was higher during the dry season (95%) than wet season (86%). Resources partitioning appears to be determined, principally, by the height and greenness of the grass, with the zebra grazing taller grass, which may facilitate the access of the wildebeest to the greener, lower proportion of the forage. That results follow the expectation that, among native herbivores, overlap in resource use is not expected based on evolutionary segregation.  相似文献   

17.
Changes in land use during the last century have caused fragmentation and a reduction in area of many species-rich habitats in the hemiboreal region. We examined abundances of plant species and their occurrence in different habitats in south-east Sweden. We found 361 plant species in 146 sample sites, which represented 14 different types of habitat. Most species were rare and occurred only in a few habitats. Almost half of all species (49%) were found in one or two habitats. Of these, 99 species occurred in one habitat only. The habitats with largest number of restricted species, i.e. habitat specialists, were dry to mesic semi-natural grasslands and remnant habitats such as road verges and mid field islets. The occurrence of 52 species was analysed with respect to topography, top- and subsoil and land use history. Few of the 52 species were affected by aspect or type of topsoil. Subsoil affected nearly half of the species and habitats with a convex landform influenced occurrence of > 90% of the species. Seventeen species were positively associated with a long continuity of grassland management, whereas two species were associated with lack of management. Open grasslands that are encroached by trees and shrubs show a decline in species number. Deciduous forests, especially wet deciduous forests, have a potential for restoring moist to mesic grassland habitats. Small remnant habitats are important for many of the species restricted to semi-natural grasslands. These habitats may function as "rescue sites" for the species, which in turn may promote dispersal and increase likelihood of restoration success. Therefore, remnant habitats are important for maintaining and restoring species richness in rural landscapes.  相似文献   

18.
Food accessibility and availability in the highly seasonal Arctic landscape can be restricted by snow cover and frozen substrate, particularly in early spring. Therefore, to determine how a long distance migratory herbivore forages in such a landscape, pink‐footed geese Anser brachyrhynchus at an early spring feeding area in Svalbard were studied. Birds arrived in mid May when extensive snow cover restricted habitat availability. Geese fed in all habitats, but the highest densities occurred in wet tundra. However, prolonged snow lie restricted access to wet areas compared to dry and mesic habitats. Above ground biomass was very low in all habitats; yet sizeable amounts occurred below ground. In line with this, the majority of birds (86%) grubbed for below ground plant storage organs such as stem bases and rhizomes. Wet habitat contained greater quantities of edible and lower amounts of inedible below ground material (ratio 1:0.3) than dry (ratio 1:9) or mesic (ratio 1:4) areas. Although foraging in wet habitat prevented geese from encountering high proportions of inedible plant parts, forage species characteristic of this habitat, such as Dupontia grasses and the rush Eriophorum scheuchzeri, were more difficult to extract than food plants typical of drier habitats such as the forb Bistorta vivipara. Hence, we suggest that wet areas are preferred by pink‐footed geese, but the prolonged snow lie there made it necessary to use less preferred but much more abundant drier habitats, which experienced earlier snowmelt and indeed accommodated more than half of all goose foraging recordings.  相似文献   

19.
Resource manipulation, such as the creation and maintenance of grazing lawns, may shape the structure of herbivore communities. We tested the hypothesis that grazing lawns contribute towards the subsistence of the Kobus kob kob in a dystrophic West African savanna, where kob and Hippopotamus amphibius both occur. Comparison of the foliage of grazing lawns and ungrazed swards shows that hippo lawns are more nutritious with regard to both structure and nutrients; kob lawns are higher in nutrients only. Up to the early dry season, hippo lawns meet kob energy and protein demand, thereafter, the shortness of the sward limits intake. Kob lawns always provide sub-maintenance values. Grazing on ungrazed swards is least profitable. We suggest that grazing lawns are essential for the daily subsistence of mesoherbivores, particularly on nutrient-poor soil, and that megaherbivores facilitate their food supply, for at least part of the year.  相似文献   

20.
Plant species richness in rural landscapes of northern Europe has been positively influenced by traditional management for millennia. Owing to abandonment of these practices, the number of species‐rich semi‐natural grasslands has decreased, and remaining habitats suffer from deterioration, fragmentation, and plant species decline. To prevent further extinctions, restoration efforts have increased during the last decades, by reintroducing grazing in former semi‐natural grasslands. To assess the ecological factors that might influence the outcome of such restorations, we made a survey of semi‐natural grasslands in Sweden that have been restored during the last decade. We investigated how plant species richness, species density, species composition, and abundance of 10 species that are indicators of grazing are affected by (1) the size of the restored site, (2) the time between abandonment of grazing and restoration, (3) the time elapsed since restoration, and (4) the abundance of trees and shrubs at the restored site. Only two factors, abundance of trees and shrubs and time since restoration, were positively associated with total species richness and species density per meter square at restored sites. Variation in species composition among restored sites was not related to any of the investigated factors. Species composition was relatively similar among sites, except in mesic/wet grasslands. The investigated factors had small effects on the abundance of the grazing‐indicator species. Only Campanula rotundifolia responded to restoration with increasing abundance and may thus be a suitable indicator of improved habitat quality. In conclusion, positive effects on species richness may appear relatively soon after restoration, but rare, short‐lived species are still absent. Therefore, remnant populations in surrounding areas may be important in fully recreating former species richness and composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号