首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There are many theoretical and empirical studies explaining variation in offspring sex ratio but relatively few that explain variation in adult sex ratio. Adult sex ratios are important because biased sex ratios can be a driver of sexual selection and will reduce effective population size, affecting population persistence and shapes how populations respond to natural selection. Previous work on guppies (Poecilia reticulata) gives mixed results, usually showing a female‐biased adult sex ratio. However, a detailed analysis showed that this bias varied dramatically throughout a year and with no consistent sex bias. We used a mark‐recapture approach to examine the origin and consistency of female‐biased sex ratio in four replicated introductions. We show that female‐biased sex ratio arises predictably and is a consequence of higher male mortality and longer female life spans with little effect of offspring sex ratio. Inconsistencies with previous studies are likely due to sampling methods and sampling design, which should be less of an issue with mark‐recapture techniques. Together with other long‐term mark‐recapture studies, our study suggests that bias in offspring sex ratio rarely contributes to adult sex ratio in vertebrates. Rather, sex differences in adult survival rates and longevity determine vertebrate adult sex ratio.  相似文献   

2.
Negative frequency‐dependent selection should result in equal sex ratios in large populations of dioecious flowering plants, but deviations from equality are commonly reported. A variety of ecological and genetic factors can explain biased sex ratios, although the mechanisms involved are not well understood. Most dioecious species are long‐lived and/or clonal complicating efforts to identify stages during the life cycle when biases develop. We investigated the demographic correlates of sex‐ratio variation in two chromosome races of Rumex hastatulus, an annual, wind‐pollinated colonizer of open habitats from the southern USA. We examined sex ratios in 46 populations and evaluated the hypothesis that the proximity of males in the local mating environment, through its influence on gametophytic selection, is the primary cause of female‐biased sex ratios. Female‐biased sex ratios characterized most populations of R.  hastatulus (mean sex ratio = 0.62), with significant female bias in 89% of populations. Large, high‐density populations had the highest proportion of females, whereas smaller, low‐density populations had sex ratios closer to equality. Progeny sex ratios were more female biased when males were in closer proximity to females, a result consistent with the gametophytic selection hypothesis. Our results suggest that interactions between demographic and genetic factors are probably the main cause of female‐biased sex ratios in R. hastatulus. The annual life cycle of this species may limit the scope for selection against males and may account for the weaker degree of bias in comparison with perennial Rumex species.  相似文献   

3.
Bias in sex ratios at hatching and sex specific post hatching mortality in size dimorphic species has been frequently detected, and is usually skewed towards the production and survival of the smaller sex. Since common terns Sterna hirundo show a limited sexual size dimorphism, with males being only about 1–6% larger than females in a few measurements, we would expect to find small or no differences in production and survival of sons and daughters. To test this prediction, we carried out a 2-year observational study on sex ratio variation in common terns at hatching and on sex specific post hatching mortality. Sons and daughters hatched from eggs of similar volume. Post hatching mortality was heavily influenced by hatching sequence. In addition, we detected a sex specific mortality bias towards sons. Overall, hatching sex ratio and sex specific mortality resulted in fledging sex ratios 8% biased towards females. Thus, other reasons than body size may be influencing the costs of rearing sons. Son mortality was not homogeneous between brood sizes, but greater for two-chick broods. Since adults rearing two-chick broods were younger, lighter and bred consistently later than those rearing three-chick broods, it is suggested that lower capacity of two-chick brood parents adversely affected offspring survival of sons. Though not significantly, two-chick broods tended to be female biased at hatching, perhaps to counteract the greater male-biased nestling mortality. Thus, population bias in secondary sex ratio is not limited to strongly size dimorphic species, but species with a slight sexual size dimorphism can also show sex ratio bias through a combination of differential production and mortality of sons and daughters.  相似文献   

4.
5.
Dioecious plant species commonly exhibit deviations from the equilibrium expectation of 1:1 sex ratio, but the mechanisms governing this variation are poorly understood. Here, we use comparative analyses of 243 species, representing 123 genera and 61 families to investigate ecological and genetic correlates of variation in the operational (flowering) sex ratio. After controlling for phylogenetic nonindependence, we examined the influence of growth form, clonality, fleshy fruits, pollen and seed dispersal vector, and the possession of sex chromosomes on sex‐ratio variation. Male‐biased flowering sex ratios were twice as common as female‐biased ratios. Male bias was associated with long‐lived growth forms (e.g., trees) and biotic seed dispersal and fleshy fruits, whereas female bias was associated with clonality, especially for herbaceous species, and abiotic pollen dispersal. Female bias occurred in species with sex chromosomes and there was some evidence for a greater degree of bias in those with heteromorphic sex chromosomes. Although the role of interactions among these correlates require further study, our results indicate that sex‐based differences in costs of reproduction, pollen and seed dispersal mechanisms and sex chromosomes can each play important roles in affecting flowering sex ratios in dioecious plants.  相似文献   

6.
Sex‐biased dispersal is common in vertebrates, although the ecological and evolutionary causes of sex differences in dispersal are debated. Here, we investigate sex differences in both natal and breeding dispersal distances using a large dataset on birds including 86 species from 41 families. Using phylogenetic comparative analyses, we investigate whether sex‐biased natal and breeding dispersal are associated with sexual selection, parental sex roles, adult sex ratio (ASR), or adult mortality. We show that neither the intensity of sexual selection, nor the extent of sex bias in parental care was associated with sex‐biased natal or breeding dispersal. However, breeding dispersal was related to the social environment since male‐biased ASRs were associated with female‐biased breeding dispersal. Male‐biased ASRs were associated with female‐biased breeding dispersal. Sex bias in adult mortality was not consistently related to sex‐biased breeding dispersal. These results may indicate that the rare sex has a stronger tendency to disperse in order to find new mating opportunities. Alternatively, higher mortality of the more dispersive sex could account for biased ASRs, although our results do not give a strong support to this explanation. Whichever is the case, our findings improve our understanding of the causes and consequences of sex‐biased dispersal. Since the direction of causality is not yet known, we call for future studies to identify the causal relationships linking mortality, dispersal, and ASR.  相似文献   

7.
In sexually size‐dimorphic species, brood sex composition may exert differential effects on sex‐specific mortality. We investigated the sex‐specific mortality and body condition in relation to brood sex composition in nestlings of the black‐billed magpie Pica pica. Neither significantly sex‐biased production at hatching nor overall sex‐biased mortality during the nestling period was found. Sex‐specific mortality as a function of brood sex composition, however, differed between female and male nestlings. We found higher mortality for females in male‐biased broods and higher mortality for males in female‐biased broods, a phenomenon that we call ‘rarer‐sex disadvantage’. As a result, fledging sex ratios became more biased in the direction of bias at hatching, a phenomenon that cannot be readily explained by previous hypotheses for sex‐specific mortality. Two temporal variables, fledging date and laying date, were also correlated with sex‐specific mortality: female nestlings in earlier broods experienced higher mortality than male nestlings whereas male nestlings in later broods experienced higher mortality. We suggest that this unusual pattern of mortality may be explained by adaptive adjustments of brood sex composition by parents, either through the effects of a slight sex difference in offspring dispersal patterns on parental fitness, or owing to sex differences as regards the benefits of early fledging.  相似文献   

8.
Kinship among interacting individuals is often associated with sociality and also with sex ratio effects. Parasitoids in the bethylid genus Goniozus are sub‐social, with single foundress females exhibiting post‐ovipositional maternal care via short‐term aggressive host and brood defence against conspecific females. Due to local mate competition (LMC) and broods normally being produced by a single foundress, sex ratios are female‐biased. Contests between adult females are, however, not normally fatal, and aggression is reduced when competing females are kin, raising the possibility of multi‐foundress reproduction on some hosts. Here, we screen for further life‐history effects of kinship by varying the numbers and relatedness of foundresses confined together with a host resource and also by varying the size of host. We confined groups of 1–8 Goniozus nephantidis females together with a host for 5+ days. Multi‐foundress groups were either all siblings or all nonsiblings. Our chief expectations included that competition for resources would be more intense among larger foundress groups but diminished by both larger host size and closer foundress relatedness, affecting both foundress mortality and reproductive output. From classical LMC theory, we expected that offspring group sex ratios would be less female‐biased when there were more foundresses, and from extended LMC theory, we expected that sex ratios would be more female‐biased when foundresses were close kin. We found that confinement led to the death of some females (11% overall) but only when host resources were most limiting. Mortality of foundresses was less common when foundresses were siblings. Developmental mortality among offspring was considerably higher in multi‐foundress clutches but was unaffected by foundress relatedness. Groups of sibling foundresses collectively produced similar numbers of offspring to nonsibling groups. There was little advantage for individual females to reproduce in multi‐foundress groups: single foundresses suppressed even the largest hosts presented and had the highest per capita production of adult offspring. Despite single foundress reproduction being the norm, G. nephantidis females in multi‐foundress groups appear to attune sex allocation according to both foundress number and foundress relatedness: broods produced by sibling foundresses had sex ratios similar to broods produced by single foundresses (ca. 11% males), whereas the sex ratios of broods produced by nonsibling females were approximately 20% higher and broadly increased with foundress number. We conclude that relatedness and host size may combine to reduce selection against communal reproduction on hosts and that, unlike other studied parasitoids, G. nephantidis sex ratios conform to predictions of both classical and extended LMC theories.  相似文献   

9.
10.
Sex‐dependent gene expression is likely an important genomic mechanism that allows sex‐specific adaptation to environmental changes. Among Drosophila species, sex‐biased genes display remarkably consistent evolutionary patterns; male‐biased genes evolve faster than unbiased genes in both coding sequence and expression level, suggesting sex differences in selection through time. However, comparatively little is known of the evolutionary process shaping sex‐biased expression within species. Latitudinal clines offer an opportunity to examine how changes in key ecological parameters also influence sex‐specific selection and the evolution of sex‐biased gene expression. We assayed male and female gene expression in Drosophila serrata along a latitudinal gradient in eastern Australia spanning most of its endemic distribution. Analysis of 11 631 genes across eight populations revealed strong sex differences in the frequency, mode and strength of divergence. Divergence was far stronger in males than females and while latitudinal clines were evident in both sexes, male divergence was often population specific, suggesting responses to localized selection pressures that do not covary predictably with latitude. While divergence was enriched for male‐biased genes, there was no overrepresentation of X‐linked genes in males. By contrast, X‐linked divergence was elevated in females, especially for female‐biased genes. Many genes that diverged in D. serrata have homologs also showing latitudinal divergence in Drosophila simulans and Drosophila melanogaster on other continents, likely indicating parallel adaptation in these distantly related species. Our results suggest that sex differences in selection play an important role in shaping the evolution of gene expression over macro‐ and micro‐ecological spatial scales.  相似文献   

11.
In wing‐polymorphic insects, wing morphs differ not only in dispersal capability but also in life history traits because of trade‐offs between flight capability and reproduction. When the fitness benefits and costs of producing wings differ between males and females, sex‐specific trade‐offs can result in sex differences in the frequency of long‐winged individuals. Furthermore, the social environment during development affects sex differences in wing development, but few empirical tests of this phenomenon have been performed to date. Here, I used the wing‐dimorphic water strider Tenagogerris euphrosyne to test how rearing density and sex ratio affect the sex‐specific development of long‐winged dispersing morphs (i.e., sex‐specific macroptery). I also used a full‐sib, split‐family breeding design to assess genetic effects on density‐dependent, sex‐specific macroptery. I reared water strider nymphs at either high or low densities and measured their wing development. I found that long‐winged morphs developed more frequently in males than in females when individuals were reared in a high‐density environment. However, the frequency of long‐winged morphs was not biased according to sex when individuals were reared in a low‐density environment. In addition, full‐sib males and females showed similar macroptery incidence rates at low nymphal density, whereas the macroptery incidence rates differed between full‐sib males and females at high nymphal density. Thus complex gene‐by‐environment‐by‐sex interactions may explain the density‐specific levels of sex bias in macroptery, although this interpretation should be treated with some caution. Overall, my study provides empirical evidence for density‐specific, sex‐biased wing development. My findings suggest that social factors as well as abiotic factors can be important in determining sex‐biased wing development in insects.  相似文献   

12.
The attainment of sexual maturity has been shown to affect measures of sexual size dimorphism (SSD) and adult sex ratios in several groups of vertebrates. Using data for turtles, we tested the model that sex ratios are expected to be male‐biased when females are larger than males and female‐biased when males are larger than females because of the relationship of each with the attainment of maturity. Our model is based on the premise that the earlier‐maturing sex remains smaller, on average throughout life, and predominates numerically unless the sexes are strongly affected by differential mortality, differential emigration, and immigration, or biased primary sex ratios. Based on data for 24 species in seven families, SSD and sex ratios were significantly negatively correlated for most analyses, even after the effect of phylogenetic bias was removed. The analyses provide support for the model that SSD and adult sex ratios are correlated in turtles as a result of simultaneous correlation of each with sexual differences in attainment of maturity (bimaturism). Environmental sex determination provides a possible mechanism for the phenomenon in turtles and some other organisms. © 2014 The Authors. Biological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 142–149.  相似文献   

13.
Fig‐pollinating wasps (Agaonidae) only reproduce within fig tree inflorescences (figs). Agaonid offspring sex ratios are usually female‐biased and often concur with local mate competition theory (LMC). LMC predicts less female‐bias when several foundresses reproduce in a fig due to reduced relatedness among intra‐sexually competing male offspring. Clutch size, the offspring produced by each foundress, is a strong predictor of agaonid sex ratios and correlates negatively with foundress number. However, clutch size variation can result from several processes including egg load (eggs within a foundress), competition among foundresses and oviposition site limitation, each of which can be used as a sex allocation cue. We introduced into individual Ficus racemosa figs single Ceratosolen fusciceps foundresses and allowed each to oviposit from zero to five hours thus variably reducing their eggs‐loads and then introduced each wasp individually into a second fig. Offspring sex ratio (proportion males) in second figs correlated negatively with clutch size, with males produced even in very small clutches. Ceratosolen fusciceps lay mainly male eggs first and then female eggs. Our results demonstrate that foundresses do not generally lay or attempt to lay a ‘fixed’ number of males, but do ‘reset to zero’ their sex allocation strategy on entering a second fig. With decreasing clutch size, gall failure increased, probably due to reduced pollen. We conclude that C. fusciceps foundresses can use their own egg loads as a cue to facultatively adjust their offspring sex ratios and that foundresses may also produce more ‘insurance’ males when they can predict increasing rates of offspring mortality.  相似文献   

14.
Sex‐biased dispersal is a much‐discussed feature in literature on dispersal. Diverse hypotheses have been proposed to explain the evolution of sex‐biased dispersal, a difference in dispersal rate or dispersal distance between males and females. An early hypothesis has indicated that it may rely on the difference in sex chromosomes between males and females. However, this proposal was quickly rejected without a real assessment. We propose a new perspective on this hypothesis by investigating the evolution of sex‐biased dispersal when dispersal genes are sex‐linked, that is when they are located on the sex chromosomes. We show that individuals of the heterogametic sex disperse relatively more than do individuals of the homogametic sex when dispersal genes are sex‐linked rather than autosomal. Although such a sex‐biased dispersal towards the heterogametic sex is always observed in monogamous species, the mating system and the location of dispersal genes interact to modulate sex‐biased dispersal in monandry and polyandry. In the context of the multicausality of dispersal, we suggest that sex‐linked dispersal genes can influence the evolution of sex‐biased dispersal.  相似文献   

15.
We document a seasonal shift in the sex ratios of broods produced by resident southeastern American kestrels (Falco sparverius paulus) breeding in nest boxes in Florida. Early in the breeding season, most biased broods were biased towards males, whereas later in the season, most biased broods were biased towards females. Computer-simulated broods subjected to sex-biased egg and/or nestling mortality demonstrate that it is possible that differential mortality produced the pattern of bias that we observed. However, these simulations do not exclude the possibility that female kestrels were manipulating the primary sex ratio of the broods. We present evidence that this sex ratio shift is adaptive: for males we detected breeding as yearlings, all had fledged early the previous season. No such relationship between season and the probability of breeding as a yearling was found for females. We propose the Early Bird Hypothesis as the ecological basis for the advantage of fledg ing early in males. We hypothesize that pre-emptive competition among post-fledging, dispersing males for breeding sites confers an advantage to males fledged early in the season. This hypothesis may explain why a non-migratory population of the Eurasian kestrel (F. tinnunculus) and non-migratory American kestrels breeding in Florida (F. s. paulus) exhibit this seasonal shift in sex ratios, whereas migratory American kestrels (F. s. sparverius) breeding in Saskatchewan, Canada, do not. We discuss the relevance of the Early Bird Hypothesis for other animal species.  相似文献   

16.
Precise estimation of arthropods' sex ratio is an important issue in a wide range of ecological studies and biological control programs. Although, in many cases changes in arthropods' sex ratio may be under the control of parents or some symbiotic microorganisms, biased sex ratios in some other species are caused by some extrinsic factors, neglect of which may lead to under/overestimation of true sex ratio. In this paper, we pursued those factors that cause false estimation of sex ratio in insects' species. We studied the predatory gall midge, Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae), an important biological control agent of aphids, that shows protandry (i.e. early male emergence), differential lifespan of sexes, and differential distribution of sexes across habitat. Ten populations of A. aphidimyza were released separately in transparent cages and their sex ratio variations were recorded every 12 hours. The primary sex ratio in this species seems to be slightly male‐biased (52.41% males), however early emergence of males biases the sex ratio up to 72% males in a few hours after emergence. Shortly after the emergence of females, the sex ratio reaches its primary situation, but as a result of male‐biased mortality after mating, the proportion of females increases gradually to 97% by the fourth and fifth days after emergence. These results explicitly suggest that direct estimation of sex ratio in natural populations may be affected by some secondary factors such as differential mortality of sexes, protandry, and differential distribution of males and females over time and/or across habitat.  相似文献   

17.
Natal dispersal affects life history and population biology and causes gene flow. In mammals, dispersal is usually male‐biased so that females tend to be philopatric and surrounded by matrilineal kin, which may lead to preferential associations among female kin. Here we combine genetic analyses and behavioral observations to investigate spatial genetic structure and sex‐biased dispersal patterns in a high‐density population of mammals showing fission–fusion group dynamics. We studied eastern grey kangaroos (Macropus giganteus) over 2 years at Wilsons Promontory National Park, Australia, and found weak fine‐scale genetic structure among adult females in both years but no structure among adult males. Immature male kangaroos moved away from their mothers at 18–25 months of age, while immature females remained near their mothers until older. A higher proportion of male (34%) than female (6%) subadults and young adults were observed to disperse, although median distances of detected dispersals were similar for both sexes. Adult females had overlapping ranges that were far wider than the maximum extent of spatial genetic structure found. Female kangaroos, although weakly philopatric, mostly encounter nonrelatives in fission–fusion groups at high density, and therefore kinship is unlikely to strongly affect sociality.  相似文献   

18.
1. Fig wasps have proved extremely useful study organisms for testing how reproductive decisions evolve in response to population structure. In particular, they provide textbook examples of how natural selection can favour female‐biased offspring sex ratios, lethal combat for mates and dimorphic mating strategies. 2. However, previous work has been challenged, because supposedly single species have been discovered to be a number of cryptic species. Consequently, new studies are required to determine population structure and reproductive decisions of individuals unambiguously assigned to species. 3. Microsatellites were used to determine species identity and reproductive patterns in three non‐pollinating Sycoscapter species associated with the same fig species. Foundress number was typically one to five and most figs contained more than one Sycoscapter species. Foundresses produced very small clutches of about one to four offspring, but one foundress may lay eggs in several figs. 4. Overall, the data were a poor match to theoretical predictions of solitary male clutches and gregarious clutches with n ? 1 females. However, sex ratios were male‐biased in solitary clutches and female‐biased in gregarious ones. 5. At the brood level (all wasps in a fig), a decrease in sex ratio with increasing brood size was only significant in one species, and sex ratio was unrelated to foundress number. In addition, figs with more foundresses contain more wasp offspring. 6. Finally, 10–22% of females developed in patches without males. As males are wingless, these females disperse unmated and are constrained to produce only sons from unfertilised eggs.  相似文献   

19.
Overwintering sites have recently been a focus of research into adaptive insect behavior in areas where winter is severe; however, little is known about the overwintering sites of most insects, including common ground or carrion beetles. Here, we reveal the overwintering site of Japanese carrion beetles Eusilpha japonica (Motschulsky) (Coleoptera: Silphidae). These beetles occupy various locations between spring and autumn; however, they are not observed in most of these places in winter. To investigate where they overwinter, a thorough scan was made of 109 sites. Overwintering beetles were found at 21 of 73 sites near to trees, and no beetles were observed at 36 sites that were not close to trees. To evaluate the influence of trees on the abundance of overwintering beetles, we established a quadrat consisting of 518 subquadrats in a suitable habitat with varying distances to the nearest trees. We caught 118 overwintering beetles in the quadrat. More beetles existed in subquadrats closer to trees, and analyses that considered spatial autocorrelation revealed a negative correlation between beetle frequency and distance to the nearest tree.  相似文献   

20.
Body condition and parasite abundance were examined in two size classes of European bitterling Rhodeus amarus during the first overwintering period in two seasons (2007–2008 and 2009–2010). Body condition of large fish did not change during winter, and increased significantly in March. From November to February, small fish showed a decreasing trend in condition. Despite a significant increase in March condition of small fish only reached the same level as before winter. Total parasite abundance increased significantly in winter in both fish size classes, reflecting a seasonal increase in monogenean infection. Large fish were parasitized significantly more than small fish during winter, but only in small fish was a negative correlation between parasite infection and condition found and a significant decrease in parasite abundance recorded after wintering, indicating mortality of heavily infected individuals with low condition during the winter. A trend for higher overwinter mortality in small fish was found under semi‐experimental conditions. The decrease in condition during the winter period in small fish may reflect faster energy depletion generally expected in smaller individuals. The results indicate that parasite infection may contribute to the overwinter mortality of 0+ year R. amarus, with a stronger effect in smaller individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号