首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Aims Understanding what drives the variation in species composition and diversity among local communities can provide insights into the mechanisms of community assembly. Because ecological traits are often thought to be phylogenetically conserved, there should be patterns in phylogenetic structure and phylogenetic diversity in local communities along ecological gradients. We investigate potential patterns in angiosperm assemblages along an elevational gradient with a steep ecological gradient in Changbaishan, China.Methods We used 13 angiosperm assemblages in forest plots (32×32 m) distributed along an elevational gradient from 720 to 1900 m above sea level. We used Faith's phylogenetic diversity metric to quantify the phylogenetic alpha diversity of each forest plot, used the net relatedness index to quantify the degree of phylogenetic relatedness among angiosperm species within each forest plot and used a phylogenetic dissimilarity index to quantify phylogenetic beta diversity among forest plots. We related the measures of phylogenetic structure and phylogenetic diversity to environmental (climatic and edaphic) factors.Important findings Our study showed that angiosperm assemblages tended to be more phylogenetically clustered at higher elevations in Changbaishan. This finding is consistent with the prediction of the phylogenetic niche conservatism hypothesis, which highlights the role of niche constraints in governing the phylogenetic structure of assemblages. Our study also showed that woody assemblages differ from herbaceous assemblages in several major aspects. First, phylogenetic clustering dominated in woody assemblages, whereas phylogenetic overdispersion dominated in herbaceous assemblages; second, patterns in phylogenetic relatedness along the elevational and temperature gradients of Changbaishan were stronger for woody assemblages than for herbaceous assemblages; third, environmental variables explained much more variations in phylogenetic relatedness, phylogenetic alpha diversity and phylogenetic beta diversity for woody assemblages than for herbaceous assemblages.  相似文献   

2.
The assumption that traits and phylogenies can be used as proxies of species niche has faced criticisms. Evidence suggested that phylogenic relatedness is a weak proxy of trait similarity. Moreover, different processes can select different traits, giving opposing signals in null model analyses. To circumvent these criticisms, we separated traits of stream insects based on the concept of α and β niches, which should give clues about assembling pressures expected to act independently of each other. We investigated the congruence between the phylogenetic structure and trait structure of communities using all available traits and all possible combinations of traits (4095 combinations). To account for hierarchical assembling processes, we analyzed patterns on two spatial scales with three pools of genera. Beta niche traits selected a priori – i.e., traits related to environmental variation (e.g., respiration type) – were consistently clustered on the smaller scale, suggesting environmental filtering, while α niche traits – i.e., traits related to resource use (e.g., trophic position) – did not display the expected overdispersion, suggesting a weak role of competition. Using all traits together provided random patterns and the analysis of all possible combinations of traits provided scenarios ranging from strong clustering to overdispersion. Communities were phylogenetically overdispersed, a pattern previously interpreted as phylogenetic limiting similarity. However, our results likely reflect the co‐occurrence of ancient clades due to the stability of stream habitats along the evolutionary scale. We advise ecologists to avoid using combinations of all available traits but rather carefully traits based on the objective under consideration. Both trait and phylogenetic approaches should be kept in the ecologist toolbox, but phylogenetic distances should not be used as proxies of traits differences. Although the phylogenetic structure revealed processes operating at the evolutionary scale, only specific traits explained local processes operating in our communities.  相似文献   

3.
The relative roles of historical processes, environmental filtering, and ecological interactions in the organization of species assemblages vary depending on the spatial scale. We evaluated the phylogenetic and morphological relationships between species and individuals (i.e., inter‐ and intraspecific variability) of Neotropical nonvolant small mammals coexisting in grassland‐forest ecotones, in landscapes and in regions, that is, three different scales. We used a phylogenetic tree to infer evolutionary relationships, and morphological traits as indicators of performance and niche similarities between species and individuals. Subsequently, we applied phylogenetic and morphologic indexes of diversity and distance between species to evaluate small mammal assemblage structures on the three scales. The results indicated a repulsion pattern near forest edges, showing that phylogenetically similar species coexisted less often than expected by chance. The strategies for niche differentiation might explain the phylogenetic repulsion observed at the edge. Phylogenetic and morphological clustering in the grassland and at the forest interior indicated the coexistence of closely related and ecologically similar species and individuals. Coexistence patterns were similar whether species‐trait values or individual values were used. At the landscape and regional scales, assemblages showed a predominant pattern of phylogenetic and morphological clustering. Environmental filters influenced the coexistence patterns at three scales, showing the importance of phylogenetically conserved ecological tolerances in enabling taxa co‐occurrence. Evidence of phylogenetic repulsion in one region indicated that other processes beyond environmental filtering are important for community assembly at broad scales. Finally, ecological interactions and environmental filtering seemed important at the local scale, while environmental filtering and historical colonization seemed important for community assembly at broader scales.  相似文献   

4.
Species distributions are often constrained by climatic tolerances that are ultimately determined by evolutionary history and/or adaptive capacity, but these factors have rarely been partitioned. Here, we experimentally determined two key climatic niche traits (desiccation and cold resistance) for 92–95 Drosophila species and assessed their importance for geographic distributions, while controlling for acclimation, phylogeny, and spatial autocorrelation. Employing an array of phylogenetic analyses, we documented moderate‐to‐strong phylogenetic signal in both desiccation and cold resistance. Desiccation and cold resistance were clearly linked to species distributions because significant associations between traits and climatic variables persisted even after controlling for phylogeny. We used different methods to untangle whether phylogenetic signal reflected phylogenetically related species adapted to similar environments or alternatively phylogenetic inertia. For desiccation resistance, weak phylogenetic inertia was detected; ancestral trait reconstruction, however, revealed a deep divergence that could be traced back to the genus level. Despite drosophilids’ high evolutionary potential related to short generation times and high population sizes, cold resistance was found to have a moderate‐to‐high level of phylogenetic inertia, suggesting that evolutionary responses are likely to be slow. Together these findings suggest species distributions are governed by evolutionarily conservative climate responses, with limited scope for rapid adaptive responses to future climate change.  相似文献   

5.
Species‐rich adaptive radiations typically diversify along several distinct ecological axes, each characterized by morphological, physiological, and behavioral adaptations. We test here whether different types of adaptive traits share similar patterns of evolution within a radiation by investigating patterns of evolution of morphological traits associated with microhabitat specialization and of physiological traits associated with thermal biology in Anolis lizards. Previous studies of anoles suggest that close relatives share the same “structural niche” (i.e., use the same types of perches) and are similar in body size and shape, but live in different “climatic niches” (i.e., use habitats with different insolation and temperature profiles). Because morphology is closely tied to structural niche and field active body temperatures are tied to climatic niches in Anolis, we expected phylogenetic analyses to show that morphology is more evolutionarily conservative than thermal physiology. In support of this hypothesis, we find (1) that thermal biology exhibits more divergence among recently diverged Anolis taxa than does morphology; and (2) diversification of thermal biology among all species often follows diversification in morphology. These conclusions are remarkably consistent with predictions made by anole biologists in the 1960s and 1970s.  相似文献   

6.
Aim Comparative evidence for phylogenetic niche conservatism – the tendency for lineages to retain their ancestral niches over long time scales – has so far been mixed, depending on spatial and taxonomic scale. We quantify and compare conservatism in the climatic factors defining range boundaries in extant continental mammals and amphibians in order to identify those factors that are most evolutionarily conserved, and thus hypothesized to have played a major role in determining the geographic distributions of many species. We also test whether amphibians show stronger signals of climatic niche conservatism, as expected from their greater physiological sensitivity and lower dispersal abilities. Location Global; continental land masses excluding Antarctica. Methods We used nearly complete global distributional databases to estimate the climatic niche conservatism in extant continental mammals and amphibians. We characterized the climatic niche of each species by using a suite of variables and separately investigate conservatism in each variable using both taxonomic and phylogenetic approaches. Finally, we explored the spatial, taxonomic and phylogenetic patterns in recent climatic niche evolution. Results Amphibians and mammals showed congruent patterns of conservatism in cold tolerance, with assemblages of escapee species (i.e. those escaping most from the climatic constraints of their ancestors) aggregated in the North Temperate Zone. Main conclusions The relative strength of climatic niche conservatism varies across the variables tested, but is strongest for cold tolerance in both mammals and amphibians. Despite the apparent conservatism in this variable, there is also a strong signal of recent evolutionary shifts in cold tolerance in assemblages inhabiting the North Temperate Zone. Our results thus indicate that distribution patterns of both taxa are influenced by both niche conservatism and niche evolution.  相似文献   

7.
Despite several decades of study in community ecology, the relative importance of the ecological processes that determine species co‐occurrence across spatial scales remains uncertain. Some of this uncertainty may be reduced by studying the scale dependency of community assembly in the light of environmental variation. Phylogenetic information and functional trait information are often used to provide potentially valuable insights into the drivers of community assembly. Here, we combined phylogenetic and trait‐based tests to gain insights into community processes at four spatial scales in a large stem‐mapped subtropical forest dynamics plot in central China. We found that all of the six leaf economic traits measured in this study had weak, but significant, phylogenetic signal. Nonrandom phylogenetic and trait‐based patterns associated with topographic variables indicate that deterministic processes tend to dominate community assembly in this plot. Specifically, we found that, on average, co‐occurring species were more phylogenetically and functionally similar than expected throughout the plot at most spatial scales and assemblages of less similar than expected species could only be found on finer spatial scales. In sum, our results suggest that the trait‐based effects on community assembly change with spatial scale in a predictable manner and the association of these patterns with topographic variables, indicates the importance of deterministic processes in community assembly relatively to random processes.  相似文献   

8.
Animal richness, community composition, and phylogenetic community structure (PCS) vary across the modern landscape. Animal communities vary from phylogenetically clustered (i.e. higher relatedness amongst co‐occurring species than is expected by chance) to phylogenetically even (i.e. co‐occurring taxa are more distantly related than expected by chance), which is explained by abiotic or climatic filtering and competitive exclusion, respectively. Under this model, the contribution of historical origination and extinction events to modern animal PCS remains relatively unknown. Because origination and extinction determine the make‐up of the terrestrial community, the study of historical changes in animal PCS is tantamount to understanding formation of modern communities. In the present study, we test the effects of macroevolution and climate changes on ‘hoofed mammals’ (i.e. perissodactyl and artiodactyl) PCS from the late Cenozoic of North America because they experience large, phylogenetically dispersed extinctions of browsing species and phylogenetically dispersed originations of grazing species associated with the evolution of grassland ecosystems during the late Miocene. We show that the loss of numerically dominant nonhypsodont (putatively browsing and mixed feeding) clades and phylogenetically dispersed origination of less speciose clades following the mid Miocene climatic optimum led to an increase in phylogenetic evenness at the regional scale that is well explained by global climate changes. Phylogenetic evenness and a reduced richness during the late Cenozoic may have facilitated reduced niche overlap among co‐occurring hoofed mammal species as global climates cooled. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 485–494.  相似文献   

9.
Understanding how the climatic niche of species evolved has been a topic of high interest in current theoretical and applied macroecological studies. However, little is known regarding how species traits might influence climatic niche evolution. Here, we evaluated patterns of climatic niche evolution in turtles (tortoises and freshwater turtles) and whether species habitat (terrestrial or aquatic) influences these patterns. We used phylogenetic, climatic and distribution data for 261 species to estimate their climatic niches. Then, we compared whether niche overlap between sister species was higher than between random species pairs and evaluated whether niche optima and rates varied between aquatic and terrestrial species. Sister species had higher values of niche overlap than random species pairs, suggesting phylogenetic climatic niche conservatism in turtles. The climatic niche evolution of the group followed an Ornstein–Uhlenbeck model with different optimum values for aquatic and terrestrial species, but we did not find consistent evidence of differences in their rates of climatic niche evolution. We conclude that phylogenetic climatic niche conservatism occurs among turtle species. Furthermore, terrestrial and aquatic species occupy different climatic niches but these seem to have evolved at similar evolutionary rates, reinforcing the importance of habitat in understanding species climatic niches and their evolution.  相似文献   

10.
Losos JB 《Ecology letters》2008,11(10):995-1003
Ecologists are increasingly adopting an evolutionary perspective, and in recent years, the idea that closely related species are ecologically similar has become widespread. In this regard, phylogenetic signal must be distinguished from phylogenetic niche conservatism. Phylogenetic niche conservatism results when closely related species are more ecologically similar that would be expected based on their phylogenetic relationships; its occurrence suggests that some process is constraining divergence among closely related species. In contrast, phylogenetic signal refers to the situation in which ecological similarity between species is related to phylogenetic relatedness; this is the expected outcome of Brownian motion divergence and thus is necessary, but not sufficient, evidence for the existence of phylogenetic niche conservatism. Although many workers consider phylogenetic niche conservatism to be common, a review of case studies indicates that ecological and phylogenetic similarities often are not related. Consequently, ecologists should not assume that phylogenetic niche conservatism exists, but rather should empirically examine the extent to which it occurs.  相似文献   

11.
Studies of realized niche shifts in alien species typically ignore the potential effects of intraspecific niche variation and different invaded‐range environments on niche lability. We incorporate our detailed knowledge of the native‐range source populations and global introduction history of the delicate skink Lampropholis delicata to examine intraspecific variation in realized niche expansion and unfilling, and investigate how alternative niche modelling approaches are affected by that variation. We analyzed the realized niche dynamics of L. delicata using an ordination method, ecological niche models (ENMs), and occurrence records from 1) Australia (native range), 2) New Zealand, 3) Hawaii, 4) the two distinct native‐range clades that were the sources for the New Zealand and Hawaii introductions, and 5) the species’ global range (including Lord Howe Island, Australia). We found a gradient of realized niche change across the invaded ranges of L. delicata: niche stasis on Lord Howe Island, niche unfilling in New Zealand (16%), and niche unfilling (87%) and expansion (14%) in Hawaii. ENMs fitted to native‐range data generally identified suitable climatic conditions at sites where the species has established non‐native populations, whereas ENMs based on native‐range source clades and non‐native populations had lower spatial transferability. Our results suggest that the extent to which realized niches are maintained during invasion does not depend on species‐level traits. When realized niche shifts are predominately due to niche unfilling, fully capturing species’ responses along climatic gradients by basing ENMs on native distributions may be more important for accurate invasion forecasts than incorporating phylogenetic differentiation, or integrating niche changes in the invaded range.  相似文献   

12.
Macroecology, global change and the shadow of forgotten ancestors   总被引:1,自引:1,他引:0  
Many recent studies have evaluated how global changes will affect biodiversity, and have mainly focused on how to develop conservation strategies to avoid, or at least minimize, extinctions due to shifts in suitable habitats for the species. However, these complex potential responses might be in part structured in phylogeny, because of the macroecological traits underlying them. In this comment, we review recent analytical developments in phylogenetic comparative methods that can be used to understand patterns of trait changes under environmental change. We focus on a partial regression approach that allows for partitioning the variance of traits into a fraction attributed to a pure ecological component, a fraction attributed to phylogenetically structured environmental variation (niche conservatism) and a fraction that may be attributed to phylogenetic effects only. We then develop a novel interpretation for linking these components for multiple traits with potential responses of species to global environmental change (i.e. adaptation, range shifts or extinctions). We hope that this interpretation will stimulate further research linking evolutionary components of multiple traits with broad-scale environmental changes.  相似文献   

13.
Body size is evolutionarily constrained, but the influence of phylogenetic relationships on global body size (i.e. body mass) gradients is unexplored. We quantify and map the family‐level phylogenetic and non‐phylogenetic structure of the global gradient of birds, evaluating the extent to which it is influenced by phylogenetic inertia in contrast to heat conservation, resource availability, starvation resistance, niche conservatism, or interspecific competition. Phylogenetic eigenvector regression (PVR) partitioned the global bird body size gradient into phylogenetically autocorrelated (PA) and phylogenetically independent (PI) components. Simple, piecewise, and partial regressions were used to investigate associations between the PA and PI components of body size and environmental correlates, and to quantify independent and overlapping contributions of environment, phylogenetic autocorrelation, and species richness to the body size gradient. Two‐thirds of the geographic variation in bird body size can be explained by phylogenetic relationships at the family level. The global variation in body size, independent of phylogenetic relationships, is most strongly associated with net primary productivity, which is consistent with ‘starvation resistance’. However, the New and Old worlds have very different patterns. We found no independent association of species richness with body size. Despite major unresolved regional differences, deep phylogenetic relationships, heat conservation, and starvation resistance probably operate in concert in shaping the global bird body size gradient in different parts of the world. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

14.
Aim Islands have often been used as model systems in community ecology. The incorporation of information on phylogenetic relatedness of species in studies of island assemblage structure is still uncommon, but could provide valuable insights into the processes of island community assembly. We propose six models of island community assembly that make different predictions about the associations between co‐occurrences of species pairs on islands, phylogenetic relatedness and ecological similarity. We then test these models using data on mammals of Southeast Asian islands. Location Two hundred and forty islands of the Sundaland region of Southeast Asia. Methods We quantified the co‐occurrence of species pairs on islands, and identified pairs that co‐occur more frequently (positive co‐occurrence) or less frequently (negative co‐occurrence) than expected under null models. We then examined the distributions of these significantly deviating pairs with respect to phylogenetic relatedness and ecological differentiation, and compared these patterns with those predicted by the six community assembly models. We used permutation regression to test whether co‐occurrence patterns are predicted by relatedness, body size difference or difference in diet quality. Separate co‐occurrence matrices were analysed in this way for seven mammal families and four smaller subsets of the islands of Sundaland. Results In many matrices, average numbers of negative co‐occurrences were higher than expected under null models. This is consistent with assemblage structuring by competition, but may also result from low geographic overlap of species pairs, which contributes to negative co‐occurrences at the archipelago‐wide level. Distributions of species pairs within plots of phylogenetic distance × ecological differentiation were consistent with competition, habitat filtering or within‐island speciation models, depending on the taxon. Regressions indicated that co‐occurrence was more likely among closely related species pairs within the Viverridae and Sciuridae, but in most matrices phylogenetic distance was unrelated to co‐occurrence. Main conclusions Simple deterministic models linking co‐occurrence with phylogeny and ecology are a useful framework for interpreting distributions and assemblage structure of island species. However, island assemblages in Sundaland have probably been shaped by a complex idiosyncratic set of interacting ecological and evolutionary processes, limiting the predictive power of such models.  相似文献   

15.
A major goal of evolutionary biology and ecology is to understand why species richness varies among clades. Previous studies have suggested that variation in richness among clades might be related to variation in rates of morphological evolution among clades (e.g., body size and shape). Other studies have suggested that richness patterns might be related to variation in rates of climatic‐niche evolution. However, few studies, if any, have tested the relative importance of these variables in explaining patterns of richness among clades. Here, we test their relative importance among major clades of Plethodontidae, the most species‐rich family of salamanders. Earlier studies have suggested that climatic‐niche evolution explains patterns of diversification among plethodontid clades, whereas rates of morphological evolution do not. A subsequent study stated that rates of morphological evolution instead explained patterns of species richness among plethodontid clades (along with “ecological limits” on richness of clades, leading to saturation of clades with species, given limited resources). However, they did not consider climatic‐niche evolution. Using phylogenetic multiple regression, we show that rates of climatic‐niche evolution explain most variation in richness among plethodontid clades, whereas rates of morphological evolution do not. We find little evidence that ecological limits explain patterns of richness among plethodontid clades. We also test whether rates of morphological and climatic‐niche evolution are correlated, and find that they are not. Overall, our results help explain richness patterns in a major amphibian group and provide possibly the first test of the relative importance of climatic niches and morphological evolution in explaining diversity patterns.  相似文献   

16.
To compare community assemblage patterns in tropical northeastern and subtropical central eastern Australia across selected gradients and scales, we tested the relationship of species traits with phylogenetic structure, and niche breadth. We considered phylogenetic relationships across current‐day species in assemblages in relation to rain forest species pool sizes, and trait values along gradients including elevation and latitude. Trait values were quantified across scales for seed size, leaf area, wood density and maximum height at maturity for 1137 species and 596 assemblages using trait gradient analysis (TGA). Local assemblages of subtropical species had narrower trait ranges, and higher niche breadth values than corresponding assemblages of tropical species. Leaf size and seed size increased at low latitudes, and community phylogenetic structure was most strongly correlated with seed traits in the subtropics, reflecting dispersal and re‐colonization processes. Elevation accounted for little of the variance in community phylogenetic structure or trait variation across local and regional scales. Stable moist forest areas retained many species from ancestral rain forest lineages across a range of temporally conserved habitats; species within assemblages were less related; and rain forest assemblages had higher functional diversity, but lower niche breadth. This suggests that on average, assemblages of species in stable areas had greater trait variation and narrower distributions. Historic and recent rain forest contraction and re‐expansion can result in recolonized areas that are dominated by species that are more related (phylogenetically) than by chance, have smaller, widely dispersed seeds, and greater niche breadth (broader distributions).  相似文献   

17.
Aim Despite the importance of the niche concept in ecological and evolutionary theory, there are still many discussions about its definition and operational evaluation, especially when dealing with niche divergence and conservatism in an explicit phylogenetic context. Here we evaluate patterns of niche evolution in 67 New World Carnivora species, measured using Hellinger distances based on MAXENT models of species distribution. We show how inferences on niche conservatism or divergence depend on the way phylogenetic patterns are analysed using matrix comparison techniques. Innovation Initially we used the simplest approach of Mantel tests to compare Hellinger distances ( N ) derived from MAXENT and phylogenetic distances ( P ) among species. Then we extended the Mantel test to generate a multivariate correlogram, in which phylogenetic patterns are analysed at multiple levels in the phylogeny and can reveal nonlinearity in the relationship between divergence and time. Finally, we proposed a new approach to generate ‘local’ (or ‘specific’) leverages of components for Mantel correlation, evaluating the non‐stationarity in the relationship between N and P for each species. This new approach was used to show if some lineages are more prone to niche shift or conservatism than others. Main conclusions Standard Mantel tests indicated a poor correspondence between N and P matrices, discarding the idea of niche conservatism for Carnivora, but the correlogram supports that closely related species tend to be more similar than expected by chance. Moreover, the variance among Hellinger distances between pairs of closely phylogenetically related species is much larger than for the entire clade. Phylogenetic non‐stationarity analysis shows that in some Carnivora families the niche tends to divergence (Mustelidae and Canidae), whereas in others it tends to conservatism (Procyonidae and Mustelidae) at short phylogenetic distances. Our analyses clearly show that misleading results may appear if niche divergence is analysed only by simple matrix correlations not taking into account complex patterns of phylogenetic nonlinearity and non‐stationarity.  相似文献   

18.
The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage‐specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co‐occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages.  相似文献   

19.

Question

Global‐scale forest censuses provide an opportunity to understand diversification processes in woody plant communities. Based on the climatic or geographic filtering hypotheses associated with tropical niche conservatism and dispersal limitation, we analysed phylogenetic community structures across a wide range of biomes and evaluated to what extent region‐specific processes have influenced large‐scale diversity patterns of tree species communities across latitude or continent.

Location

Global.

Methods

We generated a data set of species abundances for 21,379 angiosperm woody plants in 843 plots worldwide. We calculated net relatedness index (NRI) for each plot, based on a single global species pool and regional species pools, and phylogenetic β‐diversity (PBD) between plots. Then, we explored the correlations of NRI with climatic and geographic variables, and clarified phylogenetic dissimilarity along geographic and climatic differences. We also compared these patterns for South America, Africa, the Indo‐Pacific, Australia, the Nearctic, Western Palearctic and Eastern Palearctic.

Results

NRI based on a global‐scale species pool was negatively associated with precipitation and positively associated with Quaternary temperature change. PBD was positively associated with geographic distance and precipitation difference between plots across tropical and extratropical biomes. Moreover, phylogenetic dissimilarity was smaller in extratropical regions than in regions including the tropics, although temperate forests of the Eastern Palearctic showed a greater dissimilarity within extratropical regions.

Conclusions

Our findings support predictions of the climatic and geographic filtering hypotheses. Climatic filtering (climatic harshness and paleoclimatic change) relative to tropical niche conservatism played a role in sorting species from the global species pool and shaped the large‐scale diversity patterns, such as the latitudinal gradient observed across continents. Geographic filtering associated with dispersal limitation substantially contributed to regional divergence of tropical/extratropical biomes among continents. Old, long‐standing geographic barriers and recent climatic events differently influenced evolutionary diversification of angiosperm tree communities in tropical and extratropical biomes.  相似文献   

20.
Understanding the factors driving assembling structure of ecological communities remains a fundamental problem in ecology, especially when focusing on ecological and evolutionary relatedness among species rather than on their taxonomic identity. It remains critical though to separate the patterns and drivers of phylogenetic and functional structures, because traits are phylogenetically constrained, but phylogeny alone does not fully reflect trait variability among species. Using birds from the Brazilian dry forest as a study case, we employed two different approaches to decompose functional structure into its components that are shared and non‐shared with the phylogenetic structure. We investigated the spatial pattern and environmental hypotheses for these phylogenetically constrained and unconstrained aspects of functional structure, including climate‐induced physiological constraints, historical climatic stability, resource availability and habitat partitioning. We found only partial congruence between the two methods of structure decomposition. Still, we found a differential effect of factors on specific components of functional structure of bird assemblages. While climate affects phylogenetically constrained traits through endurance, habitat partitioning (especially forest cover) affects the functional structure that is independent of phylogeny. With this strategy, we were able to decompose the patterns and drivers of the functional structure of birds along a semiarid gradient and showed that the decomposition of the functional structure into its phylogenetic and non‐phylogenetic counterparts can offer a more complete portrait of the assembling rules in ecological communities. We claim for a further development and use of this sort of strategy to investigate assembling rules in ecological communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号