首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The consequences of host–parasite coevolution are highly contingent on the qualitative coevolutionary dynamics: whether selection fluctuates (fluctuating selection dynamic; FSD), or is directional towards increasing infectivity/resistance (arms race dynamic; ARD). Both genetics and ecology can play an important role in determining whether coevolution follows FSD or ARD, but the ecological conditions under which FSD shifts to ARD, and vice versa, are not well understood. The degree of population mixing is thought to increase host exposure to parasites, hence selecting for greater resistance and infectivity ranges, and we hypothesize this promotes ARD. We tested this by coevolving bacteria and viruses in soil microcosms and found that population mixing shifted bacteria–virus coevolution from FSD to ARD. A simple theoretical model produced qualitatively similar results, showing that mechanisms that increase host exposure to parasites tend to push dynamics towards ARD. The shift from FSD to ARD with increased population mixing may help to explain variation in coevolutionary dynamics between different host–parasite systems, and more specifically the observed discrepancies between laboratory and field bacteria–virus coevolutionary studies.  相似文献   

2.
Host-parasite coevolution is a key driver of biological diversity and parasite virulence, but its effects depend on the nature of coevolutionary dynamics over time. We used phenotypic data from coevolving populations of the bacterium Pseudomonas fluorescens SBW25 and parasitic phage SBW25Φ2, and genetic data from the phage tail fibre gene (implicated in infectivity evolution) to show that arms race dynamics, typical of short-term studies, decelerate over time. We attribute this effect to increasing costs of generalism for phages and bacteria with increasing infectivity and resistance. By contrast, fluctuating selection on individual host and parasite genotypes was maintained over time, becoming increasingly important for the phenotypic properties of parasite and host populations. Given that costs of generalism are reported for many other systems, arms races may generally give way to fluctuating selection in antagonistically coevolving populations.  相似文献   

3.
Coevolution—reciprocal evolutionary change among interacting species driven by natural selection—is thought to be an important force in shaping biodiversity. This ongoing process takes place within tangled networks of species interactions. In microbial communities, evolutionary change between hosts and parasites occurs at the same time scale as ecological change. Yet, we still lack experimental evidence of the role of coevolution in driving changes in the structure of such species interaction networks. Filling this gap is important because network structure influences community persistence through indirect effects. Here, we quantified experimentally to what extent coevolutionary dynamics lead to contrasting patterns in the architecture of bacteria–phage infection networks. Specifically, we look at the tendency of these networks to be organized in a nested pattern by which the more specialist phages tend to infect only a proper subset of those bacteria infected by the most generalist phages. We found that interactions between coevolving bacteria and phages become less nested over time under fluctuating dynamics, and more nested under arms race dynamics. Moreover, when coevolution results in high average infectivity, phages and bacteria differ more from each other over time under arms race dynamics than under fluctuating dynamics. The tradeoff between the fitness benefits of evolving resistance/infectivity traits and the costs of maintaining them might explain these differences in network structure. Our study shows that the interaction pattern between bacteria and phages at the community level depends on the way coevolution unfolds.  相似文献   

4.
Genetically specific interactions between hosts and parasites can lead to coevolutionary fluctuations in their genotype frequencies over time. Such fluctuating selection dynamics are, however, expected to occur only under specific circumstances (e.g., high fitness costs of infection to the hosts). The outcomes of host–parasite interactions are typically affected by environmental/ecological factors, which could modify coevolutionary dynamics. For instance, individual hosts are often infected with more than one parasite species and interactions between them can alter host and parasite performance. We examined the potential effects of coinfections by genetically specific (i.e., coevolving) and nonspecific (i.e., generalist) parasite species on fluctuating selection dynamics using numerical simulations. We modeled coevolution (a) when hosts are exposed to a single parasite species that must genetically match the host to infect, (b) when hosts are also exposed to a generalist parasite that increases fitness costs to the hosts, and (c) when coinfecting parasites compete for the shared host resources. Our results show that coinfections can enhance fluctuating selection dynamics when they increase fitness costs to the hosts. Under resource competition, coinfections can either enhance or suppress fluctuating selection dynamics, depending on the characteristics (i.e., fecundity, fitness costs induced to the hosts) of the interacting parasites.  相似文献   

5.
Host-parasite coevolution is believed to influence a range of evolutionary and ecological processes, including population dynamics, evolution of diversity, sexual reproduction and parasite virulence. The impact of coevolution on these processes will depend on its rate, which is likely to be affected by the energy flowing through an ecosystem, or productivity. We addressed how productivity affected rates of coevolution during a coevolutionary arms race between experimental populations of bacteria and their parasitic viruses (phages). As hypothesized, the rate of coevolution between bacterial resistance and phage infectivity increased with increased productivity. This relationship can in part be explained by reduced competitiveness of resistant bacteria in low compared with high productivity environments, leading to weaker selection for resistance in the former. The data further suggest that variation in productivity can generate variation in selection for resistance across landscapes, a result that is crucial to the geographic mosaic theory of coevolution.  相似文献   

6.
The impact of community complexity on pairwise coevolutionary dynamics is theoretically dependent on the extent to which species evolve generalised or specialised adaptations to the multiple species they interact with. Here, we show that the bacteria Pseudomonas fluorescens diversifies into defence specialists, when coevolved simultaneously with a virus and a predatory protist, as a result of fitness trade‐offs between defences against the two enemies. Strong bacteria–virus pairwise coevolution persisted, despite strong protist‐imposed selection. However, the arms race dynamic (escalation of host resistance and parasite infectivity ranges) associated with bacteria–virus coevolution broke down to a greater extent in the presence of the protist, presumably through the elevated genetic and demographic costs of increased bacteria resistance ranges. These findings suggest that strong pairwise coevolution can persist even in complex communities, when conflicting selection leads to evolutionary diversification of different defence strategies.  相似文献   

7.
Host–parasite interactions are often characterized by large fluctuations in host population size, and we investigated how such host bottlenecks affected coevolution between a bacterium and a virus. Previous theory suggests that host bottlenecks should provide parasites with an evolutionary advantage, but instead we found that phages were rapidly driven to extinction when coevolving with hosts exposed to large genetic bottlenecks. This was caused by the stochastic loss of sensitive bacteria, which are required for phage persistence and infectivity evolution. Our findings emphasize the importance of feedbacks between ecological and coevolutionary dynamics, and how this feedback can qualitatively alter coevolutionary dynamics.  相似文献   

8.
Lennon JT  Martiny JB 《Ecology letters》2008,11(11):1178-1188
Predation and parasitism often regulate population dynamics, community interactions, and ecosystem functioning. The strength of these top-down pressures is variable, however, and may be influenced by both ecological and evolutionary processes. We conducted a chemostat experiment to assess the direct and indirect effects of viruses on a marine microbial food web comprised of an autotrophic host (Synechococcus) and non-target heterotrophic bacteria. Viruses dramatically altered the host population dynamics, which in turn influenced phosphorus resource availability and the stoichiometric allocation of nutrients into microbial biomass. These virus effects diminished with time, but could not be attributed to changes in the abundance or composition of heterotrophic bacteria. Instead, attenuation of the virus effects coincided with the detection of resistant host phenotypes, suggesting that rapid evolution buffered the effect of viruses on nutrient cycling. Our results demonstrate that evolutionary processes are important for community dynamics and ecosystem processes on ecologically relevant time scales.  相似文献   

9.
Antagonistic coevolution between hosts and parasites is a key process in the genesis and maintenance of biological diversity. Whereas coevolutionary dynamics show distinct patterns under favourable environmental conditions, the effects of more realistic, variable conditions are largely unknown. We investigated the impact of a fluctuating environment on antagonistic coevolution in experimental microcosms of Pseudomonas fluorescens SBW25 and lytic phage SBWΦ2. High‐frequency temperature fluctuations caused no deviations from typical coevolutionary arms race dynamics. However, coevolution was stalled during periods of high temperature under intermediate‐ and low‐frequency fluctuations, generating temporary coevolutionary cold spots. Temperature variation affected population density, providing evidence that eco‐evolutionary feedbacks act through variable bacteria–phage encounter rates. Our study shows that environmental fluctuations can drive antagonistic species interactions into and out of coevolutionary cold and hot spots. Whether coevolution persists or stalls depends on the frequency of change and the environmental optima of both interacting players.  相似文献   

10.
Mutator bacteria are frequently found in natural populations of bacteria and although coevolution with parasitic viruses (phages) is thought to be one reason for their persistence, it remains unclear how the presence of mutators affects coevolutionary dynamics. We hypothesized that phages must themselves adapt more rapidly or go extinct, in the face of rapidly evolving mutator bacteria. We compared the coevolutionary dynamics of wild‐type Pseudomonas fluorescens SBW25 with a lytic phage to the dynamics of an isogenic mutator of P. fluorescens SBW25 together with the same phage. At the beginning of the experiment both wild‐type bacteria and mutator bacteria coevolved with phages. However, mutators rapidly evolved higher levels of sympatric resistance to phages. The phages were unable to “keep‐up” with the mutator bacteria, and these rates of coevolution declined to less than the rates of coevolution between the phages and wild‐type bacteria. By the end of the experiment, the sympatric resistance of the mutator bacteria was not significantly different to the sympatric resistance of the wild‐type bacteria. This suggests that the importance of mutators in the coevolutionary interactions with a particular phage population is likely to be short‐lived. More generally, the results demonstrate that coevolving enemies may escape from Red‐Queen dynamics.  相似文献   

11.
Resource availability can affect the coevolutionary dynamics between host and parasites, shaping communities and hence ecosystem function. A key finding from theoretical and in vitro studies is that host resistance evolves to greater levels with increased resources, but the relevance to natural communities is less clear. We took two complementary approaches to investigate the effect of resource availability on the evolution of bacterial resistance to phages in soil. First, we measured the resistance and infectivity of natural communities of soil bacteria and phage in the presence and absence of nutrient-providing plants. Second, we followed the real-time coevolution between defined bacteria and phage populations with resource availability manipulated by the addition or not of an artificial plant root exudate. Increased resource availability resulted in increases in bacterial resistance to phages, but without a concomitant increase in phage infectivity. These results suggest that phages may have a reduced impact on the control of bacterial densities and community composition in stable, high resource environments.  相似文献   

12.
The interplay between coevolutionary and population or community dynamics is currently the focus of much empirical and theoretical consideration. Here, we develop a simulation model to study the coevolutionary and population dynamics of a hypothetical host–parasitoid interaction. In the model, host resistance and parasitoid virulence are allowed to coevolve. We investigate how trade-offs associated with these traits modify the system's coevolutionary and population dynamics. The most important influence on these dynamics comes from the incorporation of density-dependent costs of resistance ability. We find three main outcomes. First, if the costs of resistance are high, then one or both of the players go extinct. Second, when the costs of resistance are intermediate to low, cycling population and coevolutionary dynamics are found, with slower evolutionary changes observed when the costs of virulence are also low. Third, when the costs associated with resistance and virulence are both high, the hosts trade-off resistance against fecundity and invest little in resistance. However, the parasitoids continue to invest in virulence, leading to stable host and parasitoid population sizes. These results support the hypothesis that costs associated with resistance and virulence will maintain the heritable variation in these traits found in natural populations and that the nature of these trade-offs will greatly influence the population dynamics of the interacting species. Received: December 20, 1999 / Accepted: July 17, 2000  相似文献   

13.
Spatial abiotic heterogeneity can result in divergent selection, hence might increase the magnitude of host-parasite local adaptation (the mean difference in fitness of sympatric vs. allopatric host-parasite combinations). We explicitly tested this hypothesis by measuring local adaptation in experimentally coevolved populations of bacteria and viruses evolved in the same or different nutrient media. Consistent with previous work, we found that mean levels of evolved phage infectivity and bacteria resistance varied with nutrient concentration, with maximal levels at nutrient concentrations that supported the greatest densities of bacteria. Despite this variation in evolved mean infectivity and resistance between treatments, we found that parasite local adaptation was greatly increased when measured between populations evolved in different, compared with the same, media. This pattern is likely to have resulted from different media imposing divergent selection on bacterial hosts, and phages in turn adapting to their local hosts. These results demonstrate that the abiotic environment can play a strong and predictable role in driving patterns of local adaptation.  相似文献   

14.
Fitness costs associated with resistance or virulence genes are thought to play a key role in determining the dynamics of gene-for-gene (GFG) host-parasite coevolution. However, the nature of interactions between fitness effects of multiple resistance or virulence genes (epistasis) has received less attention. To examine effects of the functional form of epistasis on the dynamics of GFG host-parasite coevolution we modified a classic multilocus GFG model framework. We show that the type of epistasis between virulence genes largely determines coevolutionary dynamics, and that coevolutionary fluctuations are more likely with acceleratingly costly (negative) than with linear or deceleratingly costly (positive) epistasis. Our results demonstrate that the specific forms of interaction between multiple resistance or virulence genes are a crucial determinant of host-parasite coevolutionary dynamics.  相似文献   

15.
Sexual conflicts are ubiquitous in nature and are expected to lead to an antagonistic coevolution between the sexes. This coevolutionary process is driven by selection on sexually antagonistic traits that can either be directional or fluctuating. In this study, we used dormant cysts of Artemia franciscana, collected in the same population in three different years over a 23-year period (corresponding to ~160 generations in this system), to investigate male-female coevolution in natural conditions over time. We performed a cross experiment study where reproduction of females mated to males from the past, present, or future was monitored until death. In agreement with a model of "fluctuating selection," we found that females survived better and had longer interbrood intervals when mated with their contemporary males compared to when mated with males from the future or the past. However, female weekly and lifetime reproductive successes displayed no differences between contemporary and noncontemporary matings. Finally, the coevolutionary patterns ("arms race dynamics" or "fluctuating selection dynamics") possibly acting on female relative fitness could not be discriminated. This study is the first direct demonstration that the process of male-female coevolution, previously revealed by experimental evolution in laboratory artificial conditions, can occur in nature on a short evolutionary time scale.  相似文献   

16.
Variation in host resistance and in the ability of pathogens to infect and grow (i.e. pathogenicity) is important as it provides the raw material for antagonistic (co)evolution and therefore underlies risks of disease spread, disease evolution and host shifts. Moreover, the distribution of this variation in space and time may inform us about the mode of coevolutionary selection (arms race vs. fluctuating selection dynamics) and the relative roles of G × G interactions, gene flow, selection and genetic drift in shaping coevolutionary processes. Although variation in host resistance has recently been reviewed, little is known about overall patterns in the frequency and scale of variation in pathogenicity, particularly in natural systems. Using 48 studies from 30 distinct host–pathogen systems, this review demonstrates that variation in pathogenicity is ubiquitous across multiple spatial and temporal scales. Quantitative analysis of a subset of extensively studied plant–pathogen systems shows that the magnitude of within‐population variation in pathogenicity is large relative to among‐population variation and that the distribution of pathogenicity partly mirrors the distribution of host resistance. At least part of the variation in pathogenicity found at a given spatial scale is adaptive, as evidenced by studies that have examined local adaptation at scales ranging from single hosts through metapopulations to entire continents and – to a lesser extent – by comparisons of pathogenicity with neutral genetic variation. Together, these results support coevolutionary selection through fluctuating selection dynamics. We end by outlining several promising directions for future research.  相似文献   

17.
As hosts acquire resistance to viruses, viruses must overcome that resistance to re-establish infectivity, or go extinct. Despite the significant hurdles associated with adapting to a resistant host, viruses are evolutionarily successful and maintain stable coevolutionary relationships with their hosts. To investigate the factors underlying how pathogens adapt to their hosts, we performed a deep mutational scan of the region of the λ tail fiber tip protein that mediates contact with the receptor on λ’s host, Escherichia coli. Phages harboring amino acid substitutions were subjected to selection for infectivity on wild type E. coli, revealing a highly restrictive fitness landscape, in which most substitutions completely abrogate function. A subset of positions that are tolerant of mutation in this assay, but diverse over evolutionary time, are associated with host range expansion. Imposing selection for phage infectivity on three λ-resistant hosts, each harboring a different missense mutation in the λ receptor, reveals hundreds of adaptive variants in λ. We distinguish λ variants that confer promiscuity, a general ability to overcome host resistance, from those that drive host-specific infectivity. Both processes may be important in driving adaptation to a novel host.Subject terms: Bacteriophages, Molecular evolution, Viral genetics  相似文献   

18.
Antagonistic coevolution is a critical force driving the evolution of diversity, yet the selective processes underpinning reciprocal adaptive changes in nature are not well understood. Local adaptation studies demonstrate partner impacts on fitness and adaptive change, but do not directly expose genetic processes predicted by theory. Specifically, we have little knowledge of the relative importance of fluctuating selection vs. arms-race dynamics in maintaining polymorphism in natural systems where metapopulation processes predominate. We conducted cross-year epidemiological, infection and genetic studies of multiple wild host and pathogen populations in the Linum-Melampsora association. We observed asynchronous phenotypic fluctuations in resistance and infectivity among demes. Importantly, changes in allelic frequencies at pathogen infectivity loci, and in host recognition of these genetic variants, correlated with disease prevalence during natural epidemics. These data strongly support reciprocal coevolution maintaining balanced resistance and infectivity polymorphisms, and highlight the importance of characterising spatial and temporal dynamics in antagonistic interactions.  相似文献   

19.
Mating decisions usually involve conflict of interests between sexes. Accordingly, males benefit from increased number of matings, whereas costs of mating favour a lower mating rate for females. The resulting sexual conflict underlies the coevolution of male traits that affect male mating success ('persistence') and female traits that affect female mating patterns ('resistance'). Theoretical studies on the coevolutionary dynamics of male persistence and female resistance assumed that costs of mating and, consequently, the optimal female mating rate are evolutionarily constant. Costs of mating, however, are often caused by male 'persistence' traits that determine mating success. Here, we present a model where the magnitude of costs of mating depend on, and evolve with, male persistence. We find that allowing costs of mating to depend on male persistence results in qualitatively different coevolutionary dynamics. Specifically, we find that male traits such as penis spikes that harm females are not predicted to exhibit runaway selection with female resistance, in contrast to previous theory that predicts indefinite escalation. We argue that it is essential to determine when and to what extent costs of mating are caused by male persistence in order to understand and accurately predict coevolutionary dynamics of traits involved in mating decisions.  相似文献   

20.
Host-parasite coevolution is often described as a process of reciprocal adaptation and counter adaptation, driven by frequency-dependent selection. This requires that different parasite genotypes perform differently on different host genotypes. Such genotype-by-genotype interactions arise if adaptation to one host (or parasite) genotype reduces performance on others. These direct costs of adaptation can maintain genetic polymorphism and generate geographic patterns of local host or parasite adaptation. Fixation of all-resistant (or all-infective) genotypes is further prevented if adaptation trades off with other host (or parasite) life-history traits. For the host, such indirect costs of resistance refer to reduced fitness of resistant genotypes in the absence of parasites. We studied (co)evolution in experimental microcosms of several clones of the freshwater protozoan Paramecium caudatum, infected with the bacterial parasite Holospora undulata. After two and a half years of culture, inoculation of evolved and naive (never exposed to the parasite) hosts with evolved and founder parasites revealed an increase in host resistance, but not in parasite infectivity. A cross-infection experiment showed significant host clone-by-parasite isolate interactions, and evolved hosts tended to be more resistant to their own (local) parasites than to parasites from other hosts. Compared to naive clones, evolved host clones had lower division rates in the absence of the parasite. Thus, our study indicates de novo evolution of host resistance, associated with both direct and indirect costs. This illustrates how interactions with parasites can lead to the genetic divergence of initially identical populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号