首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Natural products for cancer chemotherapy   总被引:1,自引:0,他引:1  
For over 40 years, natural products have served us well in combating cancer. The main sources of these successful compounds are microbes and plants from the terrestrial and marine environments. The microbes serve as a major source of natural products with anti‐tumour activity. A number of these products were first discovered as antibiotics. Another major contribution comes from plant alkaloids, taxoids and podophyllotoxins. A vast array of biological metabolites can be obtained from the marine world, which can be used for effective cancer treatment. The search for novel drugs is still a priority goal for cancer therapy, due to the rapid development of resistance to chemotherapeutic drugs. In addition, the high toxicity usually associated with some cancer chemotherapy drugs and their undesirable side‐effects increase the demand for novel anti‐tumour drugs active against untreatable tumours, with fewer side‐effects and/or with greater therapeutic efficiency. This review points out those technologies needed to produce the anti‐tumour compounds of the future.  相似文献   

2.
Numerous molecular players in the process of tumour angiogenesis have been shown to offer potential for therapeutic targeting. Initially denoted to be involved in malignant transformation and tumour progression, the insulin‐like growth factor (IGF) signalling axis has been subject to therapeutic interference, albeit with limited clinical success. More recently, IGFs and their receptors have received attention for their contribution to tumour angiogenesis, which offers novel therapeutic opportunities. Here we review the contribution of this signalling axis to tumour angiogenesis, the mechanisms of resistance to therapy and the interplay with other pro‐angiogenic pathways, to offer insight in the renewed interest in the application of IGF axis targeting agents in anti‐cancer combination therapies.  相似文献   

3.
Plant lectins, a group of highly diverse carbohydrate‐binding proteins of non‐immune origin, are ubiquitously distributed through a variety of plant species, and have recently drawn rising attention due to their remarkable ability to kill tumour cells using mechanisms implicated in autophagy. In this review, we provide a brief outline of structures of some representative plant lectins such as concanavalin A, Polygonatum cyrtonema lectin and mistletoe lectins. These can target autophagy by modulating BNIP‐3, ROS‐p38‐p53, Ras‐Raf and PI3KCI‐Akt pathways, as well as Beclin‐1, in many types of cancer cells. In addition, we further discuss how plant lectins are able to kill cancer cells by modulating autophagic death, for therapeutic purposes. Together, these findings provide a comprehensive perspective concerning plant lectins as promising new anti‐tumour drugs, with respect to autophagic cell death in future cancer therapeutics.  相似文献   

4.
Ubiquitously distributed in different plant species, plant lectins are highly diverse carbohydrate‐binding proteins of non‐immune origin. They have interesting pharmacological activities and currently are of great interest to thousands of people working on biomedical research in cancer‐related problems. It has been widely accepted that plant lectins affect both apoptosis and autophagy by modulating representative signalling pathways involved in Bcl‐2 family, caspase family, p53, PI3K/Akt, ERK, BNIP3, Ras‐Raf and ATG families, in cancer. Plant lectins may have a role as potential new anti‐tumour agents in cancer drug discovery. Thus, here we summarize these findings on pathway‐ involved plant lectins, to provide a comprehensive perspective for further elucidating their potential role as novel anti‐cancer drugs, with respect to both apoptosis and autophagy in cancer pathogenesis, and future therapy.  相似文献   

5.
Tumour repopulation is recognized as a crucial event in tumour relapse where therapy‐sensitive dying cancer cells influence the tumour microenvironment to sustain therapy‐resistant cancer cell growth. Recent studies highlight the role of the oncometabolites succinate, fumarate, and 2‐hydroxyglutarate in the aggressiveness of cancer cells and in the worsening of the patient's clinical outcome. These oncometabolites can be produced and secreted by cancer and/or surrounding cells, modifying the tumour microenvironment and sustaining an invasive neoplastic phenotype. In this review, we report recent findings concerning the role in cancer development of succinate, fumarate, and 2‐hydroxyglutarate and the regulation of their related enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase. We propose that oncometabolites are crucially involved in tumour repopulation. The study of the mechanisms underlying the relationship between oncometabolites and tumour repopulation is fundamental for identifying efficient anti‐cancer therapeutic strategies and novel serum biomarkers in order to overcome cancer relapse.  相似文献   

6.
Accumulating evidence demonstrates existence of cancer stem cells (CSCs), which are suspected of contributing to cancer cell self‐renewal capacity and resistance to radiation and/or chemotherapy. Including evasion of apoptosis and autophagic cell death, CSCs have revealed abilities to resist cell death, making them appealing targets for cancer therapy. Recently, molecular mechanisms of apoptosis and of autophagy in CSCs have been gradually explored, comparing them in stem cells and in cancer cells; distinct expression of these systems in CSCs may elucidate how these cells exert their capacity of unlimited self‐renewal and hierarchical differentiation. Due to their proposed ability to drive tumour initiation and progression, CSCs may be considered to be potentially useful pharmacological targets. Further, multiple compounds have been verified as triggering apoptosis and/or autophagy, suppressing tumour growth, thus providing new strategies for cancer therapy. In this review, we summarized regulation of apoptosis and autophagy in CSCs to elucidate how key proteins participate in control of survival and death; in addition, currently well‐studied compounds that target CSC apoptosis and autophagy are selectively presented. With increasing attention to CSCs in cancer therapy, researchers are now trying to find responses to unsolved questions as unambiguous as possible, which may provide novel insight into future anti‐cancer regimes.  相似文献   

7.
Red wine consists of a large amount of compounds such as resveratrol, which exhibits chemopreventive and therapeutic effects against several types of cancers by targeting cancer driver molecules. In this study, we tested the anti‐lung cancer activity of 11 red wine components and reported that a natural polyphenol compound ellagic acid (EA) inhibited lung cancer cell proliferation at an efficacy approximately equal to that of resveratrol. EA markedly increased the expression of the autophagosomal marker LC3‐II as well as inactivation of the mechanistic target of rapamycin signalling pathway. EA elevated autophagy‐associated cell death by down‐regulating the expression of cancerous inhibitor of protein phosphatase 2A (CIP2A), and CIP2A overexpression attenuated EA‐induced autophagy of lung cancer cells. Treating tumour‐bearing mice with EA resulted in significant inhibition of tumour growth with suppression of CIP2A levels and increased autophagy. In addition, EA potentiated the inhibitory effects of the natural compound celastrol on lung cancer cells in vitro and in vivo by enhancing autophagy and down‐regulating CIP2A. These findings indicate that EA may be a promising chemotherapeutic agent for lung cancer, and that the combination of EA and celastrol may have applicability for the treatment of this disease.  相似文献   

8.
Cancer is a multi‐faceted disease comprised of a combination of genetic, epigenetic, metabolic and signalling aberrations which severely disrupt the normal homoeostasis of cell growth and death. Rational developments of highly selective drugs which specifically block only one of the signalling pathways have been associated with limited therapeutic success. Multi‐targeted prevention of cancer has emerged as a new paradigm for effective anti‐cancer treatment. Platycodin D, a triterpenoid saponin, is one the major active components of the roots of Platycodon grandiflorum and possesses multiple biological and pharmacological properties including, anti‐nociceptive, anti‐atherosclerosis, antiviral, anti‐inflammatory, anti‐obesity, immunoregulatory, hepatoprotective and anti‐tumour activities. Recently, the anti‐cancer activity of platycodin D has been extensively studied. The purpose of this review was to give our perspectives on the current status of platycodin D and discuss its anti‐cancer activity and molecular mechanisms which may help the further design and conduct of pre‐clinical and clinical trials to develop it successfully into a potential lead drug for oncological therapy. Platycodin D has been shown to fight cancer by inducing apoptosis, cell cycle arrest, and autophagy and inhibiting angiogenesis, invasion and metastasis by targeting multiple signalling pathways which are frequently deregulated in cancers suggesting that this multi‐target activity rather than a single effect may play an important role in developing platycodin D into potential anti‐cancer drug.  相似文献   

9.
LncRNAs play a pivotal role in the regulation of epigenetic modification, cell cycle, differentiation, proliferation, migration and other physiological activities. In particular, considerable studies have shown that the aberrant expression and dysregulation of lncRNAs are widely implicated in cancer initiation and progression by acting as tumour promoters or suppressors. Hippo signalling pathway has attracted researchers’ attention as one of the critical cancer‐related pathways in recent years. Increasing evidences have demonstrated that lncRNAs could interact with Hippo cascade and thereby contribute to acquisition of multiple malignant hallmarks, including proliferation, metastasis, relapse and resistance to anti‐cancer treatment. Specifically, Hippo signalling pathway is reported to modulate or be regulated by widespread lncRNAs. Intriguingly, certain lncRNAs could form a reciprocal feedback loop with Hippo signalling. More speculatively, lncRNAs related to Hippo pathway have been poised to become important putative biomarkers and therapeutic targets in human cancers. Herein, this review focuses on the crosstalk between lncRNAs and Hippo pathway in carcinogenesis, summarizes the comprehensive role of Hippo‐related lncRNAs in tumour progression and depicts their clinical diagnostic, prognostic or therapeutic potentials in tumours.  相似文献   

10.
Interferons (IFNs) have anti‐viral and anti‐tumour effects. Type III interferon, as a member of the recently discovered interferon family, has been proved to inhibit tumour proliferation and promote the apoptosis of various tumour cells. However, whether type III IFN could inhibit the proliferation of lung cancer was not clear. In this study, we found that interferon λ (IFN λ) could inhibit the proliferation of A549 cells and induce autophagy and apoptosis of A549 cells. IFN λ could promote the expression of autophagy gene Beclin1 and interfere the expression of autophagy gene Beclin1 with small interfering RNA, thus inhibiting the effect of type III interferon on anti‐proliferation and promoting apoptosis of lung cancer cell. These results suggested that IFN λ could inhibit the proliferation of A549 cells by activating autophagy pathway, and IFN λ might be one of the potential therapeutic drugs for lung cancer.  相似文献   

11.
Cancers of various organs have been categorized into distinct subtypes after increasingly sophisticated taxonomies. Additionally, within a seemingly homogeneous subclass, individual cancers contain diverse tumour cell populations that vary in important cancer‐specific traits such as clonogenicity and invasive potential. Differences that exist between and within a given tumour type have hampered significantly both the proper selection of patients that might benefit from therapy, as well as the development of new targeted agents. In this review, we discuss the differences associated with organ‐specific cancer subtypes and the factors that contribute to intra‐tumour heterogeneity. It is of utmost importance to understand the biological causes that distinguish tumours as well as distinct tumour cell populations within malignancies, as these will ultimately point the way to more rational anti‐cancer treatments.EMBO reports advance online publication 12 July 2013; doi:10.1038/embor.2013.92  相似文献   

12.
13.
The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti‐EGFR therapies. However, more EGFR‐targeting miRNAs need to be explored. In this study, we identified a novel EGFR‐targeting miRNA, miRNA‐134 (miR‐134), in non‐small‐cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR‐134. In addition, the overexpression of miR‐134 inhibited EGFR‐related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR‐134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down‐regulation of EGFR by miR‐134 partially contributes to the antiproliferative role of miR‐134. Last, in vivo experiments demonstrated that miR‐134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR‐134 inhibits non‐small cell lung cancer growth by targeting the EGFR.  相似文献   

14.
15.
16.
Beneficial effects of metformin on cancer risk and mortality have been proved by epidemiological and clinical studies, thus attracting research interest in elucidating the underlying mechanisms. Recently, tumour‐associated macrophages (TAMs) appeared to be implicated in metformin‐induced antitumour activities. However, how metformin inhibits TAMs‐induced tumour progression remains ill‐defined. Here, we report that metformin‐induced antitumour and anti‐angiogenic activities were not or only partially contributed by its direct inhibition of functions of tumour and endothelial cells. By skewing TAM polarization from M2‐ to M1‐like phenotype, metformin inhibited both tumour growth and angiogenesis. Depletion of TAMs by clodronate liposomes eliminated M2‐TAMs‐induced angiogenic promotion, while also abrogating M1‐TAMs‐mediated anti‐angiogenesis, thus promoting angiogenesis in tumours from metformin treatment mice. Further in vitro experiments using TAMs‐conditioned medium and a coculture system were performed, which demonstrated an inhibitory effect of metformin on endothelial sprouting and tumour cell proliferation promoted by M2‐polarized RAW264.7 macrophages. Based on these results, metformin‐induced inhibition of tumour growth and angiogenesis is greatly contributed by skewing of TAMs polarization in microenvironment, thus offering therapeutic opportunities for metformin in cancer treatment.  相似文献   

17.
Squamous cell carcinoma (SCC) of the tongue is associated with tobacco use, alcohol abuse, and human papillomavirus (HPV) infections. While clinical outcomes have recently improved for HPV‐positive patients in general, 50% of patients suffering from tongue cancer die within 5 years of being diagnosed. Flavonoids are secondary plant metabolites with a wide range of biological activities including antioxidant, anti‐inflammatory, and anticancer activities. Flavonoids have generated high interest as therapeutic agents owing to their low toxicity and their effects on a large variety of cancer cell types. In this literature review, we evaluate the actions of flavonoids on SCC of the tongue demonstrated in both in vivo and in vitro models.  相似文献   

18.
Photodynamic molecules represent an alternative approach for cancer therapy for their property (i) to be photo-reactive; (ii) to be not-toxic for target cells in absence of light; (iii) to accumulate specifically into tumour tissues; (iv) to be activable by a light beam only at the tumour site and (v) to exert cytotoxic activity against tumour cells. However, to date their clinical use is limited by the side effects elicited by systemic administration. Extracellular vesicles are endogenous nanosized-carriers that have been recently introduced as a natural delivery system for therapeutic molecules. We have recently shown the ability of human exosomes to deliver photodynamic molecules. Therefore, this review focussed on extracellular vesicles as a novel strategy for the delivery of photodynamic molecules at cancer sites. This completely new approach may enhance the delivery and decrease the toxicity of photodynamic molecules, therefore, represent the future for photodynamic therapy for cancer treatment.  相似文献   

19.
Due to the increased use of ionizing radiation in various aspects of human life especially in areas pertaining to radiotherapy of cancer, food preservation, agriculture, industry and power generation, there is a need to develop an effective and non-toxic radioprotector. The currently available ones have many drawbacks including high cost, side effects and toxicity. Several novel approaches are on to locate a potent radioprotector. These include mimics of antioxidant enzymes, nitroxides, melatonin, growth factors, gene therapy, hyperthermia apart from natural products. The latter has several advantages since they are non-toxic with proven therapeutic benefits. These can be classified as natural compounds and plant extracts; polyherbal formulations; besides natural and semi-natural compounds of plant origin. A review of the above agents, their efficacy in radioprotection and possible mechanisms responsible has been carried out. As India and many Eastern countries have an enormous heritage of vast natural dietary and time tested medicinal resources it is worth exploring the possibility of developing efficient, economically viable and clinically acceptable radioprotectors for human application from these resources.  相似文献   

20.
Breast cancer stem cells (BCSCs) have been considered responsible for cancer progression, recurrence, metastasis and drug resistance. However, the mechanisms by which cells acquire self‐renewal and chemoresistance properties are remaining largely unclear. Herein, we evaluated the role of miR‐708 and metformin in BCSCs, and found that the expression of miR‐708 is significantly down‐regulated in BCSCs and tumour tissues, and correlates with chemotherapy response and prognosis. Moreover, miR‐708 markedly inhibits sphere formation, CD44+/CD24? ratio, and tumour initiation and increases chemosensitivity of BCSCs. Mechanistically, miR‐708 directly binds to cluster of differentiation 47 (CD47), and regulates tumour‐associated macrophage‐mediated phagocytosis. On the other hand, CD47 is essential for self‐renewal, tumour initiation and chemoresistance of BCSCs, and correlates with the prognosis of breast cancer patients. In addition, the anti‐type II diabetes drug metformin are found to be involved in the miR‐708/CD47 signalling pathway. Therefore, our study demonstrated that miR‐708 plays an important tumour suppressor role in BCSCs self‐renewal and chemoresistance, and the miR‐708/CD47 regulatory axis may represent a novel therapeutic mechanism of metformin in BCSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号