首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim We studied the temporal and spatial patterns in deforestation and community structure of mammals in a fragmented old‐growth, temperate rain forest to test the hypothesis that anthropogenic habitat conversion advances in a nonrandom manner across native landscapes, and that its effects on ecological communities are both persistent and predictable. Location The location is the Hood Canal district of Olympic National Forest, Washington, USA. Results Deforestation followed the apparently general pattern observed for deforestation of tropical rain forests and other native landscapes, advancing first along low and relatively level valleys, then to areas at higher elevations and along steeper slopes, and eventually to sites more distant from those of initial land conversion and transportation centres. Mammal surveys within this area indicated that this nonrandom advance of deforestation has created relatively steep geographical and topographic gradients in both local and landscape‐level factors and, ultimately, in the structure of mammalian communities. Conclusion The close and likely causal relationship between anthropogenic habitat loss and the ecological dynamics of mammalian communities and dependent species (e.g. spotted owls) indicates that our abilities to understand and eventually reduce the current extinction crisis may rely heavily on our understanding of, and abilities to modify, the manner in which we expand across and transform native landscapes.  相似文献   

2.
The persistence of larger mammals in fragmented forest landscapes depends not only on the protection of remaining habitats but also on ecological restoration sites. It is known that the landscape context is an important predictor of species persistence, abundance and distribution. Here we evaluate how landscape characteristics influence the recovery of larger mammals in ecological restoration sites. We assess the richness and composition of mammals in forest fragments and restoration sites using landscape metrics such as forest cover and connectivity. Forest fragments and restoration sites present the same richness (n = 26), but differ in species composition. Some seed-dispersing mammals were absent in restoration areas, such as Alouatta guariba (brown howler monkey) and Coendou spinosus (paraguayan hairy dwarf porcupine). The percentage of forest cover in the landscape was responsible for 29.09% of the variation in species composition between the evaluated forest formations, exerting a positive or negative influence depending on the species requirements. The results demonstrate the importance of considering not only landscape metrics in an ecological restoration plan, but also the historical landscape context, such as the fauna composition before the disturbance and how these species respond to environmental changes, thus improving the success of future ecological restoration measurements and policies.  相似文献   

3.
Aim  To identify priority areas for amphibian conservation in southeastern Brazil, by integrating species life-history traits and patterns of deforestation.
Location  State of São Paulo, Brazil.
Methods  We used the software M arxan to evaluate different scenarios of amphibian conservation planning. Our approach differs from previous methods by explicitly including two different landscape metrics; habitat split for species with aquatic larvae, and habitat loss for species with terrestrial development. We evaluated the effect of habitat requirements by classifying species breeding habitats in five categories (flowing water, still water permanent, still water temporary, bromeliad or bamboo, and terrestrial). We performed analyses using two scales, grid cells and watersheds and also considered nature preserves as protected areas.
Results  We found contrasting patterns of deforestation between coastal and inland regions. Seventy-six grid cells and 14 watersheds are capable of representing each species at least once. When accounting for grid cells already protected in state and national parks and considering species habitat requirements we found 16 high-priority grid cells for species with one or two reproductive habitats, and only one cell representing species with four habitat requirements. Key areas for the conservation of species breeding in flowing and permanent still waters are concentrated in southern state, while those for amphibians breeding in temporary ponds are concentrated in central to eastern zones. Eastern highland zones are key areas for preserving species breeding terrestrially by direct or indirect development. Species breeding in bromeliads and bamboos are already well represented in protected areas.
Main conclusions  Our results emphasize the need to integrate information on landscape configuration and species life-history traits to produce more ecologically relevant conservation strategies.  相似文献   

4.
《Current biology : CB》2022,32(13):2997-3004.e2
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   

5.
Populations that have suffered from genetic erosion are expected to exhibit reduced average trait values or decreased variation in adaptive traits when experiencing periodic or emergent stressors such as infectious disease. Genetic erosion may consequentially modify the ability of a potential host population to cope with infectious disease emergence. We experimentally investigate this relationship between genetic variability and host response to exposure to an infectious agent both in terms of susceptibility to infection and indirect parasite-mediated responses that also impact fitness. We hypothesized that the deleterious consequences of exposure to the pathogen (Batrachochytrium dendrobatidis) would be more severe for tadpoles descended from European treefrog (Hyla arborea) populations lacking genetic variability. Although all exposed tadpoles lacked detectable infection, we detected this relationship for some indirect host responses, predominantly in genetically depleted animals, as well as an interaction between genetic variability and pathogen dose on life span during the postmetamorphic period. Lack of infection and a decreased mass and postmetamorphic life span in low genetic diversity tadpoles lead us to conclude that genetic erosion, while not affecting the ability to mount effective resistance strategies, also erodes the capacity to invest in resistance, increased tadpole growth rate, and metamorphosis relatively simultaneously.  相似文献   

6.
7.
The pervasive influence of island biogeography theory on forest fragmentation research has often led to a misleading conceptualization of landscapes as areas of forest/habitat and 'non-forest/non-habitat' and an overriding focus on processes within forest remnants at the expense of research in the human-modified matrix. The matrix, however, may be neither uniformly unsuitable as habitat nor serve as a fully–absorbing barrier to the dispersal of forest taxa. In this paper, we present a conceptual model that addresses how forest habitat loss and fragmentation affect biodiversity through reduction of the resource base, subdivision of populations, alterations of species interactions and disturbance regimes, modifications of microclimate and increases in the presence of invasive species and human pressures on remnants. While we acknowledge the importance of changes associated with the forest remnants themselves (e.g. decreased forest area and increased isolation of forest patches), we stress that the extent, intensity and permanence of alterations to the matrix will have an overriding influence on area and isolation effects and emphasize the potential roles of the matrix as not only a barrier but also as habitat, source and conduit. Our intention is to argue for shifting the examination of forest fragmentation effects away from a patch-based perspective focused on factors such as patch area and distance metrics to a landscape mosaic perspective that recognizes the importance of gradients in habitat conditions.  相似文献   

8.
9.
Aim This study tests the hypothesis that linear, woody habitat patches surrounding small, sunken rural roads not only function as an unstable sink but also as a true, sustainable habitat for forest plants. Furthermore, factors affecting the presence of forest plant species in sunken roads are determined. Finally, the implications of these findings for the overall metapopulation dynamics of forest plant species in fragmented agricultural landscapes are assessed. Location The study area, c. 155 km2 in size, is situated in a fragmented agricultural landscape within the loamy region of central Belgium. Methods Forest species presence–absence data were collected for 389 sunken roads. The effect of area, depth, age and isolation on sunken road species richness was assessed using linear regression and analysis of variance (anova ). Analysis of covariance was employed to study the interaction between age and isolation. Differences in plant community dispersal spectra in relation to sunken road age and isolation were analysed by means of linear regression and anova . Results Sunken roads proved to function as an important habitat for forest plants. The sink‐hypothesis was falsified by a clear species accumulation in time: sunken road species richness significantly increased with the age of the elements. Sunken road age mainly affected species richness through effects on both area and depth, affecting habitat quality and diversity. Furthermore, sunken road isolation had a significant impact on species richness as well, with the number of forest species decreasing with increasing isolation of the elements, indicating dispersal limitation in sunken road habitats. Moreover, a significant age × isolation interaction effect was demonstrated. Differences in regression slopes for isolation between age classes revealed that the effect of isolation intensified with increasing age of the elements. Differential colonization in relation to forest species dispersal capacities probably account for this, as confirmed by the analysis of sunken road plant community dispersal spectra, with the fraction of species with low dispersal capacities increasing with increasing age and decreasing isolation of the elements. Main conclusions During sunken road development, area and depth increase and, gradually, suitable habitat conditions for forest plant species arise. Depending on their ecological requirements and dispersal capacities, forest species progressively colonize these habitats as a function of the element's isolation. The functioning of sunken roads as a sustainable habitat for forest species enhances the metapopulation viability of forest plants in agricultural landscapes and has important consequences for forest restoration practices. Moreover, the results of this work call for integrating the presence of forest species in small‐scaled linear habitat patches in forest fragmentation studies.  相似文献   

10.
11.
The fact that species vary in their vulnerability to extinction is well documented, but the reasons for these differences remain poorly understood. Why should some species/families/guilds decline rapidly with increasing anthropogenic disturbance, while others either tolerate or proliferate in disturbed habitats? We investigated the bird species composition in 31 primary forest patches of varying size in a region of the Amazonian 'Arc of Deforestation' and assessed which species life-history traits predisposed individual species to extinction. Medium-sized non-flocking canopy frugivores/ominvores of low primary forest dependence were least likely to go extinct in small patches, while small-bodied flock-following primary-forest-dependent terrestrial insectivores were most fragmentation sensitive. We found highly idiosyncratic relationships between the minimum size of forest patches occupied by different species and their territory size requirements estimated based on other Amazonian studies. This suggests that avian assemblages in forest fragments primarily comprise species that either have good dispersal abilities or are highly tolerant to the non-forest matrix, rather than those whose minimum spatial requirements can be met by the size of available forest fragments.  相似文献   

12.
Abstract In this paper we tested the assumption that smaller and more isolated remnants receive fewer ant colonizers and lose more species. We also tested hypotheses to explain such a pattern. We sampled ants in Brazil for 3 years in 18 forest remnants and in 10 grasslands between them. We tested the influence of remnant area and isolation on colonization rate, as well as the effect of remnant area on extinction rate. We tested the correlation between remnant area and isolation to verify the landscape design. Colonization rate was not affected by remnant area or isolation. Extinction rate, however, was smaller in larger remnants. Remnant area and isolation were negatively correlated. We tested two hypotheses related to the decrease in ant species extinction rate with increased remnant area: (i) small remnants support smaller and more extinction‐prone populations; and (ii) small remnants are more often invaded by generalist species, which suffer higher extinction inside remnants. The density of ant populations significantly increased with area. Generalist species presented a lower colonization rate in larger remnants, contrary to the pattern observed in forest species. Generalist species suffered more extinction than expected inside remnants. The lack of response of colonization rate to remnant area can be explained by the differential colonization by generalist and forest species. The decrease of ant population density in smaller remnants could be related to loss of habitat quality or quantity. The higher colonization by generalist ant species in the smaller remnants could be related to landscape design, because smaller remnants are more similar to the matrix than larger ones. Our results have important implications for conservation strategies because small remnants seem to be more affected by secondary effects of fragmentation, losing more forest species and being invaded more often by generalist species. Studies that compare only species richness between remnants cannot detect such patterns in species composition.  相似文献   

13.
Agriculture and development transform forest ecosystems to human‐modified landscapes. Decades of research in ecology have generated myriad concepts for the appropriate management of these landscapes. Yet, these concepts are often contradictory and apply at different spatial scales, making the design of biodiversity‐friendly landscapes challenging. Here, we combine concepts with empirical support to design optimal landscape scenarios for forest‐dwelling species. The supported concepts indicate that appropriately sized landscapes should contain ≥ 40% forest cover, although higher percentages are likely needed in the tropics. Forest cover should be configured with c. 10% in a very large forest patch, and the remaining 30% in many evenly dispersed smaller patches and semi‐natural treed elements (e.g. vegetation corridors). Importantly, the patches should be embedded in a high‐quality matrix. The proposed landscape scenarios represent an optimal compromise between delivery of goods and services to humans and preserving most forest wildlife, and can therefore guide forest preservation and restoration strategies.  相似文献   

14.
生境破碎化包括生境丧失与破碎化两个相对独立的过程,为探讨这两个过程各自对生物多样性的影响,本文利用苜蓿草地实验模型系统(EMS)构建了36个小区研究不同生境丧失与破碎化对昆虫群落及不同类群的影响,包括18个破碎化小区与18个连续小区,破碎化小区全部采用1 m×1 m(H=1)破碎,连续小区苜蓿连片(H=0),生境丧失采...  相似文献   

15.
16.
17.
森林所有制对景观格局和动物生境的影响研究进展   总被引:3,自引:0,他引:3  
在欧美等地区的林业发达国家,多种森林所有制长期并存,至今,多种所有制影响下森林景观和生境格局的变化以及与动物保护之间的关系成为研究热点和重点.本文首先阐述了森林所有制对森林景观格局和动物生境的影响,以及林权分散和林权流转的加剧带来的生态后果,包括提供多样化的生境和导致原有大面积生境的破碎化;其次,总结了林业发达国家解决林权分散与生物保护之间矛盾的两个理论途径--改变所有制格局和相对统一各所有制的管理行为,分析现多采用后一种途径的原因,并指出目前森林所有制研究中模拟方法的局限;最后,论述我国的研究现状以及面临的机遇和挑战,提出近期发展建议.  相似文献   

18.
1. Composition, growth and turnover of trees in two species-rich tropical gallery forests were examined to evaluate what community reorganization may be needed to transform recently created tropical forest fragments into stable refugia for regional forest biotas.
2. Rates of tree growth and turnover over a 5-year interval were comparable to those recorded in continuous forests and in both communities there had been some tree species turnover in the measured stem size classes during the 5-year interval.
3. The more abundant tree species in both communities formed three functional groups along gradients between streams and forest edges: edge-concentrators, core-concentrators and generalists.
4. Soil fertility showed no consistent increase close to streams and neither tree growth nor recruitment rates were increased in this zone. In contrast, forest edge zones exhibited increased rates of tree growth and recruitment indicating that growth processes in these forests are light-limited rather than soil-limited, and that forest edge zones are generally favourable habitats for tree populations.
5. Both communities showed signs of past fire incursions, and the tendency of a subset of tree species to concentrate in the more growth-limited core habitats is attributed to their fire sensitivity.
6. Rapid development of an edge zone of fire-insensitive tree species is considered to be essential to the survival of forest community fragments in the fire-prone landscapes of the tropics, and the edges of gallery forests are recommended as potential sources of species with which to fashion these protective ecotones.
7. Preservation of a diverse forest biota in the fire-protected interiors of fragments will require natural or artificially enhanced immigration rates that are sufficient to offset local extinctions.  相似文献   

19.
Aim Few studies have explicitly examined the influence of spatial attributes of forest fragments when examining the impacts of fragmentation on woody species. The aim of this study was to assess the diverse impacts of fragmentation on forest habitats by integrating landscape‐level and species‐level approaches. Location The investigation was undertaken in temperate rain forests located in southern Chile. This ecosystem is characterized by high endemism and by intensive recent changes in land use. Method Measures of diversity, richness, species composition, forest structure and anthropogenic disturbances were related to spatial attributes of the landscape (size, shape, connectivity, isolation and interior forest area) of forest fragments using generalized linear models. A total of 63 sampling plots distributed in 51 forest fragments with different spatial attributes were sampled. Results Patch size was the most important attribute influencing different measures of species composition, stand structure and anthropogenic disturbances. The abundance of tree and shrub species associated with interior and edge habitats was significantly related to variation in patch size. Basal area, a measure of forest structure, significantly declined with decreasing patch size, suggesting that fragmentation is affecting successional processes in the remaining forests. Small patches also displayed a greater number of stumps, animal trails and cow pats, and lower values of canopy cover as a result of selective logging and livestock grazing in relatively accessible fragments. However, tree richness and β‐diversity of tree species were not significantly related to fragmentation. Main conclusions This study demonstrates that progressive fragmentation by logging and clearance is associated with dramatic changes in the structure and composition of the temperate forests in southern Chile. If this fragmentation process continues, the ability of the remnant forests to maintain their original biodiversity and ecological processes will be significantly reduced.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号