共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Brielle K. Thompson Julian D. Olden Sarah J. Converse 《Conservation Science and Practice》2021,3(11):e533
Management strategies to address the challenges associated with invasive species are critical for effective conservation. An increasing variety of mathematical models offer insight into invasive populations, and can help managers identify cost effective prevention, control, and eradication actions. Despite this, as model complexity grows, so does the inaccessibility of these tools to conservation practitioners making decisions about management. Here, we seek to narrow the science-practice gap by reviewing invasive species management models (ISMMs). We define ISMMs as mechanistic models used to explore invasive species management strategies, and include reaction-advection–diffusion models, integrodifference equations, gravity models, particle transport models, nonspatial and spatial discrete-time population growth models, cellular automata, and individual-based models. For each approach, we describe the model framework and its implementation, discuss strengths and weaknesses, and give examples of conservation applications. We conclude by discussing how ISMMs can be used in concert with adaptive management to address scientific uncertainties impeding action and with multiple objective decision processes to evaluate tradeoffs among management objectives. We undertook this review to support more effective decision-making involving invasive species by providing conservation practitioners with the information they need to identify tools most useful for their applications. 相似文献
3.
Ian J. Renne Wylie C. Barrow Jr Lori A. Johnson Randall William C. Bridges Jr 《Diversity & distributions》2002,8(5):285-295
Abstract. Plants possessing generalized dispersal syndromes are likely to be more invasive than those relying on specialist dispersal agents. To address this issue on a local and regional scale, avian seed dispersal of the invasive alien Chinese tallow tree (Sapium sebiferum (L.) Roxb.) was assessed in forests and spoil areas of South Carolina and along forest edges in Louisiana during the 1997–99 fruiting seasons. Tallow trees in these floristically distinct habitats had a few common and many casual visitors, and considerable species overlap among habitats was found. However, bird species differed in the importance of dispersing and dropping seeds among habitats. Important dispersal agents common to forests and spoil areas of South Carolina included Northern Flicker, American Robin and Red‐winged Blackbird, whereas Red‐bellied Woodpecker and European Starling were important in the former and latter habitat, respectively. In Louisiana, Red‐bellied Woodpecker, American Robin, Northern Cardinal and Eastern Bluebird dispersed many seeds. Nearly all species foraging on seeds were winter residents. Estimated numbers of seeds dispersed and dropped were higher in spoil areas of South Carolina than in Louisiana because of higher numbers of individuals per visit, higher seed consumption and seed dropping rates, and longer foraging durations. Within South Carolina, more seeds were dispersed and dropped in spoil areas than in forests because of higher numbers of birds per visit. These findings show that among habitats, tallow tree attracts diverse but variable coteries of dispersal agents that are qualitatively similar in seed usage patterns. We suggest that its generalized dispersal syndrome contributes to effective seed dispersal by many bird species throughout its range. Effects of differential avian use among locales may include changes in local bird communities, and differing tallow tree demographics and invasion patterns. 相似文献
4.
J. C. Fox Y. M. Buckley F. D. Panetta J. Bourgoin D. Pullar 《Diversity & distributions》2009,15(4):577-589
Aim To develop a surveillance support model that enables prediction of areas susceptible to invasion, comparative analysis of surveillance methods and intensity and assessment of eradication feasibility. To apply the model to identify surveillance protocols for generalized invasion scenarios and for evaluating surveillance and control for a context‐specific plant invasion. Location Australia. Methods We integrate a spatially explicit simulation model, including plant demography and dispersal vectors, within a Geographical Information System. We use the model to identify effective surveillance protocols using simulations of generalized plant life‐forms spreading via different dispersal mechanisms in real landscapes. We then parameterize the surveillance support model for Chilean needle grass [CNG; Nassella neesiana (Trin. & Rupr.) Barkworth], a highly invasive tussock grass, which is an eradication target in south‐eastern Queensland, Australia. Results General surveillance protocols that can guide rapid response surveillance were identified; suitable habitat that is susceptible to invasion through particular dispersal syndromes should be targeted for surveillance using an adaptive seek‐and‐destroy method. The search radius of the adaptive method should be based on maximum expected dispersal distances. Protocols were used to define a surveillance strategy for CNG, but simulations indicated that despite effective and targeted surveillance, eradication is implausible at current intensities. Main conclusions Several important surveillance protocols emerged and simulations indicated that effectiveness can be increased if they are followed in rapid response surveillance. If sufficient data are available, the surveillance support model should be parameterized to target areas susceptible to invasion and determine whether surveillance is effective and eradication is feasible. We discovered that for CNG, regardless of a carefully designed surveillance strategy, eradication is implausible at current intensities of surveillance and control and these efforts should be doubled if they are to be successful. This is crucial information in the face of environmentally and economically damaging invasive species and large, expensive and potentially ineffective control programmes. 相似文献
5.
Eradication is a management strategy that can provide substantial ecological and economic benefits by eliminating incursions of pest organisms. In contrast to eradication efforts that target other pests, weed eradication programs can be very protracted owing to the presence of persistent seed banks and difficulties in detecting the target. Hence there is a need to develop criteria to assist in the evaluation of progress towards eradication. Knowledge of the extent of a weed incursion (the ‘delimitation’ criterion) is considered fundamental for eradication success, as an incursion will progress from any infestations that remain undetected and thus uncontrolled. This criterion is examined with regard to eradication programs targeting Bassia scoparia L. A.J. Scott [= Kochia scoparia L. Schrader], Chondrilla juncea L. (both in Western Australia) and Orobanche ramosa L. in South Australia. The B. scoparia incursion, which has been eradicated, was largely delimited within 12 months of the inception of its eradication program. In contrast, the Western Australian C. juncea incursion has never been delimited, owing to insufficient investment in surveillance during an eradication program spanning 30 years. An exponential decrease in the detection ratio (infested area detected/area searched) over time suggests that delimitation has been approached within 6 years of the inception of the eradication program for O. ramosa. An effective surveillance program is essential for achieving delimitation of a weed incursion. 相似文献
6.
F. Dane Panetta 《Diversity & distributions》2007,13(1):33-41
Weed eradication programs often require 10 years or more to achieve their objective. It is important that progress is evaluated on a regular basis so that programs that are 'on track' can be distinguished from those that are unlikely to succeed. Earlier research has addressed conformity of eradication programs to the delimitation criterion. In this paper evaluation in relation to the containment and extirpation criteria is considered. Because strong evidence of containment failure (i.e. spread from infestations targeted for eradication) is difficult to obtain, it generally will not be practicable to evaluate how effective eradication programs are at containing the target species. However, chronic failure of containment will be reflected in sustained increases in cumulative infested area and thus a failure to delimit a weed invasion. Evaluating the degree of conformity to the delimitation and extirpation criteria is therefore sufficient to give an appraisal of progress towards the eradication objective. A significant step towards eradication occurs when a weed is no longer readily detectable at an infested site, signalling entry to the monitoring phase. This transition will occur more quickly if reproduction is prevented consistently. Where an invasion consists of multiple infestations, the monitoring profile (frequency distribution of time since detection) provides a summary of the overall effectiveness of the eradication program in meeting the extirpation criterion. Eradication is generally claimed when the target species has not been detected for a period equal to or greater than its seed longevity, although there is often considerable uncertainty in estimates of the latter. Recently developed methods, which take into consideration the cost of continued monitoring vs. the potential cost of damage should a weed escape owing to premature cessation of an eradication program, can assist managers to decide when to terminate weed eradication programs. 相似文献
7.
长期大量实践说明,引进天敌防治外来入侵杂草的传统生物防治方法是治理外来入侵杂草的一条切实可行的有效途径,但对其潜在的生态风险——对本土生物的直接或间接不良影响不容忽视。利用传统评价方法预测候选天敌的生态风险存在缺陷,主要表现在:(1)寄主专一性测定过分依赖室内进行的生理寄主范围测定结果,对生态寄主范围(实际寄主范围)问题重视不够,后者指在新环境中的一系列物理和生物条件下的寄主利用预测;(2)在生理寄主范围测定中,过分依赖完成生长发育的可能性,对行为、遗传性状以及系统发育关系重视不够;(3)在风险评估中,过多强调对经济作物的风险,而对自然生态系统的风险重视不够。对此,建议:(1)鼓励对已释放的天敌进行回顾性跟踪研究,从而为杂草生物防治实践提供生态学理论支撑;(2)在运用生物防治手段对付外来入侵杂草实践中,建议采用“有害推论”的预防性原则,以避免在面临入侵生物重大威胁时草率做出释放天敌的决策;(3)在评估候选天敌风险中重视生态效应的风险评估。 相似文献
8.
Alan Hastings Kim Cuddington † Kendi F. Davies Christopher J. Dugaw Sarah Elmendorf Amy Freestone Susan Harrison Matthew Holland John Lambrinos Urmila Malvadkar ‡ Brett A. Melbourne Kara Moore Caz Taylor Diane Thomson 《Ecology letters》2005,8(1):91-101
We review and synthesize recent developments in the study of the spread of invasive species, emphasizing both empirical and theoretical approaches. Recent theoretical work has shown that invasive species spread is a much more complex process than the classical models suggested, as long range dispersal events can have a large influence on the rate of range expansion through time. Empirical work goes even further, emphasizing the role of spatial heterogeneity, temporal variability, other species, and evolution. As in some of the classic work on spread, the study of range expansion of invasive species provides unique opportunities to use differences between theory and data to determine the important underlying processes that control spread rates. 相似文献
9.
行为特征可在外来动物建立种群和扩张过程中发挥重要作用,因此,要正确理解动物入侵,常常需要仔细研究其行为机制。20世纪80年代以来,随着动物入侵规模在世界各地的迅速加剧,有关其行为机制的研究也受到了广泛关注。最近一些研究表明,一些入侵动物种内攻击和觅食等行为具有可塑性,因此它们能够灵活应对多变的环境条件,这对于种群的建立和维持至关重要;入侵动物与土著物种发生行为互作时,往往占据优势,从而取代土著物种,并有助于其地域扩张;入侵动物长距离扩散可以提高其地域扩张速度,许多行为可与扩散行为结合进一步促进扩张。今后需要加强对入侵动物的行为分析,使之全面地融合到生物入侵的研究之中。这不仅可以提高对外来物种入侵的预警和治理能力,而且为探索动物行为的奥秘以及动物间行为互作在物种进化中的意义提供了独特的机会。 相似文献
10.
The 'invasiveness' of an alien species depends partly on its ability to become abundant and widespread in its new environment. While competitiveness may be an important component of this ability, so too is the abundance of resource or habitat. First, the local carrying capacity will depend on the local favourability of the habitat, hence the global density will depend on how widespread the habitat is. Second, and more subtly, the local density will also be affected by the global extent of favourable habitat, because of losses occasioned by dispersal when the population redistributes; these losses should be fewer the greater the contiguous area of favourable habitat or the more patches of such habitat across the landscape. Here we describe a model which demonstrates how habitat availability affects an invading speciesèquilibrium abundance, hence its invasiveness. The model shows that local density is likely to be an increasing function of global habitat abundance, and global density to be a non-linear, concave-up function of global habitat abundance. Examples are given to support the model's predictions, taken largely from alien species in New Zealand. 相似文献
11.
- 1 We provide an updated distribution and dispersal rate of the introduced European rabbit Oryctolagus cuniculus in Argentina.
- 2 According to our results this invasive species is currently colonizing parts of Mendoza and Neuquén Provinces, where rivers are very important in the spread of the rabbits, especially in unfavourable areas. The maximun rate of dispersal registered in this study was 9 km/year.
- 3 Some information was obtained to indicate that the presence of this exotic species threatens agriculture, livestock, forestry, and natural ecosystems of the Patagonia region.
12.
Ran Nathan 《Diversity & distributions》2005,11(2):125-130
This special issue of Diversity and Distributions presents six papers that contribute to the assembly of a general research agenda for studying long‐distance dispersal (LDD) across a variety of taxonomic groups (e.g. birds, fish, aquatic invertebrates and plants), ecosystems (e.g. terrestrial and marine ecosystems, wetlands and grasslands) and thematic fields (e.g. biological transport, marine biology, biogeochemistry and biodiversity conservation). This editorial emphasizes the need to develop a network integrating different research approaches (‘yellow brick roads’) to address the great challenge (‘finding the end of the rainbow’) of quantifying, understanding and predicting LDD and its implications. I review the key avenues for future research suggested in the special issue contributions, and stress the critical importance of properly considering the spatial and temporal scales relevant to the process and system of interests. I propose combining absolute and proportional definitions of LDD as a default practice in any investigation of LDD processes. When LDD is defined primarily by an absolute critical distance that characterizes key feature(s) of the system of interest, a quantitative assessment of the proportion of dispersal events expected to move beyond this critical threshold distance should also be provided. When LDD is defined primarily by a certain small fraction of dispersal events that travel longer than all others, an estimate of the absolute distance associated with this high percentile at the tail of the dispersal curve should also be added. 相似文献
13.
14.
Chevonne Reynolds Nelson A. F. Miranda Graeme S. Cumming 《Diversity & distributions》2015,21(7):744-754
15.
16.
LAURIE E. TWIGG TIM J. LOWE CATHERINE M. TAYLOR MIKE C. CALVER GARY R. MARTIN CLAIRE STEVENSON RIC HOW 《Austral ecology》2009,34(7):805-820
The potential for seed‐eating birds to spread viable seeds was investigated using captive‐feeding trials to determine seed preference, passage time through the gut, and viability of passed seeds for bronzewing pigeons (Phaps chalcoptera), peaceful doves (Geopelia striata), crested pigeons (Ocyphaps lophotes), Senegal doves (Streptopelia senegalensis), zebra finches (Taeniopygia guttata), black ducks (Anas superciliosa) and wood ducks (Chenonetta jubata). Test seeds were bladder clover (Trifolium spumosum), crimson clover (Trifolium incarnatum), gorse (Ulex europaeus), canola (Brassica napus) and red panicum (Setaria italica). Their consumption was compared with that of commercial seed mixes. Although all test seeds were recognizable foods, their consumption usually decreased in the presence of other foods, except for canola, where consumption rates were maintained. Hard‐seeded bladder clover was the only species where viable seeds were passed by obligate seedeaters. In contrast, viable seeds of canola and gorse were passed by seed‐eating omnivorous/herbivorous ducks, although the germination of passed seeds (42%) was reduced significantly compared with that of untreated control seed (67%). Field validation with wild, urban bronzewings and Australian magpies (Gymnorhina tibicen) offered canola and commercial seed yielded similar outcomes, with a range of viable seeds recovered from magpie soft pellets. Mean seed passage time in captive birds ranged from 0.5 to 4.3 h for all test seeds and commercial seed mixes, suggesting that these bird species may potentially disperse seed over moderate distances. Despite the low probability of individual birds spreading viable seed, the high number of birds feeding in the wild suggests that the potential for granivorous and seed‐eating omnivorous birds to disperse viable seeds cannot be discounted, particularly if exozoochorous dispersal is also considered. 相似文献
17.
To become invasive, exotic species have to succeed in the consecutive phases of introduction, naturalization, and invasion. Each of these phases leaves traces in genetic structure, which may affect the species’ success in subsequent phases. We examined this interplay of genetic structure and invasion dynamics in the South African Ragwort (Senecio inaequidens), one of Europe’s fastest plant invaders. We used AFLP and microsatellite markers to analyze 19 native African and 32 invasive European populations. In combination with historic data, we distinguished invasion routes and traced them back to the native source areas. This revealed that different introduction sites had markedly different success in the three invasion phases. Notably, an observed lag‐phase in Northern Germany was evidently not terminated by factors increasing the invasiveness of the resident population but by invasive spread from another introduction centre. The lineage invading Central Europe was introduced to sites in which winters are more benign than in the native source region. Subsequently, this lineage spread into areas in which winter temperatures match the native climate more closely. Genetic diversity clearly increases with population age in Europe and less clearly decreases with spread rate up to population establishment. This indicates that gene flow along well‐connected invasion routes counteracted losses of genetic diversity during rapid spread. In summary, this study suggests that multiple introductions, environmental preadaptation and high gene flow along invasion routes contributed to the success of this rapid invader. More generally, it demonstrates the benefit of combining genetic, historical, and climatic data for understanding biological invasions. 相似文献
18.
19.
Benthic marine organisms are characterized by a bipartite life history in which populations of sedentary adults are connected by oceanic transport of planktonic propagules. In contrast with the terrestrial case, where ‘long distance dispersal’ (LDD) has traditionally been viewed as a process involving rare events, this creates the possibility for large numbers of offspring to travel far relative to the spatial scale of adult populations. As a result, the concept of LDD must be examined carefully when applied in a marine context. Any measure of LDD requires reference to an explicit ‘local’ scale, often defined in terms of adult population demography, habitat patchiness, or the average dispersal distance. Terms such as ‘open’ and ‘closed’ are relative, and should be used with caution, especially when compared across different taxa and systems. We use recently synthesized data on marine propagule dispersal potential and the spread of marine invasive species to draw inferences about average and maximum effective dispersal distances for marine taxa. Foremost, our results indicate that dispersal occurs at a wide range of scales in marine communities. The nonrandom distribution of these scales among community members has implications for marine community dynamics, and for the implementation of marine conservation efforts. Second, in agreement with theoretical results, our data illustrate that average and extreme dispersal scales do not necessarily covary. This further confounds simple classifications of ‘short’ and ‘long’ dispersers, because different ecological processes (e.g. range expansion vs. population replenishment) depend on different aspects of the dispersal pattern (e.g. extremes vs. average). Our findings argue for a more rigorous quantitative view of scale in the study of marine dispersal processes, where relative terms such as ‘short’ and ‘long’, ‘open’ and ‘closed’, ‘retained’ and ‘exported’ are defined only in conjunction with explicit definitions of the scale and process of interest. This shift in perspective represents an important step towards unifying theoretical and empirical studies of dispersal processes in marine and terrestrial systems. 相似文献
20.
Aim To quantify the vulnerability of habitats to invasion by alien plants having accounted for the effects of propagule pressure, time and sampling effort. Location New Zealand. Methods We used spatial, temporal and habitat information taken from 9297 herbarium records of 301 alien plant species to examine the vulnerability of 11 terrestrial habitats to plant invasions. A null model that randomized species records across habitats was used to account for variation in sampling effort and to derive a relative measure of invasion based either on all records for a species or only its first record. The relative level of invasion was related to the average distance of each habitat from the nearest conurbation, which was used as a proxy for propagule pressure. The habitat in which a species was first recorded was compared to the habitats encountered for all records of that species to determine whether the initial habitat could predict subsequent habitat occupancy. Results Variation in sampling effort in space and time significantly masked the underlying vulnerability of habitats to plant invasions. Distance from the nearest conurbation had little effect on the relative level of invasion in each habitat, but the number of first records of each species significantly declined with increasing distance. While Urban, Streamside and Coastal habitats were over‐represented as sites of initial invasion, there was no evidence of major invasion hotspots from which alien plants might subsequently spread. Rather, the data suggest that certain habitats (especially Roadsides) readily accumulate alien plants from other habitats. Main conclusions Herbarium records combined with a suitable null model provide a powerful tool for assessing the relative vulnerability of habitats to plant invasion. The first records of alien plants tend to be found near conurbations, but this pattern disappears with subsequent spread. Regardless of the habitat where a species was first recorded, ultimately most alien plants spread to Roadside and Sparse habitats. This information suggests that such habitats may be useful targets for weed surveillance and monitoring. 相似文献