首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent considerations of parasite virulence have focused on the adverse effects that parasites can have on the survival of their hosts. Many parasites, however, reduce host fitness by an equally deleterious but different means, by causing partial or complete sterility of their hosts. A model of optimal parasite virulence is developed in which a quantity of host resources can be allocated to either host or parasite reproduction. Increases in parasite reproduction thus cause reductions in host fertility. The model shows that under a wide variety of ecological conditions, such parasites should completely sterilize their hosts. Only when opportunities for horizontal transmission are very limited should the parasites appropriate less than all of a host's reproductive resources. Field and laboratory evidence shows that the nematode parasite Howardula aoronymphium is relatively avirulent to one of its principal host species, Drosophila falleni, whereas it is much more virulent to D. putrida and D. neotestacea, suggesting that there may be substantial vertical transmission in D. falleni. However, epidemiological studies in the field and laboratory assays of host specificity strongly suggest that the three host species share a single parasite pool in natural populations, indicating that parasites in all three host species experience high levels of horizontal transmission. Thus, the low virulence of H. aoronymphium to D. falleni is not consistent with the model of optimal parasite virulence. It is proposed that this suboptimal virulence in D. falleni is a consequence of populations of H. aoronymphium being selected to exploit simultaneously several different host species. As a result, virulence may not be optimal in any one host. One must, therefore, consider the full range of host species in assessing a parasite's virulence.  相似文献   

2.
  • 1 Recently, Hughes et al. (Trends in Ecology & Evolution, 23 , 672–677, 2008) have theorised that symbionts of large, long‐lived, homeostatic, and well defended social insect colonies should mostly be of low virulence. If the symbionts are rare, i.e. few workers are co‐infected, competition between symbionts should be minimal and they should be selected to avoid over‐exploiting their hosts.
  • 2 Here we analyse the mites that occur on Eciton burchellii army ant workers and note that our findings are consistent with the predictions from evolutionary theory.
  • 3 The mites were species diverse but rare; only 5% of the 3146 workers we examined from 20 army ant colonies had mites. Only one worker was co‐infected by mites of different species and the one relatively common parasitic mite (Rettenmeyerius carli) was limited to only two individuals per ant.
  • 4 We also showed that certain mites are more common on workers in nomadic rather than statary army ant colonies and that different worker castes differed in their infestation patterns.
  • 5 We suggest that the three traits E. burchellii and honey bees (Apis mellifera) have in common (queens with very high mating frequencies, propagation by colony fission, and low number of parasites among the mite species they host) are associated with one another. Colonies that fission are likely to inherit symbionts and multiple mating will promote genetic diversity within colonies, which may help to limit the abundance of deleterious mites.
  • 6 We conclude that most of the symbiotic mites found on workers of the army ant E. burchellii are probably relatively harmless guests, exploiting their hosts for phoresis or, for example, to use their waste deposits.
  相似文献   

3.
1. The performance of ant colonies depends on different factors such as nest site, colony structure or the presence of pathogens and social parasites. Myrmica ants host various types of social parasites, including the larvae of Maculinea butterflies and Microdonmyrmicae (Schönrogge) hoverfly. How these social parasites affect host colony performance is still unexplored. 2. It was examined how the presence of Maculinea teleius Bergsträsser, Maculinea alcon (Denis & Schiffermüller), and M. myrmicae larvae, representing different feeding and growth strategies inside host colonies, is associated with worker survival, the number of foragers, and colony productivity parameters such as growth and reproduction. 3. It was found that the presence of social parasites is negatively associated with total colony production and the production of ant larvae and gynes. Male production was lower only in nests infested by M. teleius, whereas the number of worker pupae was significantly higher in all types of infested colonies than in uninfested colonies. Laboratory observations indicated that nests infested by Maculinea larvae are characterised by a higher number of foragers compared to uninfested nests but we did not find differences in worker survival among nest types. 4. The observed pattern of social parasite influence on colony productivity can be explained by the feeding strategies of parasitic larvae. The most negative effect was found for M. teleius, which feeds on the largest host brood and eliminates a high number of sexual forms. The strong, adverse influence of all studied parasite species on gyne production may result in low queen production in Myrmica populations exposed to these social parasites.  相似文献   

4.
Models of virulence evolution for horizontally transmitted parasites often assume that transmission rate (the probability that an infected host infects a susceptible host) and virulence (the increase in host mortality due to infection) are positively correlated, because higher rates of production of propagules may cause more damages to the host. However, empirical support for this assumption is scant and limited to microparasites. To fill this gap, we explored the relationships between parasite life history and virulence in the salmon louse, Lepeophtheirus salmonis, a horizontally transmitted copepod ectoparasite on Atlantic salmon Salmo salar. In the laboratory, we infected juvenile salmon hosts with equal doses of infective L. salmonis larvae and monitored parasite age at first reproduction, parasite fecundity, area of damage caused on the skin of the host, and host weight and length gain. We found that earlier onset of parasite reproduction was associated with higher parasite fecundity. Moreover, higher parasite fecundity (a proxy for transmission rate, as infection probability increases with higher numbers of parasite larvae released to the water) was associated with lower host weight gain (correlated with lower survival in juvenile salmon), supporting the presence of a virulence–transmission trade‐off. Our results are relevant in the context of increasing intensive farming, where frequent anti‐parasite drug use and increased host density may have selected for faster production of parasite transmission stages, via earlier reproduction and increased early fecundity. Our study highlights that salmon lice, therefore, are a good model for studying how human activity may affect the evolution of parasite virulence.  相似文献   

5.
Polyandry is often difficult to explain because benefits of the behaviour have proved elusive. In social insects, polyandry increases the genetic diversity of workers within a colony and this has been suggested to improve the resistance of the colony to disease. Here we examine the possible impact of host genetic diversity on parasite evolution by carrying out serial passages of a virulent fungal pathogen through leaf-cutting ant workers of known genotypes. Parasite virulence increased over the nine-generation span of the experiment while spore production decreased. The effect of host relatedness upon virulence appeared limited. However, parasites cycled through more genetically diverse hosts were more likely to go extinct during the experiment and parasites cycled through more genetically similar hosts had greater spore production. These results indicate that host genetic diversity may indeed hinder the ability of parasites to adapt while cycling within social insect colonies.  相似文献   

6.
Ant microgynes are miniaturized queen forms found together with normal queens (macrogynes) in species occurring across the ant phylogeny. Their role is not yet fully understood: in some cases, they seem to be nonparasitic alternative reproductive morphs, in others incipient social parasites, and thus potential models for studying the evolution of social parasitism. Whether they are regarded as parasitic or not has traditionally been based on genetic differentiation from syntopic macrogynes and/or the queen/worker ratio of their offspring rather than measuring fitness traits. We confirmed previously reported genetic differentiation between microgynes and macrogynes of Myrmica rubra in a population studied for the first time. Further, we measured virulence and infectivity of M. rubra microgynes in a controlled laboratory experiment. Nests headed only by macrogynes (controls), only by microgynes, and naturally and artificially mixed nests were kept under identical conditions. We found reduction in worker numbers of both naturally and artificially mixed macrogyne/microgyne nests compared with controls, and strong reduction but also surprising variation in fitness of nests headed only by microgynes. Microgyne nests produced workers, males and microgynes. Microgynes did not themselves reproduce in artificially mixed nests, but reproduced most in naturally mixed nests that had lost their macrogyne queen. This, together with higher mortality of field‐collected macrogyne queens from naturally infested colonies and greater estimated relative age of macrogyne queens in naturally infected nests, suggests that they preferentially exploit older host colonies. We conclude that M. rubra microgynes are intraspecific social parasites specialized on exploiting old host colonies.  相似文献   

7.
Standard epidemiological theory predicts that parasites, which continuously release propagules during infection, face a trade‐off between virulence and transmission. However, little is known how host resistance and parasite virulence change during coevolution with obligate killers. To address this question we have set up a coevolution experiment evolving Nosema whitei on eight distinct lines of Tribolium castaneum. After 11 generations we conducted a time‐shift experiment infecting both the coevolved and the replicate control host lines with the original parasite source, and coevolved parasites from generation 8 and 11. We found higher survival in the coevolved host lines than in the matching control lines. In the parasite populations, virulence measured as host mortality decreased during coevolution, while sporeload stayed constant. Both patterns are compatible with adaptive evolution by selection for resistance in the host and by trade‐offs between virulence and transmission potential in the parasite.  相似文献   

8.
Many parasites alter the behaviour of their host to their own advantage, yet hosts often vary in their susceptibility to manipulation. The ecological and evolutionary implications of such variation can be profound, as resistant host populations may suffer lower parasite pressures than those susceptible to manipulation. To test this prediction, we assessed parasite‐induced aggressive behaviours across 16 populations of two Temnothorax ant species, many of which harbour the slavemaker ant Protomognathus americanus. This social parasite uses its Dufour's gland secretions to manipulate its hosts into attacking nestmates, which may deter defenders away from itself during invasion. We indeed find that colonies that were manipulated into attacking their Dufour‐treated nestmates were less aggressive towards the slavemaker than those that did not show slavemaker‐induced nestmate attack. Slavemakers benefited from altering their hosts’ aggression, as both the likelihood that slavemakers survived host encounters and slavemaker prevalence in ant communities increased with slavemaker‐induced nestmate attack. Finally, we show that Temnothorax longispinosus colonies were more susceptible to manipulation than Temnothorax curvispinosus colonies. This explains why T. curvispinosus colonies responded with more aggression towards invading slavemakers, why they were less likely to let slavemakers escape and why they were less frequently parasitized by the slavemaker than T. longispinosus. Our findings highlight that large‐scale geographic variation in resistance to manipulation can have important implications for the prevalence and host preference of parasites.  相似文献   

9.
Inquilines, workerless social parasites, frequently show advanced adaptations to their parasitic life style that indicate a long co-evolutionary history with their host. Ectatomma parasiticum, the first inquiline described in the poneromorph group, usurps established colonies of E. tuberculatum and produces only sexuals. In laboratory colonies, parasites were specifically attacked by the host workers, showing a failure in their social integration. Social interactions were frequent between parasites and their hosts, especially antennation, interpreted as attempts to promote colonial odor transfer. Inquilines destroyed eggs laid by the other queens (67 out of 209 eggs laid), including conspecific parasites, which is unusual. Such partial integration into the host colony and potential parasite virulence argue for a recent evolution of social parasitism in E. tuberculatum.  相似文献   

10.
11.
Social parasitism is a common phenomenon amongst ants that occurs in manifold variations with differing levels of parasite–host integration. Particularly, high levels of social integration occur amongst closely related species (Emery’s rule), which form mixed colonies with their hosts and comprise the vast majority of social parasites. Considerable lower levels of integration are typically found amongst unrelated species that live in clearly separated colonies. The formicine ant Polyrhachis lama, however, parasitises a phylogenetically distant host species, Diacamma sp. of the subfamily Ponerinae, but lives spatially mixed with the host colonies. Studies on integration and communication have indicated that P. lama shows a high degree of host integration. However, the allocation of brood care behaviour, a central aspect of parasite integration, has not been studied. Because all known ant social parasites that are fully mixed with their host colonies are also true brood parasites, we investigated the integration of P. lama brood. Our results demonstrate that the parasite brood has a high degree of spatial integration, although it remains functionally separated regarding nutritive brood care. This can be attributed to behavioural and morphological differences between the phylogenetically distant species. The observed spatial confinement of parasite brood, however, is most likely due to an unusual method of chemical host integration. The parasite brood remains accepted in the Diacamma colonies only under the presence of adult parasites. Altogether, this suggests an active mechanism of chemical integration based on the acceptance allomones originating from P. lama workers. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
1. Long‐term control of insects by parasites is possible only if the parasite populations persist. Because parasite transmission rate depends on host density, parasite populations may go extinct during periods of low host density. Vertical transmission of parasites, however, is independent of host density and may therefore provide a demographic bridge through times when their insect hosts are rare. 2. The nematode Howardula aoronymphium, which parasitises mycophagous species of Drosophila, can experience both horizontal and effectively vertical transmission, relative rates of which depend, in theory at least, on the density of hosts at breeding sites. 3. A nine‐generation experiment was carried out in which nematodes were transmitted either exclusively vertically or primarily horizontally. This experiment revealed that these parasites can persist and exhibit positive population growth even when there is only vertical transmission. 4. Assays at the end of the experiment revealed that the vertically transmitted nematodes had suffered no inbreeding depression and that they were similar to the horizontally transmitted nematodes in terms of virulence, infectivity, within‐host growth rate, and fecundity. Thus, vertical transmission of H. aoronymphium did not appear to compromise the ability of these parasites to control Drosophila populations.  相似文献   

13.
The majority of organisms host multiple parasite species, each of which can interact with hosts and competitors through a diverse range of direct and indirect mechanisms. These within‐host interactions can directly alter the mortality rate of coinfected hosts and alter the evolution of virulence (parasite‐induced host mortality). Yet we still know little about how within‐host interactions affect the evolution of parasite virulence in multi‐parasite communities. Here, we modeled the virulence evolution of two coinfecting parasites in a host population in which parasites interacted through cross immunity, immune suppression, immunopathology, or spite. We show (1) that these within‐host interactions have different effects on virulence evolution when all parasites interact with each other in the same way versus when coinfecting parasites have unique interaction strategies, (2) that these interactions cause the evolution of lower virulence in some hosts, and higher virulence in other hosts, depending on the hosts infection status, and (3) that for cross immunity and spite, whether parasites increase or decrease the evolutionarily stable virulence in coinfected hosts depended on interaction strength. These results improve our understanding of virulence evolution in complex parasite communities, and show that virulence evolution must be understood at the community scale.  相似文献   

14.
Parasites often affect the abundance and life‐history traits of their hosts. We studied the impact of a social parasite – a slavemaking ant – on host ant communities using two complementary field manipulations. In the first experiment, we analysed the effect of social parasite presence on host populations in one habitat. In a second experiment, conducted in two habitats, we used a cross‐fostering design, analysing the effect of sympatric and allopatric social parasites. In the first experiment, host colonies benefited to some extent from residing in parasite‐free areas, showing increased total production. Yet, in the second experiment, host colonies in plots containing social parasites were more productive, and this effect was most evident in response to allopatric social parasites. We propose several explanations for these inconsistent results, which are related to environmental variability. The discrepancies between the two habitats can be explained well by ecological variation as a result of differences in altitudes and climate. For example, ant colonies in the colder habitat were larger and, for one host species, colonies were more often polygynous. In addition, our long‐term documentation – a total of four measurements of community structure in 6 years – showed temporal variation in abundance and life‐history traits of ant colonies, unrelated to the manipulations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 559–570.  相似文献   

15.
Theory suggests that spatial structuring should select for intermediate levels of virulence in parasites, but empirical tests are rare and have never been conducted with castration (sterilizing) parasites. To test this theory in a natural landscape, we construct a spatially explicit model of the symbiosis between the ant-plant Cordia nodosa and its two, protecting ant symbionts, Allomerus and Azteca . Allomerus is also a castration parasite, preventing fruiting to increase colony fecundity. Limiting the dispersal of Allomerus and host plant selects for intermediate castration virulence. Increasing the frequency of the mutualist, Azteca , selects for higher castration virulence in Allomerus , because seeds from Azteca -inhabited plants are a public good that Allomerus exploits. These results are consistent with field observations and, to our knowledge, provide the first empirical evidence supporting the hypothesis that spatial structure can reduce castration virulence and the first such evidence in a natural landscape for either mortality or castration virulence.  相似文献   

16.
Studying fungal virulence is often challenging and frequently depends on many contexts, including host immune status and pathogen genetic background. However, the role of ploidy has often been overlooked when studying virulence in eukaryotic pathogens. Since fungal pathogens, including the human opportunistic pathogen Candida albicans, can display extensive ploidy variation, assessing how ploidy impacts virulence has important clinical relevance. As an opportunistic pathogen, C. albicans causes nonlethal, superficial infections in healthy individuals, but life‐threatening bloodstream infections in individuals with compromised immune function. Here, we determined how both ploidy and genetic background of C. albicans impacts virulence phenotypes in healthy and immunocompromised nematode hosts by characterizing virulence phenotypes in four near‐isogenic diploid and tetraploid pairs of strains, which included both laboratory and clinical genetic backgrounds. We found that C. albicans infections decreased host survival and negatively impacted host reproduction, and we leveraged these two measures to survey both lethal and nonlethal virulence phenotypes across the multiple C. albicans strains. In this study, we found that regardless of pathogen ploidy or genetic background, immunocompromised hosts were susceptible to fungal infection compared to healthy hosts. Furthermore, for each host context, we found a significant interaction between C. albicans genetic background and ploidy on virulence phenotypes, but no global differences between diploid and tetraploid pathogens were observed.  相似文献   

17.
It is predicted that host exploitation should evolve to maximize parasite fitness and that virulence (= parasite-induced host mortality) evolves along with the rate of host exploitation. If the life expectancy of a parasite is short, it is expected to evolve a higher rate of host exploitation and therefore higher virulence because the penalty to the parasite for killing the host is reduced. We tested this hypothesis by keeping for 14 months the horizontally transmitted microsporidian parasite Glugoides intestinalis in mono-clonal host cultures (Daphnia magna) under conditions of high and low host background mortality. High host mortality, and thus parasite mortality, was achieved by replacing weekly 70–80% of all hosts in a culture with uninfected hosts from stock cultures (Replacement lines). In the low-mortality treatment no replacement took place. Contrary to our expectation, parasites from the Replacement lines evolved a lower within-host growth rate and virulence than parasites from the Nonreplacement lines. Across lines we found a strong positive correlation between within-host growth rate and virulence. We did further experiments to answer the question why our data did not support the predictions. Sporophorous vesicles (SVs, spore clusters) were smaller in doubly infected than in singly infected host-gut cells, indicating that competition within cells bears costs for the parasite. Due to our experimental protocol, the average life span of infections had been much higher in the Nonreplacement lines. Since the number of parasites inside a host increases with the time since infection, long-lasting infections led to high frequencies of multiply infected host-gut cells. Therefore, we speculated that within-cell competition was more severe in the Nonreplacement lines and may have led to selection for accelerated within-host growth. SVs in the Nonreplacement lines were indeed significantly larger. Our results point out that single-factor explanations for the evolution of virulence can lead to wrong predictions and that multiple infections are an important factor in virulence evolution.  相似文献   

18.
The evolution of parasite life histories should usually have correlated effects on host survivorship and/or reproductive success. For example, parasites that reproduce more rapidly might be expected to cause greater reductions in host fitness. Important theoretical advances have recently been made on virulence evolution, but the results are not always consistent. Here I compare two models [ Q. Rev. Biol. 71 (1996) 37 ; Q. Rev. Biol. 75 (2000) 261 ] on the evolution of virulence that get qualitatively different results with respect to the effects of coinfection. I also construct a third model that attempts to connect these two formulations. The results suggest that parasite growth rates should increase as local host competition increases, unless relatedness is at equilibrium. In addition, the qualitative effect of adding coinfections on parasite growth rates depends critically on how the number of coinfections affects transmission success.  相似文献   

19.
Parasite transmission modes and the evolution of virulence   总被引:5,自引:0,他引:5  
A mathematical model is presented that explores the relationship between transmission patterns and the evolution of virulence for horizontally transmitted parasites when only a single parasite strain can infect each host. The model is constructed by decomposing parasite transmission into two processes, the rate of contact between hosts and the probability of transmission per contact. These transmission rate components, as well as the total parasite mortality rate, are allowed to vary over the course of an infection. A general evolutionarily stable condition is presented that partitions the effects of virulence on parasite fitness into three components: fecundity benefits, mortality costs, and morbidity costs. This extension of previous theory allows us to explore the evolutionary consequences of a variety of transmission patterns. I then focus attention on a special case in which the parasite density remains approximately constant during an infection, and I demonstrate two important ways in which transmission modes can affect virulence evolution: by imposing different morbidity costs on the parasite and by altering the scheduling of parasite reproduction during an infection. Both are illustrated with examples, including one that examines the hypothesis that vector-borne parasites should be more virulent than non-vector-borne parasites (Ewald 1994). The validity of this hypothesis depends upon the way in which these two effects interact, and it need not hold in general.  相似文献   

20.
The genetic structure of populations can be both a cause and a consequence of ecological interactions. For parasites, genetic structure may be a consequence of preferences for host species or of mating behaviour. Conversely, genetic structure can influence where conspecific interactions among parasites lay on a spectrum from cooperation to conflict. We used microsatellite loci to characterize the genetic structure of a population of the socially parasitic dulotic (aka “slave‐making”) ant (Polyergus mexicanus), which is known for its host‐specificity and conspecific aggression. First, we assessed whether the pattern of host species use by the parasite has influenced parasite population structure. We found that host species use was correlated with subpopulation structure, but this correlation was imperfect: some subpopulations used one host species nearly exclusively, while others used several. Second, we examined the viscosity of the parasite population by measuring the relatedness of pairs of neighbouring parasitic ant colonies at varying distances from each other. Although natural history observations of local dispersal by queens suggested the potential for viscosity, there was no strong correlation between relatedness and distance between colonies. However, 35% of colonies had a closely related neighbouring colony, indicating that kinship could potentially affect the nature of some interactions between colonies of this social parasite. Our findings confirm that ecological forces like host species selection can shape the genetic structure of parasite populations, and that such genetic structure has the potential to influence parasite‐parasite interactions in social parasites via inclusive fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号