首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Fibroblast growth factors (FGFs) constitute a family of at least 20 structurally related heparin‐binding polypeptides active in regulating cell growth, survival, differentiation and migration. FGF9, originally discovered as a glia‐activating factor, shares 30% sequence identity with other FGFs and has a unique spectrum of target‐cell specificity. FGF9 crystallized in the tetragonal space group I41, with unit‐cell parameters a = b = 151.9, c = 117.2 Å. The structure of the glycosylated protein has been refined to an R value of 21.0% with Rfree = 24.8%) at 2.6 Å resolution. The four molecules in the asymmetric unit are arranged in two non‐crystallographic dimers, with the dimer interface composed partly of residues from N‐ and C‐terminal extensions from the FGF core structure. Most of the receptor‐binding residues identified in FGF1– and FGF2–receptor complexes are buried in the dimer interface, with the β8–β9 loop stabilized in a particular conformation by an intramolecular hydrogen‐bonding network. The potential heparin‐binding sites are in a pattern distinct from FGF1 and FGF2. The carbohydrate moiety attached at Asn79 has no structural influence.  相似文献   

2.
Heparan sulfate (HS) interacts with diverse growth factors, including Wnt, Hh, BMP, VEGF, EGF, and FGF family members, and is a necessary component for their signaling. These proteins regulate multiple cellular processes that are critical during development. However, a major question is whether developmental changes occur in HS that regulate the activity of these factors. Using a ligand and carbohydrate engagement assay, and focusing on FGF1 and FGF8b interactions with FGF receptor (FR)2c and FR3c, this paper reveals global changes in HS expression in mouse embryos during development that regulate FGF and FR complex assembly. Furthermore, distinct HS requirements are identified for both complex formation and signaling for each FGF and FR pair. Overall, these results suggest that changes in HS act as critical temporal regulators of growth factor and morphogen signaling during embryogenesis.  相似文献   

3.
Fibroblast growth factors (FGF) play a critical role in bone growth and development affecting both chondrogenesis and osteogenesis. During the process of intramembranous ossification, which leads to the formation of the flat bones of the skull, unregulated FGF signaling can produce premature suture closure or craniosynostosis and other craniofacial deformities. Indeed, many human craniosynostosis disorders have been linked to activating mutations in FGF receptors (FGFR) 1 and 2, but the precise effects of FGF on the proliferation, maturation and differentiation of the target osteoblastic cells are still unclear. In this report, we studied the effects of FGF treatment on primary murine calvarial osteoblast, and on OB1, a newly established osteoblastic cell line. We show that FGF signaling has a dual effect on osteoblast proliferation and differentiation. FGFs activate the endogenous FGFRs leading to the formation of a Grb2/FRS2/Shp2 complex and activation of MAP kinase. However, immature osteoblasts respond to FGF treatment with increased proliferation, whereas in differentiating cells FGF does not induce DNA synthesis but causes apoptosis. When either primary or OB1 osteoblasts are induced to differentiate, FGF signaling inhibits expression of alkaline phosphatase, and blocks mineralization. To study the effect of craniosynostosis-linked mutations in osteoblasts, we introduced FGFR2 carrying either the C342Y (Crouzon syndrome) or the S252W (Apert syndrome) mutation in OB1 cells. Both mutations inhibited differentiation, while dramatically inducing apoptosis. Furthermore, we could also show that overexpression of FGF2 in transgenic mice leads to increased apoptosis in their calvaria. These data provide the first biochemical analysis of FGF signaling in osteoblasts, and show that FGF can act as a cell death inducer with distinct effects in proliferating and differentiating osteoblasts.  相似文献   

4.
    
Fibroblast growth factors (FGFs) constitute a family of 22 structurally related heparin‐binding polypeptides that are involved in the regulation of cell growth, survival, differentiation and migration. Here, a 1.4 Å resolution X‐ray structure of rat FGF1 is presented. Two molecules are present in the asymmetric unit of the crystal and they coordinate a total of five sulfate ions. The structures of human, bovine and newt FGF1 have been published previously. Human and rat FGF1 are found to have very similar structures.  相似文献   

5.
  总被引:2,自引:0,他引:2  
  相似文献   

6.
成纤维细胞生长因子家族(fibroblast growth factors,FGFs)及其受体FGFRs系统影响骨骼发育和形成过程,FGF与细胞表面FGFR结合,激活信号通路调控多种细胞生长、分化和凋亡。骨是FGF的重要靶器官,研究表明FGFs/FGFRs系统对骨组织成骨细胞、破骨细胞、软骨细胞的增殖和分化起重要调控作用,本文就FGFs/FGFRs系统对骨组织调节研究进展进行综述。  相似文献   

7.
    
Fibroblast growth factors (FGFs) encoded by the FGF gene family can regulate development and physiology in animals. However, their evolutionary characteristics in Carnivora are largely unknown. In this study, we identified 660 sequences of three types of FGF genes from 30 unannotated genomes of Carnivora animals (before 7th May 2020), and the FGF genes from 52 Carnivora species were analyzed through the method of comparative genomics. Phylogenetic and selective pressure analyses were carried out based on the FGF genes of these 52 Carnivora species. The phylogenetic analysis results demonstrated that the FGF gene family was divided into 10 subfamilies and that FGF5 formed one clade rather than belonging to the subfamilies of FGF4 and FGF6. The evolutionary analysis results showed that the FGF genes were prominently subjected to purifying selection and were highly conserved in the process of Carnivora evolution. We also carried out phylogenetic comparative analyses, which indicated that the habitat was one of the factors that shaped the evolution of Carnivora FGF genes. The FGF1 and FGF6 genes were positively selected in the Carnivora animals, and positive selection signals were detected for the FGF19 gene in semiaquatic Carnivora animals. In summary, we clarified the phylogenetic and evolutionary characteristics of Carnivora FGF genes and provided valuable data for future studies on evolutionary characterization of Carnivora animals.  相似文献   

8.
9.
    
Growth factors play key roles in influencing cell fate and behaviour during development. The epithelial cells and fibre cells that arise from the lens vesicle during lens morphogenesis are bathed by aqueous and vitreous, respectively. Vitreous has been shown to generate a high level of fibroblast growth factor (FGF) signalling that is required for secondary lens fibre differentiation. However, studies also show that FGF signalling is not sufficient and roles have been identified for transforming growth factor-β and Wnt/Frizzled families in regulating aspects of fibre differentiation. In the case of the epithelium, key roles for Wnt/β-catenin and Notch signalling have been demonstrated in embryonic development, but it is not known if other factors are required for its formation and maintenance. This review provides an overview of current knowledge about growth factor regulation of differentiation and maintenance of lens cells. It also highlights areas that warrant future study.  相似文献   

10.
Olwin BB 《Cytotechnology》1989,2(4):351-365
Heparin-binding growth factors modulate diverse biological activities including cellular proliferation, cellular differentiation, morphogenesis, and angiogenesis. Biochemical characterization for two members of the heparin-binding growth factor family, acidic and basic fibroblast growth factors, is extensive, while characterization of the remaining five members is forthcoming. Cell surface receptors have been identified for acidic and basic fibroblast growth factors, but little is known concerning their sites of action in vivo or the mechanisms involved in transducing the energy of growth factor binding to a biological response. An understanding of the biological basis for the diversity of the heparin binding growth factor family and the in vivo actions of these factors will prove a major challenge to future research efforts.  相似文献   

11.
Summary A serum-free culture system supplemented with neural tissue extract for normal and tumor human esophagi was applied to the culture of mouse esophageal epithelium. Similar to mouse mesenchyme and skin epithelium, esophageal epithelial lines (MEE) emerged after serial culture. The cells had an apparent unlimited life span but retained morphology and other characteristics of normal epithelial cells. The cells formed a small cyst consisting of keratined squamous epithelium in syngenic hosts. A screen for growth factors that stimulated growth of the nonmalignant MEE cells in the absence of neural extract revealed that epidermal growth factor (EGF) and heparin-binding (fibroblast) growth factors (HBGF) were most effective. An HBGF-like activity was apparent in extracts of rapidly proliferating but not quiescent MEE cells at low or confluent densities. A cloned cell line (MEE/C8) was selected from MEE cell cultures in the absence of neural extract. MEE/C8 cells proliferated independent of either EGF or HBGF at rates equal to MEE cells, cell extracts exhibited HBGF-like activity at all stages of proliferation, and the cells formed large invasive tumors in syngenic hosts. The HBGF-like activity present in extracts of tumorigenic MEE/C8 and proliferating nonmalignant MEE cells had properties similar to HBGF-1 (acidic fibroblast growth factor). These results constitute a cultured mouse esophageal epithelial cell model for study of conversion of immortalized premalignant cells to malignant cells, and suggest that conversion from a state of cell cycle-dependent autocrine expression of one or more members of the HBGF family to a state of constitutive expression correlates with and may contribute to malignancy. The work was supported in part by grants CA37589 and DK35310 to Dr. McKeehan, from the National Cancer Institute, Bethesda, MD.  相似文献   

12.
Recombinant human apolipoprotein E3 (apoE), purified from E. coli, inhibited the proliferation of several cell types, including endothelial cells and tumor cells in a dose- and time-dependent manner. ApoE inhibited both de novo DNA synthesis and proliferation as assessed by an increase in cell number. Maximal inhibition of cell growth by apoE was achieved under conditions where proliferation was dependent on heparin-binding growth factors. Thus, at low serum concentrations (0–2.5%) basic fibroblast growth factor (bFGF) stimulated the proliferation of bovine aortic endothelial (BAE) cells severalfold. The bFGF-dependent proliferation was dramatically inhibited by apoE with an IC50 ≈ 50 nM. Under conditions where cell proliferation was mainly serum-dependent, apoE also suppressed growth but required higher concentrations to be effective (IC50 ≈ 500 nM). ApoE also inhibited growth of bovine corneal endothelial cells, human melanoma cells, and human breast carcinoma cells. The IC50 values obtained with these cells were generally 3–5 times higher than with BAE cells. Inhibition of cell proliferation by apoE was reversible and dependent on the time of apoE addition to the culture. In addition, apoE inhibited the chemotactic response of endothelial cells that were induced to migrate by a gradient of soluble bFGF. Inhibition of cell proliferation by apoE may be mediated both by competition for growth factor binding to proteoglycans and by an antiadhesive activity of apoE. The present results demonstrate that apoE is a potent inhibitor of proliferation of several cell types and suggest that apoE may be effective in modulating angiogenesis, tumor cell growth, and metastasis.  相似文献   

13.
  总被引:1,自引:0,他引:1  
The fibroblast growth factor (FGF) family consists of 22 widely expressed regulatory polypeptides and controls a broad spectrum of cellular processes. Accumulating data show that FGF9 plays important roles both in embryogenesis and in adult tissue homeostasis. Ablation of Fgf9 alleles leads to lethality at the neonatal stage mainly due to malformations of the lung, as well as causing male-to-female sex reversal. To circumvent the neonatal lethality resulting from disruption of the Fgf9 gene, which hinders further characterization of the role of FGF9 in adult tissue function and homeostasis, we generated an Fgf9 conditional null allele for spatiotemporal- and tissue-specific disruption of Fgf9. Using gene targeting in mouse embryonic stem (ES) cells, we introduced two loxP sites flanking exon 1 in the Fgf9 allele, which encodes 93 amino acid residues at the N-terminal of FGF9. Our results indicate that the Fgf9 conditional null allele is a true conditional null that encodes wildtype activity and reverts to a null allele after recombination mediated by the Cre recombinase.  相似文献   

14.
Role of platelet-derived growth factor in wound healing   总被引:16,自引:0,他引:16  
Platelet-derived growth factor (PDGF) is a potent activator for cells of mesenchymal origin. PDGF stimulates chemotaxis, proliferation, and new gene expression in monocytes-macrophages and fibroblasts in vitro, cell types considered essential for tissue repair. Therefore, we analyzed the influence of exogenously administered recombinant B chain homodimers of PDGF (PDGF-BB) on two experimental tissue repair paradigms, incisional and excisional wounds. In both types of wounds, as little as 20-200 picomoles applied a single time to wounds significantly augmented the time dependent influx of inflammatory cells and fibroblasts and accelerated provisional extracellular matrix deposition and subsequent collagen formation. In incisional wounds, PDGF-BB augmented wound breaking strength 50-70% over the first 3 weeks; in excisional wounds, PDGF-BB accelerated time to closure by 30%. PDGF-BB exaggerated, but did not alter, the normal course of soft tissue repair, resulting in a significant acceleration of healing. Long term observations established no apparent differences between PDGF-BB treated and non-treated wounds. Thus, the vulnerary effects of PDGF-BB were transient and fully reversible in both wound healing models. Furthermore, analysis of PDGF-treated and non-treated wounds has provided important insights into mechanisms of normal and deficient tissue repair processes. PDGF appears to transduce its signal through wound macrophages and may trigger the induction of positive autocrine feedback loops and synthesis of endogenous wound PDGF and other growth factors, thereby enhancing the cascade of tissue repair processes required for a fully-healed wound. Thus, PDGF and other wound produced polypeptide growth factors may be the critical regulators of extracellular matrix deposition within healing wounds.  相似文献   

15.
    
Tail regeneration in urodeles is dependent on the spinal cord (SC), but it is believed that anuran larvae regenerate normal tails without the SC. To evaluate the precise role of the SC in anuran tail regeneration, we developed a simple operation method to ablate the SC completely and minimize the damage to the tadpole using Xenopus laevis . The SC-ablated tadpole regenerated a twisted and smaller tail. These morphological abnormalities were attributed to defects in the notochord (NC), as the regenerated NC in the SC-ablated tail was short, slim and twisted. The SC ablation never affected the early steps of the regeneration, including closure of the amputated surface with epidermis and accumulation of the NC precursor cells. The proliferation rate of the NC precursor cells, however, was reduced, and NC cell maturation was retarded in the SC-ablated tail. These results show that the SC has an essential role in the normal tail regeneration of Xenopus larvae, especially in the proliferation and differentiation of the NC cells. Gene expression analysis and implantation of a bead soaked with growth factor showed that fibroblast growth factor-2 and -10 were involved in the signaling molecules, which were expressed in the SC and stimulated growth of the NC cells.  相似文献   

16.
    
The fusion of sperm and oocytes determines the fertilization competence and subsequent development of embryos, which, in turn, can be affected by various proteins and DNA methylation. However, several factors in this whole regulation process remain unknown, especially in yaks. Here, we report that fibroblast growth factor 10 (FGF10) is an important growth factor that can enhance the maturation rate of yak oocytes and the motility of frozen spermatozoa. Subsequent blastocyst quality was also improved by increasing the total cell number and level of pregnancy-associated protein in blastocysts. These effects were significantly high in the group that received the 5 ng/ml FGF10 treatment, during both in vitro maturation (IVM) and capacitation. Our data show that the effects of FGF10 were dose-dependent at vital steps of embryogenesis in vitro. Furthermore, quantitative polymerase chain reaction, western blot analysis, and immunofluorescence demonstrated that the levels of CD9, CD81, DNMT1, and DNMT3B in both mature cumulus-oocyte complexes and capacitated sperms were regulated by FGF10, which was also highly expressed in the group treated with 5 ng/ml FGF10 during both IVM and capacitation. From our present study, we concluded that FGF10 promotes yak oocyte fertilization competence and subsequent blastocyst quality, and could also regulate CD9, CD81, DNMT1, and DNMT3B to optimize sperm–oocyte interactions and DNA methylation during fertilization.  相似文献   

17.
18.
Growth factor-induced signaling by receptor tyrosine kinases (RTKs) plays a central role in embryonic development and in pathogenesis and, hence, is tightly controlled by several regulatory proteins. Recently, Sprouty, an inhibitor of Drosophila development-associated RTK signaling, has been discovered. Subsequently, four mammalian Sprouty homologues (Spry-1-4) have been identified. Here, we report the functional characterization of two of them, Spry-1 and -2, in endothelial cells. Overexpressed Spry-1 and -2 inhibit fibroblast growth factor- and vascular endothelial growth factor-induced proliferation and differentiation by repressing pathways leading to p42/44 mitogen-activating protein (MAP) kinase activation. In contrast, although epidermal growth factor-induced proliferation of endothelial cells was also inhibited by Spry-1 and -2, activation of p42/44 MAP kinase was not affected. Biochemical and immunofluorescence analysis of endogenous and overexpressed Spry-1 and -2 reveal that both Spry-1 and -2 are anchored to membranes by palmitoylation and associate with caveolin-1 in perinuclear and vesicular structures. They are phosphorylated on serine residues and, upon growth factor stimulation, a subset is recruited to the leading edge of the plasma membrane. The data indicate that mammalian Spry-1 and -2 are membrane-anchored proteins that negatively regulate angiogenesis-associated RTK signaling, possibly in a RTK-specific fashion.  相似文献   

19.
    
Basic fibroblast growth factor (FGF-2) and matrix metalloproteinases (MMPs) play key roles in vascular remodeling. Because FGF-2 controls a number of proteolytic activities in various cell types, we tested its effect on vascular endothelial cell expression of MMP-3 (stromelysin-1), a broad-spectrum proteinase implicated in coronary atherosclerosis. Endothelial cells (EC) from FGF-2-/- mice are highly responsive to exogenous FGF-2 and were therefore used for this study. The results showed that treatment of microvascular EC with human recombinant FGF-2 results in strong induction of MMP-3 mRNA and protein expression. Upregulation of MMP-3 mRNA by FGF-2 requires de novo protein synthesis and activation of the ERK-1/2 pathway. FGF-2 concentrations (5-10 ng/ml) that induce rapid and prolonged (24 h) activation of ERK-1/2 upregulate MMP-3 expression. In contrast, lower concentrations (1-2 ng/ml) that induce robust but transient (<8 h) ERK-1/2 activation are ineffective. Inhibition of ERK-1/2 activation at different times (-0.5 h to +8 h) of EC treatment with effective FGF-2 concentrations blocks MMP-3 upregulation. Thus, FGF-2 induces EC expression of MMP-3 with a threshold dose effect that requires sustained activation of the ERK-1/2 pathway. Because FGF-2 controls other EC functions with a linear dose effect, these features indicate a unique role of MMP-3 in vascular remodeling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号