首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The anterior segment of the vertebrate eye includes the cornea, iris, ciliary body, trabecular meshwork, and lens. Although malformations of these structures have been implicated in many human eye diseases, little is known about the molecular mechanisms that control their development. To identify genes involved in anterior segment formation, we developed a large-scale in situ hybridization screen and examined the spatial and temporal expression of over 1000 genes during eye development. This screen identified 62 genes with distinct expression patterns in specific eye structures, including several expressed in novel patterns in the anterior segment. Using these genes as developmental markers, we tested for the presence of inductive signals that control the differentiation of anterior segment tissues. Organ culture recombination experiments showed that a chick lens is capable of inducing the expression of markers of the presumptive iris and ciliary body in the developing mouse neural retina. The inducing activity from the lens acts only over short ranges and is present at multiple stages of eye development. These studies provide molecular evidence that an evolutionarily conserved signal from the lens controls tissue specification in the developing optic cup.  相似文献   

3.
Smads2 and 3 transduce signals of TGF-beta from the cell surface to the nucleus. We used mice with a targeted deletion of Smad3 to study the specific contributions of this signaling pathway to pathogenic effects of TGF-beta. Focusing on models involving epithelial-to-mesenchymal transition (EMT), including injury to the lens and retina of the eye and to the kidney, we have found that loss of Smad3 blocks EMT and attenuates development of fibrotic sequelae. Smad3 also plays a critical role in both the tumor suppressor and pro-metastatic effects of TGF-beta in carcinogenesis. These observations suggest that development of small molecule inhibitors of Smad3 might have clinical application in treatment of fibrotic diseases as well as late stage cancers.  相似文献   

4.
During the development of the anterior segment of the eye, neural crest mesenchyme cells migrate between the lens and the corneal epithelium. These cells contribute to the structures lining the anterior chamber: the corneal endothelium and stroma, iris stroma, and trabecular meshwork. In the present study, removal of the lens or replacement of the lens with a cellulose bead led to the formation a disorganized aggregate of mesenchymal cells beneath the corneal epithelium. No recognizable corneal endothelium, corneal stroma, iris stroma, or anterior chamber was found in these eyes. When the lens was replaced immediately after removal, a disorganized mass of mesenchymal cells again formed beneath the corneal epithelium. However, 2 days after surgery, the corneal endothelium and the anterior chamber formed adjacent to the lens. When the lens was removed and replaced such that only a portion of its anterior epithelial cells faced the cornea, mesenchyme cells adjacent to the lens epithelium differentiated into corneal endothelium. Mesenchyme cells adjacent to lens fibers did not form an endothelial layer. The cell adhesion molecule, N-cadherin, is expressed by corneal endothelial cells. When the lens was removed the mesenchyme cells that accumulated beneath the corneal epithelium did not express N-cadherin. Replacement of the lens immediately after removal led to the formation of an endothelial layer that expressed N-cadherin. Implantation of lens epithelia from older embryos showed that the lens epithelium maintained the ability to support the expression of N-cadherin and the formation of the corneal endothelium until E15. This ability was lost by E18. These studies provide evidence that N-cadherin expression and the formation of the corneal endothelium are regulated by signals from the lens. N-cadherin may be important for the mesenchymal-to-epithelial transformation that accompanies the formation of the corneal endothelium.  相似文献   

5.
Experimental manipulation and other lines of evidence indicate that the lens plays a prominent role in the growth and differentiation of the vertebrate eye. Here we describe a lens transplantation method for studying the role of the lens in teleost eye development. The method involves three steps: (1) preparing embryos for the operations by embedding them in agar, (2) microsurgery with tungsten needles to remove the lens from a donor embryo and insert it into the optic cup of a host embryo lacking its own lens, and (3) a recovery period allowing surface ectoderm to close over the wound left by insertion of the lens into the host embryo. A movie illustrating the method can be found at http://www.life.umd.edu/labs/jeffery. A troubleshooting guide and summary of assays for evaluating the development of the transplanted lens and its effects on other eye parts, including the retina, are presented. Finally, some current applications of the lens transplantation method are briefly described: (1) determination of the autonomy of zebrafish lens mutants and (2) investigation of the role of the lens in eye degeneration in the cavefish Astyanax. The transplantation method will help characterize the mechanisms through which vertebrate eye development is regulated by the lens.  相似文献   

6.
In larval X. laevis the capacity to regenerate a lens under the influence of inductive factors present in the vitreous chamber is restricted to the outer cornea and pericorneal epidermis (Lentogenic Area, LA). However, in early embryos, the whole ectoderm is capable of responding to inductive factors of the larval eye forming lens cells. In a previous paper, Cannata et al. (2003) demonstrated that the persistence of lens-forming competence in the LA is the result of early signals causing lens-forming bias in the presumptive LA and of late signals from the eye causing cornea development. This paper analyzes 1) the decrease of the lens-forming capacity in ectodermal regions both near LA (head epidermis) and far from LA (flank epidermis) during development, 2) the capacity of the head epidermis and flank epidermis to respond to lens-competence promoting factors released by an eye transplanted below these epidermal regions, and 3) the eye components responsible for the promoting effect of the transplanted eye. Results were obtained by implanting fragments of ectoderm or epidermis into the vitreous chamber of host tadpoles and by evaluating the percentage of implants positive to a monoclonal antibody anti-lens. These results demonstrated that the lens-forming competence in the flank region is lost at the embryonic stage 30/31 and is weakly restored by eye transplantation; however, lens-forming competence in the head region is lost at the larval stage 48 and is strongly restored by eye transplantation. The authors hypothesize that during development the head ectoderm outside the LA is attained by low levels of the same signals that attain the LA and that these signals are responsible for the maintenance of lens-forming competence in the cornea and pericorneal epidermis of the larva. In this hypothesis, low levels of these signals slacken the decrease of the lens-forming competence in the head ectoderm and make the head epidermis much more responsive than the flank epidermis to the effect of promoting factors released by a transplanted eye. Results obtained after transplantation of eyes deprived of some components indicate that the lens and the retina are the main source of these promoting factors. The immunohistochemical detection of the FGFR-2 (bek variant) protein in the epidermis of stage 53 larvae submitted to eye transplantation at stage 46 showed that the eye transplantation increased the level of FGFR-2 protein in the head epidermis but not in the flank epidermis, indicating that the lens-forming competence in X. laevis epidermis could be related to the presence of an activated FGF receptor system in the responding tissue.  相似文献   

7.
8.
During mammalian ocular development, several signaling pathways control the spatiotemporal highly defined realization of the three-dimensional eye architecture. Given the complexity of these inductive signals, the developing eye is a sensitive organ for several diseases.In this study, we investigated a Dkk1+/− haploinsufficiency during eye development, resulting in coloboma and anterior eye defects, two common developmental eye disorders. Dkk1 impacts eye development from a defined developmental time point on, and is critical for lens separation from the surface ectoderm via β-catenin mediated Pdgfrα and E-cadherin expression. Dkk1 does not impact the dorso ventral retina patterning in general but is critical for Shh dependent Pax2 extension into the midline region.The described results also indicate that the retinal Dkk1 dose is critical for important steps during eye development, such as optic fissure closure and cornea formation. Further analysis of the relationship between Dkk1 and Shh signaling revealed that Dkk1 and Shh coordinatively control anterior head formation and eye induction. During eye development itself, retinal Dkk1 activation is depending on cilia mediated Gli3 regulation. Therefore, our data essentially improve the knowledge of coloboma and anterior eye defects, which are common human eye developmental defects.  相似文献   

9.
Total regeneration of experimentally excised lens from the dorsal part of the iris-pigmented epithelium of newts has been a key model of tissue regeneration via cells originating from a foreign tissue. Due to the strict spatial restriction of the lens origin in the newt iris, it has often been assumed that only the dorsal iris cells are endowed with an intrinsic potential to give rise to lens tissues. However, our reinvestigation of the process revealed completely different mechanisms underlying lens regeneration and its spatial restriction, comprising the following two steps: (i) Fibroblast growth factor (FGF) 2-dependent proliferation of iris-pigmented epithelium and activation of early lens genes ( Pax6, Sox2, MafB ) over the entire circumference of the iris; and (ii) dorsal iris-restricted activation of the canonical Wnt signals (involving Wnt2b and Frizzeld4) that leads to localized expression of late lens genes ( Prox1, Sox1, β-crystallin ). Injection of FGF2 into normal eyes specifically elicited the second lens development from the dorsal iris, and the administration of recombinant Wnt3a to the cultured iris-pigmented epithelium caused even ventral iris-derived lens development. Thus, it is concluded that the regulation of FGF2 and Wnt signals is a determinative of the iris-derived lens regeneration in the newt eye.  相似文献   

10.
The lens of the eye is derived from the non-neural ectoderm situated next to the optic vesicle. Fibroblast growth factor (FGF) signals play a major role at various stages of vertebrate lens development ranging from induction and proliferation to differentiation. Less is however known about the identity of genes that are induced by FGF activity within the lens. We have isolated and characterized mouse cytoplasmic activation/proliferation-associated protein-2 (Caprin2), with domains belonging to both the Caprin family and the C1q and tumour necrosis factor (TNF) super-family. Here we show that Caprin2 is expressed in the developing vertebrate lens in mouse and chick, and that Caprin2 expression is up-regulated in primary lens fiber cells, after the induction of crystallins the earliest known markers for differentiated lens fiber cells. Caprin2 is subsequently down-regulated in the centre of the lens at the time and at the position of the first fiber cell denucleation and terminal differentiation. In vitro analyses of lens fiber cell differentiation provide evidence that FGF activity emanating from neighboring prospective retinal cells is required and that FGF8 activity is sufficient to induce Caprin2 in lens fiber cells. These results not only provide evidence that FGF signals induce the newly characterized protein Caprin2 in the lens, but also support the general idea that FGF signals are required for lens fiber cell differentiation.  相似文献   

11.
Mutations in the Pax 6 homologs of mammals and insects prevent eye development and targeted expression of both mammal and insect Pax 6 homologs is capable of inducing functional ectopic eyes. Supported by RNA interference experiments in planarians and nemerteans, these findings indicate that Pax 6 is a universal master control gene for eye morphogenesis. Since all metazoan eyes use rhodopsin as a photoreceptor molecule and the same master control gene for eye development, we postulate a monophyletic origin of the various eye types. The finding of well developed eyes in jellyfish which essentially lack a brain, leads us to propose that the eye as a sensory organ evolved before the brain which is an information processing organ. The finding of highly developed eyes with a lens, vitreous body, stacked membranes like a retina and shielding pigment in unicellular dinoflagellates, raises the possibility that the prototypic eyes might have been acquired from symbionts.  相似文献   

12.
Growth factor signaling, mediated via receptor tyrosine kinases (RTKs), needs to be tightly regulated in many developmental systems to ensure a physiologically appropriate biological outcome. At one level this regulation may involve spatially and temporally ordered patterns of expression of specific RTK signaling antagonists, such as Sef (similar expression to fgfs). Growth factors, notably FGFs, play important roles in development of the vertebrate ocular lens. FGF induces lens cell proliferation and differentiation at progressively higher concentrations and there is compelling evidence that a gradient of FGF signaling in the eye determines lens polarity and growth patterns. We have recently identified the presence of Sef in the lens, with strongest expression in the epithelial cells. Given the important role for FGFs in lens developmental biology, we employed transgenic mouse strategies to determine if Sef could be involved in regulating lens cell behaviour. Over-expressing Sef specifically in the lens of transgenic mice led to impaired lens and eye development that resulted in microphthalmia. Sef inhibited primary lens fiber cell elongation and differentiation, as well as increased apoptosis, consistent with a block in FGFR-mediated signaling during lens morphogenesis. These results are consistent with growth factor antagonists, such as Sef, being important negative regulators of growth factor signaling. Moreover, the lens provides a useful paradigm as to how opposing gradients of a growth factor and its antagonist could work together to determine and stabilise tissue patterning during development and growth.  相似文献   

13.
Members of the TGFbeta superfamily of growth and differentiation factors, including the TGFbeta, BMP, activin and nodal families, play important signaling roles throughout development. This paper summarizes some of the functions of these ligands in lens development. Targeted deletion of the genes encoding one of the BMP receptors, Alk3 (BMP receptor-1A), showed that signaling through this receptor is essential for normal lens development. Lenses lacking Alk3 were smaller than normal, with thin epithelial layers. The fiber cells of Alk3 null lenses became vacuolated and degenerated within the first week after birth. Lenses lacking Alk3 function were surrounded by abnormal mesenchymal cells, suggesting that the lenses provided inappropriate signals to surrounding tissues. Lens epithelial and fiber cells contained endosomes that were associated with activated (phosphorylated) SMAD1 and SMAD2. Endosomal localization of pSMAD1 was reduced in the absence of Alk3 signaling. The presence of pSMAD2 in lens fiber cell nuclei and the observation that the activin antagonist follistatin inhibited lens cell elongation suggested that an activin-like molecule participates in lens fiber cell differentiation. Lenses deficient in type II TGFbeta receptors were clear and had fiber cells of normal morphology. This suggests that TGFbeta signaling is not essential for the normal differentiation of lens fiber cells. The targeted deletion of single or multiple receptors of the TGFbeta superfamily in the lens should further characterize the role of these signaling molecules in lens development. This approach may also provide a useful way to define the downstream pathways that are activated by these receptors during the development of the lens and other tissues.  相似文献   

14.
After lentectomy through the pupillary hole, the outer cornea of larval Xenopus laevis can undergo transdifferentiation to regenerate a new lens. This process is elicited by inductive factor(s) produced by the neural retina and accumulated into the vitreous chamber. During embryogenesis, the outer cornea develops from the outer layer of the presumptive lens ectoderm (PLE) under the influence of the eye cup and the lens. In this study, we investigated whether the capacity of the outer cornea to regenerate a lens is the result of early inductive signals causing lens-forming bias and lens specification of the PLE, or late inductive signals causing cornea formation or both signals. Fragments of larval epidermis or cornea developed from ectoderm that had undergone only one kind of inductive signals, or both kinds of signals, or none of them, were implanted into the vitreous chamber of host larvae. The regeneration potential and the lens-forming transformations of the implants were tested using an antisense probe for pax6 as an earlier marker of lens formation and a monoclonal antibody anti-lens as a definitive indicator of lens cell differentiation. Results demonstrated that the capacity of the larval outer cornea to regenerate a lens is the result of both early and late inductive signals and that either early inductive signals alone or late inductive signals alone can elicit this capacity.  相似文献   

15.
《Organogenesis》2013,9(3):191-201
The major role of the eye lens is to transmit and focus images onto the retina. For this function, the lens needs to develop and maintain the correct shape, notably, the precise curvature and high-level order and organization of its elements. The lens is mainly comprised of highly elongated fiber cells with hexagonal cross-sectional profiles that facilitate regular packing. Collectively, they form concentrically arranged layers around the anterior-posterior polar axis, and their convex curvature contributes to the spheroidal shape of the lens. Although the lens has been a popular system for developmental studies, little is known about the mechanism(s) that underlies the development of its exquisite three-dimensional cellular architecture. In this review, we will describe our recent work, which shows how planar cell polarity (PCP) operates in lens and contributes to its morphogenesis. We believe that the lens will be a useful model system to study PCP in general and gain insights into mechanisms that generate high-level cellular order during development.  相似文献   

16.
The major role of the eye lens is to transmit and focus images onto the retina. For this function, the lens needs to develop and maintain the correct shape, notably, the precise curvature and high-level order and organization of its elements. The lens is mainly comprised of highly elongated fiber cells with hexagonal cross-sectional profiles that facilitate regular packing. Collectively, they form concentrically arranged layers around the anterior-posterior polar axis, and their convex curvature contributes to the spheroidal shape of the lens. Although the lens has been a popular system for developmental studies, little is known about the mechanism(s) that underlies the development of its exquisite three-dimensional cellular architecture. In this review, we will describe our recent work, which shows how planar cell polarity (PCP) operates in lens and contributes to its morphogenesis. We believe that the lens will be a useful model system to study PCP in general and gain insights into mechanisms that generate high-level cellular order during development.  相似文献   

17.
BMP signaling is required for development of the ciliary body   总被引:4,自引:0,他引:4  
The ciliary body in the eye secretes aqueous humor and glycoproteins of the vitreous body and maintains the intraocular pressure. The ciliary muscle controls the shape of the lens through the ciliary zonules to focus the image onto the retina. During embryonic development, the ciliary epithelium is derived from the optic vesicle, but the molecular signals that control morphogenesis of the ciliary body are unknown. We report that lens-specific expression of a transgenic protein, Noggin, can block BMP signaling in the mouse eye and result in failure in formation of the ciliary processes. Co-expression of transgenic BMP7 restores normal development of the ciliary epithelium. Ectopic expression of Noggin also promotes differentiation of retinal ganglion cells. These results indicate that BMP signaling is required for development of the ciliary body and may also play a role in regulation of neuronal differentiation in the developing eye.  相似文献   

18.
花背蟾蜍眼早期形态发生中其主要部分空间联系的研究   总被引:3,自引:0,他引:3  
王子仁  仝允栩 《动物学报》1990,36(3):231-235
本文用扫描电镜研究了花背蟾蜍眼早期形态发生中视泡和预定晶状体、晶状体和预定角膜上皮间的紧密接触,此后在接触处出现间隙,其中存在呈网状的原纤维(fibril),这些原纤维的数量随两侧相连组织的分化,表现出增多、减少和逐渐消失的规律性变化,据此推测其成分属细胞外基质,对促进相连组织的分化起重要作用。  相似文献   

19.
The Mexican tetra Astyanax mexicanus has many of the favorable attributes that have made the zebrafish a model system in developmental biology. The existence of eyed surface (surface fish) and blind cave (cavefish) dwelling forms in Astyanax also provides an attractive system for studying the evolution of developmental mechanisms. The polarity of evolutionary changes and the environmental conditions leading to the cavefish phenotype are known with certainty, and several different cavefish populations have evolved constructive and regressive changes independently. The constructive changes include enhancement of the feeding apparatus (jaws, taste buds, and teeth) and the mechanosensory system of cranial neuromasts. The homeobox gene Prox 1, which is expressed in the expanded taste buds and cranial neuromasts, is one of the genes involved in the constructive changes in sensory organ development. The regressive changes include loss of pigmentation and eye degeneration. Although adult cavefish lack functional eyes, small eye primordia are formed during embryogenesis, which later arrest in development, degenerate, and sink into the orbit. Apoptosis and lens signaling to other eye parts, such as the cornea, iris, and retina, result in the arrest of eye development and ultimate optic degeneration. Accordingly, an eye with restored cornea, iris, and retinal photoreceptor cells is formed when a surface fish lens is transplanted into a cavefish optic cup, indicating that cavefish optic tissues have conserved the ability to respond to lens signaling. Genetic analysis indicates that multiple genes regulate eye degeneration, and molecular studies suggest that Pax6 may be one of the genes controlling cavefish eye degeneration. Further studies of the Astyanax system will contribute to our understanding of the evolution of developmental mechanisms in vertebrates.  相似文献   

20.
Formation of the mammalian eye requires a complex series of tissue interactions that result in an organ of exquisite sensory capability. The early steps in eye development involve extensive cell death associated with morphogenesis. Later, suppression of programmed cell death is essential for tissue differentiation and in the adult, the immune privileged status of the eye is maintained in part through factors that induce inflammatory cell apoptosis. Experimental evidence suggests that suppression of apoptosis in cells of the lens lineage by fibroblast growth factors is one component of their action during lens morphogenesis. Fibroblast growth factors are also required for normal lens fiber-cell differentiation. This includes a degenerative step for organelles that is presumably an adaptation for the clearance of light scattering elements from the optic axis. The process of organelle degeneration may be related to apoptosis in a few of its features. Actively-induced apoptosis becomes important for eye development as the temporary ocular vasculatures regress. This too, is presumably an adaptation for the disposal of cells that would disturb the passage of light to the retina. Ocular macrophages appear to be essential for the induction of apoptosis in the endothelial cells comprising the ocular vasculatures. In the adult, inflammatory cells entering the eye are exposed to the pro-apoptotic agents transforming growth factor-beta2 and Fas ligand. The expression of these molecules in the eye, and their action in killing inflammatory cells, has evolved as a means of preventing inflammation and subsequent loss of vision. Thus, the eye offers a unique and versatile system for studying the role of programmed cell death in lens development, vascular regression and immune privilege.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号