首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Exosomes are small 30–100 nm membrane vesicles released from hematopoietic and nonhematopoietic cells and function to promote intercellular communication. They are generated through fusion of multivesicular bodies with the plasma membrane and release of interluminal vesicles. Previous studies from our laboratory demonstrated that macrophages infected with Mycobacterium release exosomes that promote activation of both innate and acquired immune responses; however, the components present in exosomes inducing these host responses were not defined. This study used LC‐MS/MS to identify 41 mycobacterial proteins present in exosomes released from M. tuberculosis‐infected J774 cells. Many of these proteins have been characterized as highly immunogenic. Further, since most of the mycobacterial proteins identified are actively secreted, we hypothesized that macrophages treated with M. tuberculosis culture filtrate proteins (CFPs) would release exosomes containing mycobacterial proteins. We found 29 M. tuberculosis proteins in exosomes released from CFP‐treated J774 cells, the majority of which were also present in exosomes isolated from M. tuberculosis‐infected cells. The exosomes from CFP‐treated J774 cells could promote macrophage and dendritic cell activation as well as activation of naïve T cells in vivo. These results suggest that exosomes containing M. tuberculosis antigens may be alternative approach to developing a tuberculosis vaccine.  相似文献   

3.
Leishmania is a protozoan parasite that resides and replicates in macrophages and causes leishmaniasis. The parasite alters the signaling cascade in host macrophages and evades the host machinery. Small G‐proteins are GTPases, grouped in 5 different families that play a crucial role in the regulation of cell proliferation, cell survival, apoptosis, intracellular trafficking, and transport. In particular, the Ras family of small G‐proteins has been identified to play a significant role in the cellular functions mentioned before. Here, we studied the differential expression of the most important small G‐proteins during Leishmania infection. We found major changes in the expression of different isoforms of Ras, mainly in N‐Ras. We observed that Leishmania donovani infection led to enhanced N‐Ras expression, whereas it inhibited K‐Ras and H‐Ras expression. Furthermore, an active N‐Ras pull‐down assay showed enhanced N‐Ras activity. L donovani infection also increased extracellular signal–regulated kinase 1/2 phosphorylation and simultaneously decreased p38 phosphorylation. In contrast, pharmacological inhibition of Ras led to reduction in the phosphorylation of extracellular signal–regulated kinase 1/2 and enhanced the phosphorylation of p38 in Leishmania‐infected cells, which could lead to increased interleukin‐12 expression and decreased interleukin‐10 expression. Indeed, farnesylthiosalicyclic acid (a Ras inhibitor), when used at the effective level in L donovani–infected macrophages, reduced amastigotes in the host macrophages. Thus, upregulated N‐Ras expression during L donovani infection could be a novel immune evasion strategy of Leishmania and would be a potential target for antileishmanial immunotherapy.  相似文献   

4.
Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self‐healing skin lesions to fatal visceralizing disease. As the host cells of choice for all species of Leishmania, macrophages are critical for the establishment of infections. How macrophages contribute to parasite homing to specific tissues and how parasites modulate macrophage function are still poorly understood. In this study, we show that Leishmania amazonensis infection inhibits macrophage roaming motility. The reduction in macrophage speed is not dependent on particle load or on factors released by infected macrophages. L. amazonensis‐infected macrophages also show reduced directional migration in response to the chemokine MCP‐1. We found that infected macrophages have lower levels of total paxillin, phosphorylated paxillin, and phosphorylated focal adhesion kinase when compared to noninfected macrophages, indicating abnormalities in the formation of signaling adhesion complexes that regulate motility. Analysis of the dynamics of actin polymerization at peripheral sites also revealed a markedly enhanced F‐actin turnover frequency in L. amazonensis‐infected macrophages. Thus, Leishmania infection inhibits macrophage motility by altering actin dynamics and impairing the expression of proteins that function in plasma membrane–extracellular matrix interactions.  相似文献   

5.
Leishmania is an intracellular parasite in vertebrate hosts, including man. During infection, amastigotes replicate inside macrophages and are transmitted to healthy cells, leading to amplification of the infection. Although transfer of amastigotes from infected to healthy cells is a crucial step that may shape the outcome of the infection, it is not fully understood. Here we compare L. amazonensis and L. guyanensis infection in C57BL/6 and BALB/c mice and investigate the fate of macrophages when infected with these species of Leishmania in vitro. As previously shown, infection of mice results in distinct outcomes: L. amazonensis causes a chronic infection in both strains of mice (although milder in C57BL/6), whereas L. guyanensis does not cause them disease. In vitro, infection is persistent in L. amazonensis-infected macrophages whereas L. guyanensis growth is controlled by host cells from both strains of mice. We demonstrate that, in vitro, L. amazonensis induces apoptosis of both C57BL/6 and BALB/c macrophages, characterized by PS exposure, DNA cleavage into nucleosomal size fragments, and consequent hypodiploidy. None of these signs were seen in macrophages infected with L. guyanensis, which seem to die through necrosis, as indicated by increased PI-, but not Annexin V-, positive cells. L. amazonensis-induced macrophage apoptosis was associated to activation of caspases-3, -8 and -9 in both strains of mice. Considering these two species of Leishmania and strains of mice, macrophage apoptosis, induced at the initial moments of infection, correlates with chronic infection, regardless of its severity. We present evidence suggestive that macrophages phagocytize L. amazonensis-infected cells, which has not been verified so far. The ingestion of apoptotic infected macrophages by healthy macrophages could be a way of amastigote spreading, leading to the establishment of infection.  相似文献   

6.
7.
During late stages of infection and prior to lysis of the infected macrophages or amoeba, the Legionella pneumophila‐containing phagosome becomes disrupted, followed by bacterial escape into the host cell cytosol, where the last few rounds of bacterial proliferation occur prior to lysis of the plasma membrane. This coincides with growth transition into the post‐exponential (PE) phase, which is controlled by regulatory cascades including RpoS and the LetA/S two‐component regulator. Whether the temporal expression of flagella by the regulatory cascades at the PE phase is exhibited within the phagosome or after bacterial escape into the host cell cytosol is not known. We have utilized fluorescence microscopy‐based phagosome integrity assay to differentiate between vacuolar and cytosolic bacteria/or bacteria within disrupted phagosomes. Our data show that during late stages of infection, expression of FlaA is triggered after bacterial escape into the macrophage cytosol and the peak of FlaA expression is delayed for few hours after cytosolic residence of the bacteria. Importantly, bacterial escape into the host cell cytosol is independent of flagella, RpoS and the two‐component regulator LetA/S, which are all triggered by L. pneumophila upon growth transition into the PE phase. Disruption of the phagosome and bacterial escape into the cytosol of macrophages is independent of the bacterial pore‐forming activity, and occurs prior to the induction of apoptosis during late stages of infection. We conclude that the temporal and spatial engagement of virulence‐associated regulatory cascades by L. pneumophila at the PE phase is temporally and spatially triggered after phagosomal escape and bacterial residence in the host cell cytosol.  相似文献   

8.
Death receptor‐mediated host cell apoptosis, a defense strategy for elimination by the immune system of parasite‐infected cells, is inhibited by Trypanosoma cruzi, the causative agent of Chagas' disease. It has previously been reported by us that, in infected cells, T. cruzi upregulates and exploits cFLIPL, a mammalian inhibitor of death receptor signaling. Here it is shown that ubiquitination of cFLIPL, leading to proteasomal degradation, is inhibited in parasite‐infected cells. The extent of expression of Itch, a protein thought to be an ubiquitin ligase for cFLIPL, was found to be equivalent in T. cruzi‐infected and in uninfected cells. However, co‐immunoprecipitation analysis showed that the interaction between cFLIPL and Itch is strongly inhibited in T. cruzi‐infected cells. This unique parasite strategy, which has not been reported in any other pathogen‐infected cells, may allow the host cell to accumulate cFLIPL, eventually resulting in the inhibition of apoptosis of T. cruzi‐infected cells.  相似文献   

9.
Pathogenic Leptospira species, the causative agents of leptospirosis, have been shown to induce macrophage apoptosis through caspase‐independent, mitochondrion‐related apoptosis inducing factor (AIF) and endonuclease G (EndoG), but the signalling pathway leading to AIF/EndoG‐based macrophage apoptosis remains unknown. Here we show that infection of Leptospira interrogans caused a rapid increase in reactive oxygen species (ROS), DNA damage, and intranuclear foci of 53BP1 and phosphorylation of H2AX (two DNAdamage indicators) in wild‐type p53‐containing mouse macrophages and p53‐deficient human macrophages. Most leptospire‐infected cells stayed at the G1 phase, whereas depletion or inhibition of p53 caused a decrease of the G1‐phase cells and the early apoptotic ratios. Infection with spirochaetes stimulated a persistent activation of p53 and an early activation of Akt through phosphorylation. The intranuclear translocation of p53, increased expression of p53‐dependent p21Cip1/WAF1 and pro‐apoptotic Bcl‐2 family proteins (Bax, Noxa and Puma), release of AIF and EndoG from mitochondria, and membrane translocation of Fas occurred during leptospire‐induced macrophage apoptosis. Thus, our study demonstrated that ROS production and DNA damage‐dependent p53‐Bax/Noxa/Puma‐AIF/EndoG signalling mediates the leptospire‐induced cell cycle arrest and caspase‐independent apoptosis of macrophages.  相似文献   

10.
Piscirickettsia salmonis is the etiologic agent of the salmonid rickettsial septicemia (SRS) which causes significant losses in salmon production in Chile and other and in other regions in the southern hemisphere. As the killing of phagocytes is an important pathogenic mechanism for other bacteria to establish infections in vertebrates, we investigated whether P. salmonis kills trout macrophages by apoptosis. Apoptosis in infected macrophages was demonstrated by techniques based on morphological changes and host cell DNA fragmentation. Transmission electron microcopy showed classic apoptotic characteristics and terminal deoxynucleotidyl transferase‐mediated dUTP nick end labeling showed fragmented DNA. Programmed cell death type I was further confirmed by increased binding of annexin V to externalized phosphatidylserine in infected macrophages. Moreover, significant increases of caspase 3 activation were detected in infected cells and treatment with caspase inhibitor caused a decrease in levels of apoptosis. This is the first evidence that P. salmonis induces cell death in trout macrophages. This could lead to bacterial survival and evasion of the host immune response and play an important role in the establishment of infection in the host. J. Cell. Biochem. 110: 468–476, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The type III secretion system effector EseJ plays a regulatory role inside bacteria. It suppresses the adherence of Edwardsiella piscicida (E. piscicida) to host epithelial cells by down regulating type 1 fimbriae. In this study, we observed that more macrophages infected with ΔeseJ strain of E. piscicida detached as compared with those infected with the wild‐type (WT) strain. Terminal deoxynucleotidyl transferase dUTP nick‐end labelling (TUNEL) staining and cleaved caspase‐3 examination revealed that the detachment is due to increased apoptosis, suggesting that EseJ suppresses macrophage apoptosis. However, apoptosis inhibition by EseJ is not relative to a type III secretion system (T3SS) and is not related to EseJ's translocation. Since EseJ negatively regulates type 1 fimbriae, murine J774A.1 cells were infected with ΔeseJΔfimA or ΔeseJΔfimH strains. It was demonstrated that ΔeseJ stimulates macrophage apoptosis through type 1 fimbriae. Moreover, we found that infecting J774A.1 cells with the ΔeseJ strain increased levels of cleaved caspase‐8, caspase‐9, and caspase‐3, demonstrating that EseJ inhibits apoptosis through either an extrinsic or a combination of extrinsic and intrinsic pathways. Pre‐treatment of macrophages with caspase‐8 inhibitor prior to infection with the ΔeseJ strain decreased the levels of cleaved caspase‐8, caspase‐9, and caspase‐3, indicating that the ΔeseJ strain stimulates apoptosis, mainly through an extrinsic pathway by up regulating type 1 fimbriae. Zebrafish larvae or blue gourami fish infected with the ΔeseJ strain consistently exhibited higher apoptosis than those infected with the E. piscicida WT strain or ΔeseJΔfimA strain. Taken together, we revealed that the T3SS protein EseJ of E. piscicida inhibits host apoptosis, mainly through an extrinsic pathway by down regulating type 1 fimbriae.  相似文献   

12.
Theileria annulata is an apicomplexan parasite that modifies the phenotype of its host cell completely, inducing uncontrolled proliferation, resistance to apoptosis, and increased invasiveness. The infected cell thus resembles a cancer cell, and changes to various host cell signalling pathways accompany transformation. Most of the molecular mechanisms leading to Theileria‐induced immortalization of leukocytes remain unknown. The parasite dissolves the surrounding host cell membrane soon after invasion and starts interacting with host proteins, ensuring its propagation by stably associating with the host cell microtubule network. By using BioID technology together with fluorescence microscopy and co‐immunoprecipitation, we identified a CLASP1/CD2AP/EB1‐containing protein complex that surrounds the schizont throughout the host cell cycle and integrates bovine adaptor proteins (CIN85, 14‐3‐3 epsilon, and ASAP1). This complex also includes the schizont membrane protein Ta‐p104 together with a novel secreted T. annulata protein (encoded by TA20980), which we term microtubule and SH3 domain‐interacting protein (TaMISHIP). TaMISHIP localises to the schizont surface and contains a functional EB1‐binding SxIP motif, as well as functional SH3 domain‐binding Px(P/A)xPR motifs that mediate its interaction with CD2AP. Upon overexpression in non‐infected bovine macrophages, TaMISHIP causes binucleation, potentially indicative of a role in cytokinesis.  相似文献   

13.
The environmental bacterium Legionella pneumophila causes a severe pneumonia termed Legionnaires' disease. L. pneumophila employs a conserved mechanism to replicate within a specific vacuole in macrophages or protozoa such as the social soil amoeba Dictyostelium discoideum. Pathogen–host interactions depend on the Icm/Dot type IV secretion system (T4SS), which translocates approximately 300 different effector proteins into host cells. Here we analyse the effects of L. pneumophila on migration and chemotaxis of amoebae, macrophages or polymorphonuclear neutrophils (PMN). Using under‐agarose assays, L. pneumophila inhibited in a dose‐ and T4SS‐dependent manner the migration of D. discoideum towards folate as well as starvation‐induced aggregation of the social amoebae. Similarly, L. pneumophila impaired migration of murine RAW 264.7 macrophages towards the cytokines CCL5 and TNFα, or of primary human PMN towards the peptide fMLP respectively. L. pneumophila lacking the T4SS‐translocated activator of the small eukaryotic GTPase Ran, Lpg1976/LegG1, hyper‐inhibited the migration of D. discoideum, macrophages or PMN. The phenotype was reverted by plasmid‐encoded LegG1 to an extent observed for mutant bacteria lacking a functional Icm/Dot T4SS.Similarly, LegG1 promoted random migration of L. pneumophila‐infected macrophages and A549 epithelial cells in a Ran‐dependent manner, or upon ‘microbial microinjection’ into HeLa cells by a Yersinia strain lacking endogenous effectors. Single‐cell tracking and real‐time analysis of L. pneumophila‐infected phagocytes revealed that the velocity and directionality of the cells were decreased, and cell motility as well as microtubule dynamics was impaired. Taken together, these findings indicate that the L. pneumophila Ran activator LegG1 and consequent microtubule polymerization are implicated in Icm/Dot‐dependent inhibition of phagocyte migration.  相似文献   

14.
Leishmaniasis is caused by the dimorphic protozoan parasite Leishmania. Differentiation of the insect form, promastigotes, to the vertebrate form, amastigotes, and survival inside the vertebrate host accompanies a drastic metabolic shift. We describe a gene first identified in amastigotes that is essential for survival inside the host. Gene expression analysis identified a 27 kDa protein‐encoding gene (Ldp27) that was more abundantly expressed in amastigotes and metacyclic promastigotes than in procyclic promastigotes. Immunofluorescence and biochemical analysis revealed that Ldp27 is a mitochondrial membrane protein. Co‐immunoprecipitation using antibodies to the cytochrome c oxidase (COX) complex, present in the inner mitochondrial membrane, placed the p27 protein in the COX complex. Ldp27 gene‐deleted parasites (Ldp27?/?) showed significantly less COX activity and ATP synthesis than wild type in intracellular amastigotes. Moreover, the Ldp27?/? parasites were less virulent both in human macrophages and in BALB/c mice. These results demonstrate that Ldp27 is an important component of an active COX complex enhancing oxidative phosphorylation specifically in infectious metacyclics and amastigotes and promoting parasite survival in the host. Thus, Ldp27 can be explored as a potential drug target and parasites devoid of the p27 gene could be considered as a live attenuated vaccine candidate against visceral leishmaniasis.  相似文献   

15.
Listeria monocytogenes is a food‐borne pathogen that uses actin‐dependent motility to spread between human cells. Cell‐to‐cell spread involves the formation by motile bacteria of plasma membrane‐derived structures termed ‘protrusions’. In cultured enterocytes, the secreted Listeria protein InlC promotes protrusion formation by binding and inhibiting the human scaffolding protein Tuba. Here we demonstrate that protrusions are controlled by human COPII components that direct trafficking from the endoplasmic reticulum. Co‐precipitation experiments indicated that the COPII proteins Sec31A and Sec13 interact directly with a Src homology 3 domain in Tuba. This interaction was antagonized by InlC. Depletion of Sec31A or Sec13 restored normal protrusion formation to a Listeria mutant lacking inlC, without affecting spread of wild‐type bacteria. Genetic impairment of the COPII component Sar1 or treatment of cells with brefeldin A affected protrusions similarly to Sec31A or Sec13 depletion. These findings indicated that InlC relieves a host‐mediated restriction of Listeria spread otherwise imposed by COPII. Inhibition of Sec31A, Sec13 or Sar1 or brefeldin A treatment also perturbed the structure of cell–cell junctions. Collectively, these findings demonstrate an important role for COPII in controlling Listeria spread. We propose that COPII may act by delivering host proteins that generate tension at cell junctions.  相似文献   

16.
Professional phagocytic cells such as macrophages are a central part of innate immune defence. They ingest microorganisms into membrane‐bound compartments (phagosomes), which acidify and eventually fuse with lysosomes, exposing their contents to a microbicidal environment. Gram‐positive Rhodococcus equi can cause pneumonia in young foals and in immunocompromised humans. The possession of a virulence plasmid allows them to subvert host defence mechanisms and to multiply in macrophages. Here, we show that the plasmid‐encoded and secreted virulence‐associated protein A (VapA) participates in exclusion of the proton‐pumping vacuolar‐ATPase complex from phagosomes and causes membrane permeabilisation, thus contributing to a pH‐neutral phagosome lumen. Using fluorescence and electron microscopy, we show that VapA is also transferred from phagosomes to lysosomes where it permeabilises the limiting membranes for small ions such as protons. This permeabilisation process is different from that of known membrane pore formers as revealed by experiments with artificial lipid bilayers. We demonstrate that, at 24 hr of infection, virulent Requi is contained in a vacuole, which is enriched in lysosome material, yet possesses a pH of 7.2 whereas phagosomes containing a vapA deletion mutant have a pH of 5.8 and those with virulence plasmid‐less sister strains have a pH of 5.2. Experimentally neutralising the macrophage endocytic system allows avirulent Requi to multiply. This observation is mirrored in the fact that virulent and avirulent Requi multiply well in extracts of purified lysosomes at pH 7.2 but not at pH 5.1. Together these data indicate that the major function of VapA is to generate a pH‐neutral and hence growth‐promoting intracellular niche. VapA represents a new type of Gram‐positive virulence factor by trafficking from one subcellular compartment to another, affecting membrane permeability, excluding proton‐pumping ATPase, and consequently disarming host defences.  相似文献   

17.
Mycobacterium tuberculosis (Mtb) manipulates multiple host defence pathways to survive and persist in host cells. Understanding Mtb–host cell interaction is crucial to develop an efficient means to control the disease. Here, we applied the Mtb proteome chip, through separately interacting with H37Ra and H37Rv stimulated macrophage lysates, screened 283 Mtb differential proteins. Through primary screening, we focused on fatty acylCoA synthetase FadD13. Mtb FadD13 is a potential drug target, but its role in infection remains unclear. Deletion of FadD13 in Mtb reduced the production of proinflammatory cytokines IL‐1β, IL‐18, and IL‐6. Bimolecular fluorescence complementation and colocalization showed that the binding partner of FadD13 in macrophage was eEF1A1 (a translation elongation factor). Knockdown eEF1A1 expression in macrophage abrogated the promotion of proinflammatory cytokines induced by FadD13. In addition, ΔfadD13 mutant decreased the expression of the NF‐κB signalling pathway related proteins p50 and p65, so did the eEF1A1 knockdown macrophage infected with H37Rv. Meanwhile, we found that deletion of FadD13 reduced Mtb survival in macrophages during Mtb infection, and purified FadD13 proteins induced broken of macrophage membrane. Taken together, FadD13 is crucial for Mtb proliferation in macrophages, and it plays a key role in the production of proinflammatory cytokines during Mtb infection.  相似文献   

18.
Human pathogenic Chlamydia trachomatis have evolved sophisticated mechanisms to manipulate host cell signalling pathways in order to prevent apoptosis. We show here that host cells infected with C. trachomatis resist apoptosis induced by polyI:C, a synthetic double‐stranded RNA that mimics viral infections. Infected cells displayed significantly reduced levels of PARP cleavage, caspase‐3 activation and a decrease in the TUNEL positive population in the presence of polyI:C. Interestingly, the chlamydial block of apoptosis was upstream of the initiator caspase‐8. Processing of caspase‐8 was reduced in infected cells and coincided with a decrease in Bid truncation and downstream caspase‐9 cleavage. Moreover, the enzymatic activity of caspase‐8, measured by a luminescent substrate, was significantly reduced in infected cells. Caspase‐8 inhibition by Chlamydia was dependent on cFlip as knock‐down of cFlip decreased the chlamydial block of caspase‐8 activation and consequently reduced apoptosis inhibition. Our data implicate that chlamydial infection interferes with the host cell's response to viral infections and thereby influences the fate of the cell.  相似文献   

19.
Background: Helicobacter pylori infection can lead to the development of gastritis, peptic ulcers and gastric cancer, which makes this bacterium an important concern for human health. Despite evoking a strong immune response in the host, H. pylori persists, requiring complex antibiotic therapy for eradication. Here we have studied the impact of a patient’s immune serum on H. pylori in relation to macrophage uptake, phagosome maturation, and bacterial killing. Materials and Methods: Primary human macrophages were infected in vitro with both immune serum‐treated and control H. pylori. The ability of primary human macrophages to kill H. pylori was characterized at various time points after infection. H. pylori phagosome maturation was analyzed by confocal immune fluorescence microscopy using markers specific for H. pylori, early endosomes (EEA1), late endosomes (CD63) and lysosomes (LAMP‐1). Results: Immune serum enhanced H. pylori uptake into macrophages when compared to control bacteria. However, a sufficient inoculum remained for recovery of viable H. pylori from macrophages, at 8 hours after infection, for both the serum‐treated and control groups. Both serum‐treated and control H. pylori phagosomes acquired EEA1 (15 minutes), CD63 and LAMP‐1 (30 minutes). These markers were then retained for the rest of an 8 hour time course. Conclusions: While immune sera appeared to have a slight positive effect on bacterial uptake, both serum‐treated and control H. pylori were not eliminated by macrophages. Furthermore, the same disruptions to phagosome maturation were observed for both serum‐treated and control H. pylori. We conclude that to eliminate H. pylori, a strategy is required to restore the normal process of phagosome maturation and enable effective macrophage killing of H. pylori, following a host immune response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号