首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Predation of bacteria by phagocytic cells was first developed during evolution by environmental amoebae. Many of the core mechanisms used by amoebae to sense, ingest and kill bacteria have also been conserved in specialized phagocytic cells in mammalian organisms. Here we focus on recent results revealing how Dictyostelium discoideum senses and kills non‐pathogenic bacteria. In this model, genetic analysis of intracellular killing of bacteria has revealed a surprisingly complex array of specialized mechanisms. These results raise new questions on these processes, and challenge current models based largely on studies in mammalian phagocytes. In addition, recent studies suggest one additional level on complexity by revealing how Dictyostelium recognizes specifically various bacterial species and strains, and adapts its metabolism to process them. It remains to be seen to what extent mechanisms uncovered in Dictyostelium are also used in mammalian phagocytic cells.  相似文献   

3.
Extracellular capsule polysaccharides increase the cellular fitness under abiotic stresses and during competition with other bacteria. They are best-known for their role in virulence, particularly in human hosts. Specifically, capsules facilitate tissue invasion by enhancing bacterial evasion from phagocytosis and protect cells from biocidal molecules. Klebsiella pneumoniae is a worrisome nosocomial pathogen with few known virulence factors, but the most important one is its capsule. In this issue, Tan et al. assess the fitness advantage of the capsule by competing a wild-type strain against four different mutants where capsule production is interrupted at different stages of the biosynthetic pathway. Strikingly, not all mutants provide a fitness advantage. They suggest that some mutants have secondary defects altering virulence-associated phenotypes and blurring the role of the capsule in pathogenesis. This study indicates that the K1 capsule in K. pneumoniae is not required for gut colonization but that it is critical for bloodstream dissemination to other organs. These results contribute to clarify the contradictory literature on the role of the Klebsiella capsule during infection. Finally, the varying fitness effects of different capsule mutations observed for K. pneumoniae K1 might apply also to other capsulated diderm bacteria that are facultative or emerging pathogens.  相似文献   

4.
Lipid droplets exist in virtually every cell type, ranging not only from mammals to plants, but also to eukaryotic and prokaryotic unicellular organisms such as Dictyostelium and bacteria. They serve among other roles as energy reservoir that cells consume in times of starvation. Mycobacteria and some other intracellular pathogens hijack these organelles as a nutrient source and to build up their own lipid inclusions. The mechanisms by which host lipid droplets are captured by the pathogenic bacteria are extremely poorly understood. Using the powerful Dictyostelium discoideum/Mycobacterium marinum infection model, we observed that, immediately after their uptake, lipid droplets translocate to the vicinity of the vacuole containing live but not dead mycobacteria. Induction of lipid droplets in Dictyostelium prior to infection resulted in a vast accumulation of neutral lipids and sterols inside the bacterium‐containing compartment. Subsequently, under these conditions, mycobacteria accumulated much larger lipid inclusions. Strikingly, the Dictyostelium homologue of perilipin and the murine perilipin 2 surrounded bacteria that had escaped to the cytosol of Dictyostelium or microglial BV‐2 cells respectively. Moreover, bacterial growth was inhibited in Dictyostelium plnA knockout cells. In summary, our results provide evidence that mycobacteria actively manipulate the lipid metabolism of the host from very early infection stages.  相似文献   

5.
Klebsiella pneumoniae is an important cause of community‐acquired and nosocomial pneumonia. Evidence indicates that Klebsiella might be able to persist intracellularly within a vacuolar compartment. This study was designed to investigate the interaction between Klebsiella and macrophages. Engulfment of K. pneumoniae was dependent on host cytoskeleton, cell plasma membrane lipid rafts and the activation of phosphoinositide 3‐kinase (PI3K). Microscopy studies revealed that K. pneumoniae resides within a vacuolar compartment, the Klebsiella‐containing vacuole (KCV), which traffics within vacuoles associated with the endocytic pathway. In contrast to UV‐killed bacteria, the majority of live bacteria did not co‐localize with markers of the lysosomal compartment. Our data suggest that K. pneumoniae triggers a programmed cell death in macrophages displaying features of apoptosis. Our efforts to identify the mechanism(s) whereby K. pneumoniae prevents the fusion of the lysosomes to the KCV uncovered the central role of the PI3K–Akt–Rab14 axis to control the phagosome maturation. Our data revealed that the capsule is dispensable for Klebsiella intracellular survival if bacteria were not opsonized. Furthermore, the environment found by Klebsiella within the KCV triggered the down‐regulation of the expression of cps. Altogether, this study proves evidence that K. pneumoniae survives killing by macrophages by manipulating phagosome maturation that may contribute to Klebsiella pathogenesis.  相似文献   

6.
Polysaccharide capsule is the main virulence factor of K. pneumoniae, a major pathogen of bloodstream infections in humans. While more than 80 capsular serotypes have been identified in K. pneumoniae, only several serotypes are frequently identified in invasive infections. It is documented that the capsule enhances bacterial resistance to phagocytosis, antimicrobial peptides and complement deposition under in vitro conditions. However, the precise role of the capsule in the process of K. pneumoniae bloodstream infections remains to be elucidated. Here we show that the capsule promotes K. pneumoniae survival in the bloodstream by protecting bacteria from being captured by liver resident macrophage Kupffer cells (KCs). Our real-time in vivo imaging revealed that blood-borne acapsular K. pneumoniae mutant is rapidly captured and killed by KCs in the liver sinusoids of mice, whereas, to various extents, encapsulated strains bypass the anti-bacterial machinery in a serotype-dependent manner. Using capsule switched strains, we show that certain high-virulence (HV) capsular serotypes completely block KC’s capture, whereas the low-virulence (LV) counterparts confer partial protection against KC’s capture. Moreover, KC’s capture of the LV K. pneumoniae could be in vivo neutralized by free capsular polysaccharides of homologous but not heterologous serotypes, indicating that KCs specifically recognize the LV capsules. Finally, immunization with inactivated K. pneumoniae enables KCs to capture the HV K. pneumoniae. Together, our findings have uncovered that KCs are the major target cells of K. pneumoniae capsule to promote bacterial survival and virulence, which can be reversed by vaccination.  相似文献   

7.
8.
9.
Klebsiella pneumoniae raises significant concerns to the health care industry as these microbes are the source of widespread contamination of medical equipment, cause pneumonia as well as other multiorgan metastatic infections and have gained multidrug resistance. Despite soaring mortality rates, the host cell alterations occurring during these infections remain poorly understood. Here, we show that during in vitro and in vivo Kpneumoniae infections of lung epithelia, microtubules are severed and then eliminated. This destruction does not require direct association of Kpneumoniae with the host cells, as microtubules are disassembled in cells that are distant from the infecting bacteria. This microtubule dismantling is dependent on the Kpneumoniae (Kp) gene ytfL as non‐pathogenic Escherichia coli expressing Kp ytfL disassemble microtubules in the absence of Kpneumoniae itself. Our data points to the host katanin catalytic subunit A like 1 protein (KATNAL1) and the katanin regulatory subunit B1 protein (KATNB1) as the gatekeepers to the microtubule severing event as both proteins localise specifically to microtubule cut sites. Infected cells that had either of these proteins knocked out maintained intact microtubules. Taken together, we have identified a novel mechanism that a bacterial pathogen has exploited to cause microtubule destruction within the host epithelia.  相似文献   

10.

Background  

Klebsiella pneumoniae is a capsulated Gram negative bacterial pathogen and a frequent cause of nosocomial infections. Despite its clinical relevance, little is known about the features of the interaction between K. pneumoniae and lung epithelial cells on a cellular level, neither about the role of capsule polysaccharide, one of its best characterised virulence factors, in this interaction.  相似文献   

11.
Phagocytic cells ingest bacteria by phagocytosis and kill them efficiently inside phagolysosomes. The molecular mechanisms involved in intracellular killing and their regulation are complex and still incompletely understood. Dictyostelium discoideum has been used as a model to discover and to study new gene products involved in intracellular killing of ingested bacteria. In this study, we performed random mutagenesis of Dictyostelium cells and isolated a mutant defective for growth on bacteria. This mutant is characterized by the genetic inactivation of the lrrkA gene, which encodes a protein with a kinase domain and leucine‐rich repeats. LrrkA knockout (KO) cells kill ingested Klebsiella pneumoniae bacteria inefficiently. This defect is not additive to the killing defect observed in kil2 KO cells, suggesting that the function of Kil2 is partially controlled by LrrkA. Indeed, lrrkA KO cells exhibit a phenotype similar to that of kil2 KO cells: Intraphagosomal proteolysis is inefficient, and both intraphagosomal killing and proteolysis are restored upon exogenous supplementation with magnesium ions. Bacterially secreted folate stimulates intracellular killing in Dictyostelium cells, but this stimulation is lost in cells with genetic inactivation of kil2, lrrkA, or far1. Together, these results indicate that the stimulation of intracellular killing by folate involves Far1 (the cell surface receptor for folate), LrrkA, and Kil2. This study is the first identification of a signalling pathway regulating intraphagosomal bacterial killing in Dictyostelium cells.  相似文献   

12.
The environmental bacterium Legionella pneumophila causes a severe pneumonia termed Legionnaires' disease. L. pneumophila employs a conserved mechanism to replicate within a specific vacuole in macrophages or protozoa such as the social soil amoeba Dictyostelium discoideum. Pathogen–host interactions depend on the Icm/Dot type IV secretion system (T4SS), which translocates approximately 300 different effector proteins into host cells. Here we analyse the effects of L. pneumophila on migration and chemotaxis of amoebae, macrophages or polymorphonuclear neutrophils (PMN). Using under‐agarose assays, L. pneumophila inhibited in a dose‐ and T4SS‐dependent manner the migration of D. discoideum towards folate as well as starvation‐induced aggregation of the social amoebae. Similarly, L. pneumophila impaired migration of murine RAW 264.7 macrophages towards the cytokines CCL5 and TNFα, or of primary human PMN towards the peptide fMLP respectively. L. pneumophila lacking the T4SS‐translocated activator of the small eukaryotic GTPase Ran, Lpg1976/LegG1, hyper‐inhibited the migration of D. discoideum, macrophages or PMN. The phenotype was reverted by plasmid‐encoded LegG1 to an extent observed for mutant bacteria lacking a functional Icm/Dot T4SS.Similarly, LegG1 promoted random migration of L. pneumophila‐infected macrophages and A549 epithelial cells in a Ran‐dependent manner, or upon ‘microbial microinjection’ into HeLa cells by a Yersinia strain lacking endogenous effectors. Single‐cell tracking and real‐time analysis of L. pneumophila‐infected phagocytes revealed that the velocity and directionality of the cells were decreased, and cell motility as well as microtubule dynamics was impaired. Taken together, these findings indicate that the L. pneumophila Ran activator LegG1 and consequent microtubule polymerization are implicated in Icm/Dot‐dependent inhibition of phagocyte migration.  相似文献   

13.
Pathogenic mycobacteria survive in phagocytic host cells primarily as a result of their ability to prevent fusion of their vacuole with lysosomes, thereby avoiding a bactericidal environment. The molecular mechanisms to establish and maintain this replication compartment are not well understood. By combining molecular and microscopical approaches we show here that after phagocytosis the actin nucleation‐promoting factor WASH associates and generates F‐actin on the mycobacterial vacuole. Disruption of WASH or depolymerization of F‐actin leads to the accumulation of the proton‐pumping V‐ATPase around the mycobacterial vacuole, its acidification and reduces the viability of intracellular mycobacteria. This effect is observed for M. marinum in the model phagocyte Dictyostelium but also for M. marinum and M. tuberculosis in mammalian phagocytes. This demonstrates an evolutionarily conserved mechanism by which pathogenic mycobacteria subvert the actin‐polymerization activity of WASH to prevent phagosome acidification and maturation, as a prerequisite to generate and maintain a replicative niche.  相似文献   

14.
Predation by phagocytic predators is a major source of bacterial mortality. The first steps in protozoan predation are recognition and consumption of their bacterial prey. However, the precise mechanisms governing prey recognition and phagocytosis by protists, and the identities of the molecular and cellular factors involved in these processes are, as yet, ill‐characterized. Here, we show that that the ability of the phagocytic bacterivorous amoebae, Acanthamoeba castellanii, to recognize and internalize Escherichia coli, a bacterial prey, varies with LPS structure and composition. The presence of an O‐antigen carbohydrate is not required for uptake of E. coli by A. castellanii. However, O1‐antigen types, not O157 O‐antigen types, inhibit recognition and uptake of bacteria by amoeba. This finding implies that O‐antigen may function as an antipredator defence molecule. Recognition and uptake of E. coli by A. castellanii is mediated by the interaction of mannose‐binding protein located on amoebae's surface with LPS carbohydrate. Phagocytic mammalian cells also use mannose‐binding lectins to recognize and/or mediate phagocytosis of E. coli. Nonetheless, A. castellanii's mannose binding protein apparently displays no sequence similarity with any known metazoan mannose binding protein. Hence, the similarity in bacterial recognition mechanisms of amoebae and mammalian phagocytes may be a result of convergent evolution.  相似文献   

15.
Chaperone/usher (CU) assembly pathway is used by a wide range of Enterobacteriaceae to assemble adhesive surface structures called pili or fimbriae that play a role in bacteria-host cell interactions. In silico analysis revealed that the genome of Klebsiella pneumoniae LM21 harbors eight chromosomal CU loci belonging to γκп and ϭ clusters. Of these, only two correspond to previously described operons, namely type 1 and type 3-encoding operons. Isogenic usher deletion mutants of K. pneumoniae LM21 were constructed for each locus and their role in adhesion to animal (Intestine 407) and plant (Arabidopsis thaliana) cells, biofilm formation and murine intestinal colonization was investigated. Type 3 pili usher deleted mutant was impaired in all assays, whereas type 1 pili usher deleted mutant only showed attenuation in adhesion to plant cells and in intestinal colonization. The LM21ΔkpjC mutant was impaired in its capacity to adhere to Arabidopsis cells and to colonize the murine intestine, either alone or in co-inoculation experiments. Deletion of LM21kpgC induced a significant decrease in biofilm formation, in adhesion to animal cells and in colonization of the mice intestine. The LM21∆kpaC and LM21∆kpeC mutants were only attenuated in biofilm formation and the adhesion abilities to Arabidopsis cells, respectively. No clear in vitro or in vivo effect was observed for LM21∆kpbC and LM21∆kpdC mutants. The multiplicity of CU loci in K. pneumoniae genome and their specific adhesion pattern probably reflect the ability of the bacteria to adhere to different substrates in its diverse ecological niches.  相似文献   

16.
TheH-2 restriction pattern of cytolytic T lymphocytes (Tc) and T lymphocytes which mediate a delayed-type hypersensitivity response (Td) directed against infectious Sendai virus was investigated usingH-2 mutant mice. Td and Tc lymphocytes exhibit the same fine specificity for self-recognition, for example, B6.C-H- 2bm1 effector T cells were unable to recognize viral antigens in association with wild-type Kb and vice versa, B6.-H- 2bm6 effector cells did not mediate a reaction against virus plus wild-type Kb but, on the other hand, T cells of wild-type Kb recognized virus plus Kbm6.BALB/c-H- 2dm2 T cells lacked reactivity against virus in association with wild-type Dd, but again wild-type Dd effector cells recognized virus plus Ddm2.Abbreviations used in this paper DTH delayed-type hypersensitivity - EID50 mean egg infective dose - FCS fetal calf serum - HAU hemagglutinating units - LPS lipopolysaccharide - Ly(–) low amount of Ly antigens - MHC major histocompatibility complex - 2-ME 2-mercaptoethanol - PBS phosphate-buffered saline - Tc cytolytic T cell - Td T cell which mediates a delayed-type hypersensitivity reaction  相似文献   

17.
The majority of deaths following influenza virus infection result from secondary bacterial superinfection, most commonly caused by Streptococcus pneumoniae. Several models have been proposed to explain how primary respiratory viral infections exacerbate secondary bacterial disease, but the mechanistic explanations have been contradictory. In this study, mice were infected with S. pneumoniae at different days after primary influenza A (X31) virus infection. Our findings show that the induction of type I interferons (IFNs) during a primary nonlethal influenza virus infection is sufficient to promote a deadly S. pneumoniae secondary infection. Moreover, mice deficient in type I interferon receptor (IFNAR knockout [KO] mice) effectively cleared the secondary bacterial infection from their lungs, increased the recruitment of neutrophils, and demonstrated an enhanced innate expression of interleukin-17 (IL-17) relative to wild-type (WT) mice. Lung γδ T cells were responsible for almost all IL-17 production, and their function is compromised during secondary S. pneumoniae infection of WT but not IFNAR KO mice. Adoptive transfer of γδ T cells from IFNAR KO mice reduced the susceptibility to secondary S. pneumoniae infection in the lung of WT mice. Altogether, our study highlights the importance of type I interferon as a key master regulator that is exploited by opportunistic pathogens such as S. pneumoniae. Our findings may be utilized to design effective preventive and therapeutic strategies that may be beneficial for coinfected patients during influenza epidemics.  相似文献   

18.
The ability of Salmonella to survive and replicate within mammalian host cells involves the generation of a membranous compartment known as the Salmonella‐containing vacuole (SCV). Salmonella employs a number of effector proteins that are injected into host cells for SCV formation using its type‐3 secretion systems encoded in SPI‐1 and SPI‐2 (T3SS‐1 and T3SS‐2, respectively). Recently, we reported that S. Typhimurium requires T3SS‐1 and T3SS‐2 to survive in the model amoeba Dictyostelium discoideum. Despite these findings, the involved effector proteins have not been identified yet. Therefore, we evaluated the role of two major S. Typhimurium effectors SopB and SifA during D. discoideum intracellular niche formation. First, we established that S. Typhimurium resides in a vacuolar compartment within D. discoideum. Next, we isolated SCVs from amoebae infected with wild type or the ΔsopB and ΔsifA mutant strains of S. Typhimurium, and we characterised the composition of this compartment by quantitative proteomics. This comparative analysis suggests that S. Typhimurium requires SopB and SifA to modify the SCV proteome in order to generate a suitable intracellular niche in D. discoideum. Accordingly, we observed that SopB and SifA are needed for intracellular survival of S. Typhimurium in this organism. Thus, our results provide insight into the mechanisms employed by Salmonella to survive intracellularly in phagocytic amoebae.  相似文献   

19.
The Phr peptides of the Bacillus species mediate quorum sensing, but their identification and function in other species of bacteria have not been determined. We have identified a Phr peptide quorum‐sensing system (TprA/PhrA) that controls the expression of a lantibiotic gene cluster in the Gram‐positive human pathogen, Streptococcus pneumoniae. Lantibiotics are highly modified peptides that are part of the bacteriocin family of antimicrobial peptides. We have characterized the basic mechanism for a Phr‐peptide signaling system in S. pneumoniae and found that it induces the expression of the lantibiotic genes when pneumococcal cells are at high density in the presence of galactose, a main sugar of the human nasopharynx, a highly competitive microbial environment. Activity of the Phr peptide system is not seen when pneumococcal cells are grown with glucose, the preferred carbon source and the most prevalent sugar encountered by S. pneumoniae during invasive disease. Thus, the lantibiotic genes are expressed under the control of both cell density signals via the Phr peptide system and nutritional signals from the carbon source present, suggesting that quorum sensing and the lantibiotic machinery may help pneumococcal cells compete for space and resources during colonization of the nasopharynx.  相似文献   

20.
Phagocytosis is a key process of the immune system. The human pathogen Klebsiella pneumoniae is a well known example of a pathogen highly resistant to phagocytosis. A wealth of evidence demonstrates that the capsule polysaccharide (CPS) plays a crucial role in resistance to phagocytosis. The amoeba Dictyostelium discoideum shares with mammalian macrophages the ability to phagocytose and kill bacteria. The fact that K. pneumoniae is ubiquitous in nature and, therefore, should avoid predation by amoebae, poses the question whether K. pneumoniae employs similar means to counteract amoebae and mammalian phagocytes. Here we developed an assay to evaluate K. pneumoniae-D. discoideum interaction. The richness of the growth medium affected the threshold at which the cps mutant was permissive for Dictyostelium and only at lower nutrient concentrations the cps mutant was susceptible to predation by amoebae. Given the critical role of bacterial surface elements on host-pathogen interactions, we explored the possible contribution of the lipopolysaccharide (LPS) and outer membrane proteins (OMPs) to combat phagoyctosis by D. discoideum. We uncover that, in addition to the CPS, the LPS O-polysaccharide and the first core sugar participate in Klebsiella resistance to predation by D. discoideum. K. pneumoniae LPS lipid A decorations are also necessary to avoid predation by amoebae although PagP-dependent palmitoylation plays a more important role than the lipid A modification with aminoarabinose. Mutants lacking OMPs OmpA or OmpK36 were also permissive for D. discoideium growth. Except the LPS O-polysaccharide mutants, all mutants were more susceptible to phagocytosis by mouse alveolar macrophages. Finally, we found a correlation between virulence, using the pneumonia mouse model, and resistance to phagocytosis. Altogether, this work reveals novel K. pneumoniae determinants involved in resistance to phagocytosis and supports the notion that Dictyostelium amoebae might be useful as host model to measure K. pneumoniae virulence and not only phagocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号