首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Changes in land use strongly influence habitat attributes (e.g., herbaceous ground cover and tree richness) and can consequently affect ecological functions. Most studies have focused on the response of these ecological functions to land‐use changes within only a single vegetation type. These studies have often focused solely on agricultural conversion of forests, making it nearly impossible to draw general conclusions across other vegetation types or with other land‐use changes (e.g., afforestation). We examined the consequences of agricultural conversion for seed removal by ants in native grassland, savanna, and savanna‐forest habitats that had been transformed to planted pastures (Brachiaria decumbens) and tree plantations (Eucalyptus spp.) and explored if changes in seed removal were correlated with differences in habitat attributes between habitat types. We found that land‐use changes affected seed removal across the tree cover gradient and that the magnitude of impact was influenced by similarity in habitat attributes between native and converted habitats, being greater where there was afforestation (Eucalyptus spp in grassland and savanna). Herbaceous ground cover, soil hardness, and tree richness were the most important habitat attributes that correlated with differences in seed removal. Our results reveal that the magnitude of impact of land‐use changes on seed removal varies depending on native vegetation type and is associated with the type of habitat attribute change. Our findings have implications for biodiversity in tropical grassy systems: afforestation can have a greater detrimental impact on ecological function than tree loss.  相似文献   

2.
The major focus of ecological restorations has been on understanding local factors. However, landscape factors such as dispersal limitation of individuals or propagules across the surrounding matrix can also constrain the restoration progress. We investigated to what extent native woody species colonize and thrive in plantations, focusing on both the role of local factors such as grazing and canopy cover as well as on landscape factors. We recorded all native tree and shrub species in 60 small Eucalyptus plantations embedded in an open agricultural landscape at 0.1–12 km from a remnant continuous forest in central Ethiopia. We found a total of 1,571 individuals of native woody plants belonging to 55 species. Number of such species in a plantation increased significantly with the height of the grass sword indicating their sensitivity to grazing. Moreover, the number of woody species in the patches decreased significantly with distance to the forest. Our results illustrate the need for regulating the grazing pressure for a successful regeneration of native species in Eucalyptus plantations. In addition, sowing or planting native trees will be necessary in most plantations, as only few remnant natural forests that could act as seed sources occur across the Ethiopian highlands. Another main obstacle might be the prohibition of selling timber of native trees, which indirectly discourage farmers from letting native trees regenerate. Thus, the increasing cover of Eucalyptus seen across the country will not automatically foster a recovery of native woody plant biodiversity, even if managed to optimize local environmental conditions.  相似文献   

3.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

4.
Aim There has been considerable debate about pre‐settlement stand structures in temperate woodlands in south‐eastern Australia. Traditional histories assumed massive tree losses across the region, whereas a number of recent histories propose that woodlands were originally open and trees regenerated densely after settlement. To reconcile these conflicting models, we gathered quantitative data on pre‐settlement stand structures in EucalyptusCallitris woodlands in central New South Wales Australia, including: (1) tree density, composition, basal area and canopy cover at the time of European settlement; and (2) post‐settlement changes in these attributes. Location Woodlands dominated by Eucalyptus species and Callitris glaucophylla, which originally occupied approximately 100,000 km2 in central New South Wales, Australia. Methods We recorded all evidence of pre‐settlement trees, including stumps, stags and veteran trees, from 39 relatively undisturbed 1‐ha stands within 16 State Forests evenly distributed across the region. Current trees were recorded in a nested 900 m2 quadrat at each site. Allometric relationships were used to estimate girth over bark at breast height, tree basal area, and crown diameter from the girth of cut stumps. A post‐settlement disturbance index was developed to assess correlations between post‐settlement disturbance and attributes of pre‐settlement stands. Results The densities of all large trees (> 60 cm girth over bark at breast height) were significantly greater in current stands than at the time of European settlement (198 vs. 39 trees ha?1). Pre‐settlement and current stands did not differ in basal area. However, the proportional representation of Eucalyptus and Callitris changed completely. At the time of settlement, stands were dominated by Eucalyptus (78% of basal area), whereas current stands are dominated by Callitris (74%). On average, Eucalyptus afforded 83% of crown cover at the time of settlement. Moreover, the estimated density, basal area and crown cover of Eucalyptus at the time of settlement were significantly negatively correlated with post‐settlement disturbance, which suggests that these results underestimate pre‐settlement Eucalyptus representation in the most disturbed stands. Main conclusions These results incorporate elements of traditional and recent vegetation histories. Since European settlement, State Forests have been transformed from Eucalyptus to Callitris dominance as a result of the widespread clearance of pre‐settlement Eucalyptus and dense post‐settlement recruitment of Callitris. Tree densities did increase greatly after European settlement, but most stands were much denser at the time of settlement than recent histories suggest. The original degree of dominance by Eucalyptus was unexpected, and has been consistently underestimated in the past. This study has greatly refined our understanding of post‐settlement changes in woodland stand structures, and will strengthen the foundation for management policies that incorporate historical benchmarks of landscape vegetation changes.  相似文献   

5.
Laboratory‐based seed storage systems have been developed as an alternative to in situ conservation for indigenous woody plant species. However, interactions between seed quality and environmental variables must be known for each species prior to seed collection, storage and sowing to ensure effective conservation. This study investigated Acacia tortilis seed weight/quality patterns across seven Botswana seed provenances in relation to: soil nutrient status, altitude; latitude; slope angle; % grass cover; height and density of other woody plants nearby. The higher rainfall and relatively eutrophic seed provenances of north‐western Botswana (Chobe, Okavango and Makgadikgadi) were associated with large A. tortilis species and seeds, as well as higher densities of woody plants. Spatial variation in seed weights of A. tortilis was principally a function of rainfall and soil organic carbon. Although more work is required to establish the relationship between seed weight and germination rates for A. tortilis, this research suggests that seed collection should focus on sites with high levels of rainfall and soil organic carbon.  相似文献   

6.
Dispersal limitation can retard natural establishment of desirable species on restoration sites, especially where landscapes are fragmented, but dispersal limitation is assumed to become less critical with time as early colonists become reproductively mature. Distribution patterns of recruiting trees in a 20‐year‐old passively restored bottomland in northeast Louisiana suggested persistent dispersal limitation in some bottomland hardwood species and influence of dense shrub patches on colonization. To test these hypotheses, we measured seed rain as a function of distance to seed source and association with shrub cover. Seed rain of the wind‐dispersed Fraxinus pennsylvanica was highest near the forest edge, except where mature recruits occurred. Although shrub presence did not influence dispersal of F. pennsylvanica, its negative influence on probability of occurrence in the sapling layer suggests that shrub cover may limit its regeneration. The bird‐dispersed Crataegus viridis and Ilex decidua were found in the seed rain and as reproductive individuals within the field; neither had a positive relationship with shrub presence. Dispersal of heavy‐seeded Quercus spp. and Carya aquatica was limited to within 20 m of the forest edge. These results imply that dispersal limitation is diminishing in wind‐ and bird‐dispersed species with maturation of in‐field recruits and that shrub patches may influence these patterns. Heavy‐seeded species, however, remain restricted to field edges that directly abut a seed source. If canopy closure by wind‐ and bird‐dispersed species precedes dispersal of heavy‐seeded species into the field, establishment of Quercus and Carya spp. may remain low for the foreseeable future.  相似文献   

7.
The nitrogen‐fixing legume Lupinus polyphyllus invaded semi‐natural mountainous grasslands across Europe during the last decades. This invasion resulted in degraded habitats through changes in the structure and function of the mountain meadow vegetation. In our study, we analyzed (1) the effects of increasing cover of L. polyphyllus on the seed bank of mountain meadows, and (2) the potential of the seed bank of these stands for active restoration of mountain meadows in terms of species composition and number. We conducted a seed bank analysis on 84 plots with increasing cover of L. polyphyllus in three mountain‐meadow types of the Rhön Biosphere Reserve, Germany. Seedlings from 119 species germinated from the seed bank samples, including 17 Red List species but only a few seedlings of L. polyphyllus. The species composition of the seed bank matched distinct patterns of the three meadow types, but differed from the species composition of the current aboveground vegetation in a nonmetric multidimensional scaling ordination. While the influence of L. polyphyllus on the current vegetation was visible, no effects on the seed bank were apparent. L. polyphyllus had no influence on total seed density, seed density of typical mountain‐meadow species, or species numbers in the seed bank. Only the seeds of the Red List species were significantly related to the cover of L. polyphyllus. We conclude that the seed bank offers potential for active restoration of species‐rich mountain meadows, but species absent from the seed bank have to be added by other measures.  相似文献   

8.
Biological legacies are important for ecosystem recovery following disturbance as demonstrated by studies in the northern hemisphere. Southern bog forests dominated by the conifer Pilgerodendron uviferum in Northern Patagonia are a typical case of an ecosystem with low resilience to disturbance by fire, which kills most trees and seeds, on which the species depends for regeneration. In this study, we hypothesize that the natural recovery of P. uviferum populations in burned areas is limited by seed availability and this limitation may be exacerbated by the dioecy of the species. Using a multi‐scaled approach, we quantified the seed dissemination potential from P. uviferum seed trees, assessed the suitability of substrates for the germination of seedlings, and finally analysed the spatial distribution of seed trees of the species at the landscape level. Our results indicate that 70 years after a fire on Chiloé Island (43°S), natural regeneration from seed trees can assist the recovery of P. uviferum populations following large‐scale fire disturbance, but their effect is limited at a landscape level owing to a low number of reproductive female trees (0.3 trees ha?1) and limited seed dispersal (<20 m). In this context, a mixed passive‐active restoration approach that takes into account the spatial pattern and sex of seed trees could be the most effective and efficient option to restore not only P. uviferum forests in North Patagonia, but also other heavily disturbed forests with few remnant seed trees, in particular of dioecious species.  相似文献   

9.
Seed predation and dispersal can critically influence plant community structure and dynamics. Inter‐specific differences arising at these early stages play a crucial role on tree recruitment patterns, which in turn could influence forest dynamics and species segregation in heterogeneous environments such as Mediterranean forests. We investigated removal rates from acorns set onto the ground in two coexisting Mediterranean oak species –Quercus canariensis and Q. suber– in southern Spain. We developed maximum likelihood estimators to investigate the main factors controlling probabilities of seed removal and to describe species‐specific functional responses. To account for inter‐specific differences in seed‐drop timing, two experiments were established: a simultaneous exposure of acorns of the two species (synchronous experiments) and a seed exposure following their natural seed‐drop phenology (diachronic experiments). A total of 1536 acorns were experimentally distributed along a wide and natural gradient of plant cover, and removal was periodically monitored for three months at two consecutive years (with contrasting differences in seed production and thus seed availability on the ground). The probability of seed removal increased with plant cover (leaf area index, LAI) for the two oak species. Inter‐specific differences in acorn removal were higher in open areas and disappeared in closed microhabitats, especially during a non‐mast year. Despite later seed‐drop, Q. suber acorns were removed faster and at a higher proportion than those of Q. canariensis. The higher probability of seed removal for this species could be attributed to its larger seed size compared to Q. canariensis, as inter‐specific differences were less pronounced when similar sized acorns were exposed. Inter‐specific differences in seed removal, arising from seed size variability and microsite heterogeneity, could be of paramount importance in oak species niche separation, driving stand dynamics and composition along environmental gradients.  相似文献   

10.
Invasive species can increase fire frequency and intensity, generating favorable conditions for their self-perpetuation. Mediterranean south-central Chile may be especially prone to the effects of invasive species on fire regimes because it is less adapted to fire and it contains a highly endemic flora. Teline monspessulana (L.) K. Koch (syn. Cytisus monspessulanus L.; Genista monspessulana (L.) L.A.S. Johnson) is an introduced shrub that forms monotypic stands or is present as an understory species in native forests as well as in forestry plantations. Dense T. monspessulana stands are completely destroyed by fire, generating the conditions for it seeds to germinate and establish an abundant regeneration, with up to 900 plants/m2. We report key evidence on abundance and biomass in adult stands, and patterns of seed bank and regeneration after fire in stands of T. monspessulana around the city of Concepción, Chile. We estimated living biomass in pure stands and underneath Eucalyptus plantations. In burned areas, we assessed T. monspessulana seed bank and studied regeneration patterns. We found that T. monspessulana densities reaches 52,778 plants/ha and 8.92 ton/ha in pure stands and 34,223 plants/ha and 2.31 ton/ha underneath Eucalyptus plantations. T. monspessulana generates small caliper fuel and acts as a ladder-fuel. Large soil seed banks allow for abundant regeneration after fire, with mean densities of 877,111 plants/ha, but an overall mortality of 37.2% in the first year after the fire. The high values of regeneration compared to final densities in adult stands suggest that density-dependent mortality. Our results indicate that T. monspessulana regeneration is not only favored by fires, but also that the species creates favorable conditions for intense and continuous fires, both under pure conditions, but also associated to exotic tree plantations. To understand the implications of positive feedbacks between invaders and fire, we recommend focusing in the mechanisms by which they increases fuel accumulation and fuel flammability, and how higher fire frequency and intensity favors invasive species recruitment over native species. Comprehension of this dynamics will allow for better management and control of these invasions which have major ecological, economical and social implications.  相似文献   

11.
Although regeneration of recalcitrant‐seeded tree species can be affected by prolonged drought, especially in Mediterranean regions, little is known about the response of such species to varying site conditions. A field experiment was performed to determine the effect of irrigation and leaf litter cover on seed germination and early seedling survival of the vulnerable recalcitrant‐seeded tree Beilschmiedia miersii (Lauraceae). Two levels of irrigation (non‐irrigated and irrigated units) and three levels of leaf litter depth (0, 5 and 12 cm) were applied to 72 groups of 30 seeds along a wet ravine of the Coastal Range of Central Chile, equally distributed across sites with different levels of canopy cover. Seed germination was significantly increased by irrigation only under closed‐canopy cover, and by leaf litter cover (>5 cm) under all canopy conditions. The effect of leaf litter on germination increased with canopy openness, while the effect of irrigation did not show any tendency. Meanwhile, early seedling survival was significantly increased by irrigation under intermediate canopy cover, and by leaf litter (>5 cm) under closed‐canopy cover. As a result of its overall positive effect on germination, leaf litter should be maintained within B. miersii communities, particularly under intermediate to closed‐canopy conditions, where it can also increase early seedling survival, and both seed germination and early seedling survival might be increased through additional water inputs. The presence of leaf litter might help retaining such inputs, prolonging their effect on regeneration of B. miersii communities. We see this as a baseline assessment of regeneration and persistence that needs further testing on species with similar traits, given the expected increase in the frequency and length of dry periods into the future.  相似文献   

12.
Frequency and severity of insect outbreaks in forest ecosystems are predicted to increase with climate change. How this will impact canopy leaf area in future climates is rarely tested. Here, we document function of insect outbreaks that fortuitously and rapidly occurred in an ecosystem under free‐air CO2 enrichment. Over the first 2 years of CO2 fumigation of a naturally established mature Eucalyptus woodland, we continuously assessed population responses of three sap‐feeding insect species of the psyllid genera Cardiaspina, Glycaspis and Spondyliaspis for up to ten consecutive generations. Concurrently, we quantified changes in the canopy leaf area index (LAI). Large and rapid shifts in psyllid community composition were recorded between species with either flush (Glycaspis) or senescence‐inducing (Cardiaspina, Spondyliaspis) feeding strategies. Within the second year, two psyllid species experienced significant and rapid population build‐up resulting in two consecutive outbreaks: first, rainfall stimulated Eucalyptus leaf production increasing LAI, which supported population growth of flush‐feeding Glycaspis without impacting LAI. Glycaspis numbers then crashed and were followed by the outbreak of senescence‐feeding Cardiaspina fiscella that led to significant defoliation and reduction in LAI. For all three psyllid species, the abundance of lerps, protective coverings excreted by the sessile nymphs, decreased at e[CO2]. Higher lerp weight at e[CO2] for Glycaspis but not the other psyllid species provided evidence for compensatory feeding by the flush feeder but not the two senescence feeders. Our study demonstrates that rainfall drives leaf phenology, facilitating the rapid boom‐and‐bust succession of psyllid species, eventually leading to significant defoliation due to the second but not the first outbreaking psyllid species. In contrast, e[CO2] may impact psyllid abundance and feeding behaviour, with psyllid species‐specific outcomes for defoliation severity, nutrient transfer and trophic cascades. Psyllid populations feeding on Eucalyptus experience rapid boom‐and‐bust cycles depending on availability of suitable foliage driven by rainfall patterns and leaf phenology.  相似文献   

13.
Little information exists about the establishment of native longleaf pine flatwoods species for use in restoration efforts and as buffers around natural areas in the southeastern United States. Composition of groundcover in these systems is dominated by perennial graminoid species. Vegetation in current buffers is generally non‐native turfgrass that can escape into natural areas, often reducing establishment and survival of native species. Where management objectives involve actively restoring native groundcover or reducing the probability of invasion by these non‐native turfgrasses, identification of native species and restoration methods is needed. We investigated seed germination and establishment of four species native to longleaf pine flatwoods in central Florida and one species native to the adjacent wetland communities. Paspalum setaceum, Panicum anceps, Eustachys petraea, and Eragrostis refracta were directly seeded, and P. distichum was planted as sprigs into three former P. notatum pastures. Irrigation, fertilization, weed control, and mowing treatments were assessed in terms of cover development of the sown species. Paspalum distichum developed the highest percent cover—over 80% in wet areas after 1 year. Mowing had mixed impacts depending on the species, and fertilization never significantly increased cover. Directly seeded species developed sparse cover (0–40%), probably as a result of drought conditions. However, E. petraea and E. refracta appeared more promising for use on rights‐of‐way when using high sowing rates. A second experiment conducted on a roadside included these two species and sprigged P. distichum. Both E. petraea and P. distichum developed more than 45% cover on the roadside. Establishment of these natives from seed or sprigs was significantly enhanced when site preparation effectively reduced the seedbank of other species present in the soil.  相似文献   

14.
Harvestman communities inhabiting plots treated differently for grassland restoration were investigated at the Vyzkum site near Malá Vrbka village (Bílé Karpaty Protected Landscape Area). Harvestman were sampled by pitfall trapping from 1999 to 2003 on plots sown with native haymeadow seed mixture, also on plots where narrow strips of regional seed mixtures were sown either within a matrix of commercial grass mixture or within vegetation cover in natural regeneration state and on plots in a natural regeneration state. Additionally, harvestman were collected in a field under permanent crop rotation and in a neighbouring xerothermic deciduous forest. In total, 5,086 individuals of harvestman representing 15 species from three families were obtained. Phalangium opilio was dominant (78%) and P. opilio, Rilaena triangularis and Zachaeus crista were the most frequent species. The results confirmed colonisation and subsequent development of harvestman communities on meadows in various state of restoration, including plots with spontaneous plant succession. Nevertheless, biotope character and successive formation of plant cover evidently influenced the structure of harvestman communities. The highest number of taxa (12) was recorded on plots with natural regeneration; the lowest one (9) was recorded in the field with permanent crop rotation. The highest values of diversity and equitability indices of harvestman communities were found in neighbouring forest habitats representing possible sources of harvestman migration.  相似文献   

15.
动物在大别山五针松种群天然更新中的作用   总被引:1,自引:0,他引:1  
苏昌祥  钟稚昉  鲁长虎 《生态学报》2018,38(17):6194-6203
大别山五针松(Pinus dabeshanensis)为我国特有树种,其天然植株较少且分布范围狭窄,种群更新困难,已被列为国家二级重点保护野生植物。分别于2015年和2016年的10—12月,在目前已知最大天然种群所在地安徽岳西县河图镇大王沟,研究了大别山五针松球果与种子特征、种子雨与土壤种子库、动物对种子的取食和搬运,幼苗分布格局及其与鼠穴分布的关系,以期探明动物在其天然更新中的作用,分析其天然更新不力的原因。结果显示:大别山五针松种子败育率较高,阳坡个体球果发育情况好于阴坡;种子成熟期间没有明显的种子雨,土壤种子库也未调查到完整种子。共记录到母树与球果的访问动物6目11科16种,其中7种动物确定取食种子;地面种子摆放实验显示超过95%以上的种子被啮齿动物捕食或搬运至他处取食或贮藏,不同的摆放处理对啮齿动物的捕食、搬运没有显著影响;小林姬鼠(Apodemus sylvaticus)盗食现象严重,埋藏实验中人工贮点当夜被发现的概率在90%左右,岩松鼠(Sciurotamias davidianus)和小林姬鼠是其种子主要捕食者。研究地的大别山五针松种群于2015年和2016年分别新增一年生幼苗5株和7株,这表明大别山五针松在当地存在天然更新。幼苗多单独生长在母树周围,点格局分析显示在0—0.6 m的尺度范围内呈随机分布;在0.6 m尺度呈聚集分布。大别山五针松幼苗在小林姬鼠巢穴周边分布,其更新格局受到小林姬鼠贮点位置分布情况影响,小林姬鼠极有很可能为大别山五针松的传播者,啮齿动物对大别山五针松种子的捕食与搬运影响了大别山五针松的天然种群更新。  相似文献   

16.
Aim Interannual land cover change plays a significant role in food security, ecosystem processes, and regional and global climate modelling. Measuring the magnitude and location and understanding the driving factors of interannual land cover change are therefore of utmost importance to improve our understanding and prediction of these impacts and to better differentiate between natural and human causes of land cover change. Despite advances in quantifying the magnitude of land cover change, the interpretation of the observed land cover change in terms of climatic, ecological and anthropogenic processes still remains a complex issue. In this paper, we map land cover change across sub‐Saharan Africa and examine the influences of rainfall fluctuations on interannual change. Location The analysis was applied to sub‐Saharan Africa. Methods Ten‐day rainfall estimates (RFE) obtained from National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Center (CPC) were used to extract information on inter and intra‐annual rainfall fluctuations. The magnitude of land cover change was quantified based on the multitemporal change vector method measuring year‐to‐year differences in bidirectional reflectance distribution function (BRDF) corrected 16‐day enhanced vegetation index (EVI) data from the Moderate Resolution Imaging Spectro‐radiometer (MODIS). Statistical models were used to estimate the relationship between short‐term rainfall variability and the magnitude of land cover change. The analysis was stratified first by physiognomic vegetation type and second by chorological data on species distribution to gain insights into spatial variations in response to short‐term rainfall fluctuations. Results The magnitude of land cover change was significantly related to rainfall variability at the 5% level. Stratification considerably strengthened the relationship between the magnitude of change and rainfall variability. Explanatory power of the models ranged from R2 = 0.22 for the unstratified model to 0.40–0.96 for the individual models stratified by patterns of species distribution. The total variability explained by the combined models including the influence of rainfall and differences in vegetation response ranged from 22% for the model not stratified by vegetation to 76% when stratified by chorological data. Main conclusions Using this methodology, we were able to measure the contribution of natural variation in precipitation to land cover change. Several ecosystems across sub‐Saharan Africa are highly sensitive to short‐term rainfall variability.  相似文献   

17.
文峪河上游华北落叶松林的种子雨、种子库与幼苗更新   总被引:1,自引:0,他引:1  
高润梅  石晓东  郭跃东  樊兰英 《生态学报》2015,35(11):3588-3597
华北落叶松林下更新不良,为探究其制约因素,开展了山西省文峪河上游5个华北落叶松林分的种子雨、土壤种子库和幼苗更新的研究。结果表明:(1)华北落叶松种子主要集中于9—10月散落。2011年为华北落叶松种子丰年:种子产量高,种子雨密度达(961.93±377.40)粒/m2;种子质量高,完整种子占(89.31±16.13)%。2012年为种子平年,种子产量低,种子雨密度为(252.73±115.12)粒/m2。华北落叶松种子雨主要源于毗邻树木,华北落叶松纯林和落叶松云杉林的种子雨密度显著高于其他3个针阔混交林。(2)土壤种子库主要由上年种子雨组成,2012年4月的土壤种子库密度为(695.18±297.23)粒/m2,完整种子占(59.73±9.56)%。种子自然萌发前,约(78.98±24.76)粒/m2具发芽力,基本可满足更新需要。但种子活力保持期少于2 a,只能形成短期持久土壤种子库。(3)华北落叶松更新不良,种子年后仍难以实现幼苗建成,当年生幼苗的出现频度平均为1.6%,且林下难以存活。幼苗发生与种子储量关联性不强,种源条件不是制约华北落叶松更新的主要因素。  相似文献   

18.
Previous studies suggest that forest regeneration in grasslands is often slow because of grass competition and fire and that regeneration may be dependent on fire‐resistant savannah trees. To examine the potential of savannah trees in facilitating regeneration, species diversity, number and total abundance of species of woody plants were determined below and away from Acacia sieberiana and Erythrina abyssinica tree crowns. Additionally, crown size and distance from a natural forest were estimated to determine their influence on natural regeneration. Results showed that the environment under tree crowns positively influence diversity compared to that outside crowns: including for biodiversity (3.08 versus 2.82), the number of species and total abundance (P < 0.001). However, distance from the forest to trees in the grassland had no influence on these parameters. Vertebrate animals were found to be the major seed dispersers in grasslands of Kibale. We concluded that forests that establish below crowns of savannah trees will be more diverse than those in treeless areas and that crown size is more important than distance from natural forest in facilitating regeneration. Furthermore, A. sieberiana could be more suitable in facilitating natural regeneration, while animals have proved to be vital for regeneration.  相似文献   

19.
We investigated the regeneration of a threatened tree, the yew Taxus baccata, in relation to the presence of fleshy‐fruited woody plants acting as seed dispersal foci as well as protecting yew recruits against ungulate herbivores. We seek to determine if local facilitative effects are consistent across landscape in the Cantabrian range (NW Spain). Yew seed rain by birds mostly concentrated under yew trees and beneath hollies Ilex aquifolium. Seedling emergence distributed similarly to seed rain, but first‐year seedling survival was higher beneath hollies. In one site where woody vegetation was structured as nucleation centres (multispecific patches of fleshy‐fruited plants acting as foci for seed rain) yew recruits mostly occurred in yew‐dominated centres, suggesting dispersers‐mediated facilitation. However, holly was the main nurse plant for most of these recruits, considering the nurse as the species whose canopy covered directly the yew recruit. Living beneath nurse plants reduced herbivore damage on saplings and enhanced seedling survival. A planting experiment with yew rooted‐cuttings beneath different spiny shrubs corroborated this effect. Additional evidence on yew recruitment limitation by herbivory emerged from one population where ungulates were fence‐excluded. Our results suggest that nurse plants mitigate the negative effect of herbivores on yew regeneration, by providing defence against browsing and trampling. Shelter ability related to nurse structure, cone‐shaped shrubs with branches at their bases acting better as a barrier. Paradoxically, this structure resulted from heavy browsing on nurse plants. The study of yew regeneration and habitat structure in seven sites provided evidence for the consistency of facilitation by holly at the landscape level, since local values of yew recruitment positively related to nurse ground cover. Range‐scale yew management must consider the local functioning of the interaction among avian seed‐dispersers, nurse fleshy‐fruited plants and ungulate herbivores, in combination with regional measures, targeting the habitats where facilitation emerges.  相似文献   

20.
Abstract Fine‐scale habitat preferences of three co‐occurring mycophagous mammals were examined in a tropical wet sclerophyll forest community in north‐eastern Australia. Two of the three mammal species responded to fine‐scale variation in vegetation and landform around individual trap locations. At a broad scale, the northern bettong (Bettongia tropica), an endangered marsupial endemic to the Australian wet tropics region, showed a preference for ridges over mid‐slopes and gullies, irrespective of forest type. In contrast, the northern brown bandicoot (Isoodon macrourus), a widespread marsupial, displayed a preference for Eucalyptus woodland over adjacent Allocasuarina forest, irrespective of topographic category. The giant white‐tailed rat (Uromys caudimaculatus), a rodent endemic to the wet tropics, showed no particular preference for either forest type or topographic category. A multiple regression model of mammal capture success against three principal habitat gradients constructed from 21 habitat variables using principal component analysis indicated strong species‐specific preferences for fine‐scale vegetation assemblages. Bettongs preferred areas of Eucalyptus woodland with sparse ground cover, low densities of certain grass species, high density of tree stems and few pig diggings. Bandicoots, in contrast, favoured areas in both forest types with dense ground cover, fewer tree stems and greater numbers of pig diggings; that is, characteristics least favoured by bettongs. The striking differences in fine‐scale habitat preferences of these two mammals of similar body size and broad habitat requirements suggest a high degree of fine‐scale habitat partitioning. White‐tailed rats did not show preference for any of the habitat gradients examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号