首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurotrauma activates the release of membrane phospholipid-derived second messengers, such as free arachidonic acid (20:4n-6, AA) and diacylglycerols (DAGs). In the present study, we analyze the effect of cortical impact injury of low-grade severity applied to the rat frontal right sensory-motor cortex (FRC) on the accumulation of free fatty acids (FFAs) and DAGs in eight brain areas 30 min and 24 hours after the insult. At these times, accumulation of FFAs and DAGs occurred mainly in the damaged FRC. The cerebellum was the only other brain area that displayed a significant accumulation of DAGs by day one post-injury. By 30 min, accumulation of free AA in the FRC displayed the greatest relative increase (300% over sham value), followed by free docosahexaenoic acid (22:6n-3, DHA, 150%), while both 20:4-DAGs and 22:6-DAGs were increased 100% over sham values. At day one, free 22:6 and 22:6-DAGs showed the greatest increase (590% and 230%, respectively). These results suggest that TBI elicits the hydrolysis of phospholipids enriched in excitable membranes, targeting early on 20:4-phospholipids (by 30 min post-trauma) and followed 24 hours later by preferential hydrolysis of DHA-phospholipids. These lipid metabolic changes may contribute to the initiation and maturation of neuronal and fiber track degeneration observed following cortical impact injury.  相似文献   

2.
Apoptotic cell death has been proposed to play a role in the neuronal loss observed following traumatic injury in the CNS and PNS. The present study uses an in vitro tissue culture model to investigate whether free fatty acids (FFAs), at concentrations comparable to those found following traumatic brain injury, trigger cell death. Nerve growth factor (NGF)-differentiated PC12 cells exposed to oleic and arachidonic acids (2 : 1 ratio FFA/BSA) showed normal cell survival. However, when cells were exposed to stearic and palmitic acids, there was a dramatic loss of cell viability after 24 h of treatment. The cell death induced by stearic acid and palmitic acid was apoptotic as assessed by morphological analysis, and activation of caspase-8 and caspase-3-like activities. Western blotting showed that differentiated PC12 cells exposed to stearic and palmitic acids exhibited the signature apoptotic cleavage fragment of poly (ADP-ribose) polymerase (PARP). Interestingly, blockade of caspase activities with the pan-caspase inhibitor z-VAD-fmk failed to prevent the cell death observed induced by palmitic or stearic acid. RT-PCR and RNA blot experiments showed an up-regulation of the Fas receptor and ligand mRNA. These findings are consistent with our hypothesis that FFAs may play a role in the cell death associated with trauma in the CNS and PNS.  相似文献   

3.
The quantitative relationship between phosphoinositides and free fatty acids (FFAs) in brain ischemia was studied by measuring contents of individual fatty acids in phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol (PI), phosphatidic acid (PA), diacylglycerol (DAG), and the FFA pool. Various periods of complete ischemia (1, 3, 10, and 30 min) were produced by decapitation. Ischemia of 1-3 min caused rapid decreases in PIP2 and PIP content together with preferential production of stearic and arachidonic acids in the DAG and FFA pools. The decrement in levels of these fatty acid residues in polyphosphoinositides was sufficient to account for their increment in levels in the enlarged DAG and FFA pools. After 10 min of ischemia, levels of PIP2, PIP, and DAG approached plateau values, but levels of all FFAs continued to increase. The increases in content of DAG and FFAs at later ischemic periods could not be accounted for by the decreases in content of PIP2 and PIP, PI and PA levels showed only transient and subtle changes. These results indicate that, at the onset of ischemia, phosphodiesteric cleavage of PIP2 and PIP and subsequent deacylation by lipases are primarily responsible for the preferential increase in levels of free stearic and arachidonic acids and that, later, hydrolysis of other phospholipids plays a major role in the continuous accumulation of FFAs.  相似文献   

4.
Abstract: We previously reported that whole-brain free fatty acids (FFA) rose almost linearly for up to 1 h after decapitation of unanesthetized rats and was significantly attenuated by pentobarbital anesthesia. However, our values for total FFA and arachidonic, stearic, oleic, and palmitic acids were severalfold higher than those obtained by previous investigators. Based upon the suggestion that this may be due to FFAs released from di- and triglycerides in the quantitation of FFAs, we have now analyzed and improved our procedures for TLC separation of FFA and reassessed the accumulation of FFA in whole brain during decapitation ischemia in unanesthetized and pentobarbital-anesthetized rats. FFA levels in whole brain after 0.5 min of ischemia were one-half to one- fourth the levels previously reported after 1 min of ischemia. The rise in FFA between 0.5 and 60 min of ischemia was 9-fold for total FFA, and between 7 and 12-fold for each of the FFAs quantitated. Pentobarbital significantly attenuated the rise of all FFAs with, however, greater effects on oleic and palmitic acids than previously reported.  相似文献   

5.
The effects of the platelet-activating factor antagonist BN 50739 and a free radical scavenger dimethyl sulfoxide on the accumulation of free fatty acids in post-ischemic canine brain are reported. Following 14 min of complete normothermic ischemia and 60 min of reperfusion, the total brain FFAs were approximately 150% higher than in the control group (p<0.05). Perfusion with the platelet-activating factor antagonist BN50739 in its diluent dimethyl sulfoxide during 60 min of post-ischemic reoxygenation resulted in a 61.8% (p<0.01) reduction in the total brain free fatty acid accumulation. Palmitic, stearic, oleic, linoleic, and arachidonic acids decreased by 53.8%, 63.5%, 69.0%, 47.4%, and 57.2%, respectively. Although dimethyl sulfoxide alone caused stearic and arachidonic acids to return to the normal concentration range, BN 50739 had a significant influence on recovery of palmitic, oleic, and linoleic acids and was previously shown to provide significant therapeutic protection against damage to brain mitochondria following an ischemic episode. Because free fatty acid accumulation is one of the early phenomena in cerebral ischemia, this study provides evidence to support the hypothesis that both platelet-activating factor and free radicals are involved in initiating cerebral ischemic injury.  相似文献   

6.
Abstract: To find a biochemical basis for the increased tolerance of the brain to anoxia during barbiturate anesthesia, we studied whole-brain free fatty acids (FFA) at various times after decapitation of awake and pentobarbital-anesthetized rats. Post-decapitation, the brains were kept at 37°C for 1 to 60 min before freezing in liquid N2. Nonischemic brains were frozen in liquid N2, using a rapid sampling technique. Whole-brain arachidonic, stearic, oleic, linoleic, and palmitic acids were quantitated by gas-liquid chromatography. In unanesthetized, nonischemic brain, total FFA was 1226 ± 121 nmol/g brain ( n = 12) and was unaffected by pentobarbital anesthesia (1126 ± 86 nmol/g brain, n = 11), except for a reduction in arachidonic acid. Total FFA in unanesthetized and pentobarbital-anesthetized rats transiently declined between 0 and 1 min of ischemia, and then rose linearly for up to 60 min, with consistently lower values in pentobarbital-treated rats, the greatest attenuation being that of arachidonic and stearic acid liberation. Brain FFA liberation during global ischemia is the first known biochemical variable directly correlated with the duration (i.e., severity) of global ischemia. The attenuation of brain FFA liberation and especially of arachidonic and stearic acids may be the biochemical basis of barbiturate attenuation of ischemic brain injury.  相似文献   

7.
Once brain ischemia was induced in the gerbil cerebral fronto-parietal cortex, serial changes occurred in energy metabolites and various lipids. The amounts of inositol-containing phospholipids began to decrease immediately after energy failure, followed by an increase in the amount of 1,2-diacylglycerol with a subsequent liberation of arachidonic acid and other free fatty acids. The fatty acid compositions of inositol-containing phospholipids, of 1,2-diacylglycerols produced by ischemia, and of free fatty acids liberated during ischemia were quite similar. The amount of stearic acid liberated was much larger than that of arachidonic acid between 30 s and 1 min of ischemia. On the other hand, there was no significant decrease in the amount of the other phospholipids except for phosphatidic acid. Furthermore, there was also no change in the fatty acid composition of phosphatidylcholine or phosphatidylethanolamine throughout 15 min of ischemia. The amount of cytidine-monophosphate reached a peak (36.7 nmol/g wet wt) at 2 min of ischemia. These results indicated that arachidonic acid was predominantly liberated from inositol-containing phospholipids by phospholipase C, and by the diglyceride lipase and monoglyceride lipase system rather than from phosphatidylcholine or phosphatidylethanolamine by phospholipase A2 or plasmalogenase or choline phosphotransferase during the early period of ischemia.  相似文献   

8.
Abstract: We tested whether cerebral noradrenaline (NA) may play a central role in mediating the increased production of free fatty acids (FFAs) during cerebral ischemia. Levels of FFAs, cyclic AMP, and NA, as well as ATP, ADP, and AMP, were measured in cerebral cortex during decapitation ischemia in rats 2 weeks after unilateral locus ceruleus lesion. Comparisons were made between the results obtained from the contralateral cortex with normal NA content and the NA-depleted ipsilateral cortex. Although NA depletion was associated with a diminished transient rise of cyclic AMP in response to ischemia, it failed to influence the magnitude of FFA increase or the decline of energy state within the 15-min period of ischemia. A more than twofold increase of total FFAs (sum of palmitic, stearic, oleic, arachidonic, and docosahexaenoic acids) was observed in both hemispheres at 1 min after decapitation, when energy failure became manifest. The increased production of FFAs continued throughout the 15 min of ischemia, with a preferential rise in the levels of stearic and arachidonic acids. There was an inverse correlation between FFA levels and total adenylate pool. The results do not support a major role for NA and cyclic AMP in increasing cortical FFAs during complete ischemia. Instead, they are consistent with the view that impaired oxidative phosphorylation activates deacylating enzymes. Disturbance of reacylation due to energy depletion is probably another factor contributing to the continuous increase of FFAs during prolonged ischemia.  相似文献   

9.
Brain free fatty acids (FFAs) and brain water content were measured in gerbils subjected to transient, bilateral cerebral ischemia under brief halothane anesthesia (nontreated group) and pentobarbital anesthesia (treated group). Mortality in the two groups was also evaluated. In nontreated animals, both saturated and mono- and polyunsaturated FFAs increased approximately 12-fold in total at the end of a 30-min period of ischemia; during recirculation, the level of free arachidonic acid dropped rapidly, while other FFAs gradually decreased to their preischemic levels in 90 min. In treated animals, the levels of total FFAs were lower than the nontreated group during ischemia, but higher at 90 min of reflow, and the decrease in the rate of free arachidonic acid was slower in the early period of reflow. Water content increased progressively during ischemia and recirculation with no extravasation of serum protein, but the values were consistently lower in the treated group. None of the nontreated animals survived for 2 weeks; in contrast, survival was 37.5% in the treated group. It is suggested that barbiturate protection from transient cerebral ischemia may be mediated by the attenuation of both membrane phospholipid hydrolysis during ischemia and postischemic peroxidation of accumulated free arachidonic acid.  相似文献   

10.
Regional studies of brain phospholipid metabolism were carried out during a period of ischaemia induced in the gerbil by bilateral carotid occlusion for 60 min. The associated changes in free fatty acids (FFAs) during this period and following recirculation for up to 180 min were noted. Following ischaemia there was a generalised rise in the levels of all FFAs with no selective release of either the unsaturated (arachidonic and docosahexaenoic) or saturated (palmitic and stearic) fatty acids. There were no observed differences between the brain regions studied, which is in contrast to previously reported observations for prostaglandins. There was also no indication of any specific phospholipid fraction being involved in FFA release. This would indicate that the release of FFAs from phospholipids is a nonspecific event, probably due to the action of hydrolytic lipases. Restoration of the circulation resulted in a short, sharp increase (within 5 min) in all FFAs, but in contrast to the observations during ischaemia alone there was a relatively larger rise in the unsaturated FFAs as compared to the saturated FFAs. Following this increase there was a gradual general decline in all FFA levels until 180 min of reperfusion. Since there was no preferential depletion of unsaturated FFAs during reperfusion, when free radical attack is considered to be at its maximum, it is our opinion that free radical peroxidation is unlikely to explain the pathology described in our model.  相似文献   

11.
Free Fatty Acids in the Rat Brain in Moderate and Severe Hypoxia   总被引:20,自引:16,他引:4  
Abstract: The effects of mild, moderate, and severe hypoxia on cerebral cortical concentrations of free fatty acids (FFAs) were investigated in artificially ventilated rats under nitrous oxide anaesthesia. No change occurred during either mild (arterial Po2 35–40 mm Hg) or moderate (Po2 25–30 mm Hg) hypoxia. The effects of severe hypoxia (Po2 about 20 mm Hg) combined with hypotension (mean arterial blood pressure 80–85 mm Hg) varied with the EEG pattern and the tissue energy state. Thus, a major increase in total as well as in individual FFAs occurred first when EEG was severely depressed (almost isoelectric) and energy homeostasis disrupted. On a relative basis the greatest change occurred in free arachidonic acid. It is concluded that hypoxia is associated with an increase in the concentrations of FFAs in brain tissue, provided that tissue oxygen deficiency is severe enough to cause tissue energy failure. However, an increase in FFAs does not invariably accompany minor reductions in the adenylate energy charge (EC) of the tissue.  相似文献   

12.
Traumatic spinal cord injury has recently been shown to cause a rapid increase in free fatty acids (FFAs) and lipid degradation in cats. The present studies report a more delayed, time-dependent increase in FFAs and a concomitant decrease in phospholipids following traumatic spinal injury in rats. The largest percentage increases were found for polyunsaturated fatty acids, particularly arachidonic acid. Associated with these changes were a reduction in the activity of Na+,K+-ATPase and development of spinal cord edema. These findings support the hypothesis that traumatic spinal cord injury leads to delayed, as well as early, hydrolysis of membrane phospholipids, resulting in the liberation of FFAs. Such changes may contribute to secondary spinal cord injury either through direct effects on membranes or through the actions of secondary metabolic products such as the eicosanoids. The latter may cause tissue injury by contributing to the reduction in spinal cord blood flow or through inflammatory responses that follow trauma.  相似文献   

13.
We have investigated the effects of the specific platelet-activating factor (PAF; 1-alkyl-2-acetyl-glycerophosphocholine) antagonist BN52021 on free fatty acid (FFA) and diacylglycerol (DG) accumulation and on the loss of fatty acids from phosphatidylinositol-4,5-bisphosphate (PIP2) in mouse brain. Mice were pretreated with BN52021 (10 mg/kg, i.p.) 30 min before electroconvulsive shock (ECS) or postdecapitation ischemia. These procedures cause rapid breakdown of PIP2 and accumulation of FFA and DG. Lipid extracts were prepared from microwave-fixed cerebrum and fractionated by TLC, and the fatty acid methyl esters were prepared by methanolysis and quantified by capillary GLC. In saline or vehicle (dimethyl sulfoxide)-treated mice, ECS caused marked accumulation of FFA and DG and loss of mainly stearic (18:0) and arachidonic (20:4) acids from PIP2. BN52021 pretreatment of ECS-treated mice decreased the accumulation of free palmitic (16:0), 18:0, 20:4, and docosahexaenoic (22:6) acids with no effect on the fatty acids in DG or the loss of PIP2. BN52021 had no effect on basal levels of FFA, DG, or PIP2. One minute of postdecapitation ischemia induced PIP2 loss and accumulation of FFA and DG. BN52021 attenuated the accumulation of free 20:4 and 22:6 acids, decreased the content of oleic (18:1), 20:4, and 22:6 acids in DG, but had no effect on PIP2 loss. These data indicate that BN52021 reduces the injury-induced activation of phospholipase A2 and lysophospholipase, which mediate the accumulation of FFA in brain, while having a negligible effect on phospholipase C-mediated degradation of PIP2.  相似文献   

14.
Abstract: Transient global cerebral ischemia affects phospholipid metabolism and features a considerable increase in unesterified fatty acids. Reincorporation of free fatty acids into membrane phospholipids during reperfusion following transient ischemia depends on conversion of fatty acids to acyl-CoAs via acyl-CoA synthetases and incorporation of the acyl group into lysophospholipids. To study the effect of ischemia-reperfusion on brain fatty acid and acyl-CoA pools, the common carotid arteries were tied for 5 min in awake gerbils, after which the ligatures were released for 5 min and the animals were killed by microwave irradiation. Twenty percent of these animals (two of 10) were excluded from the ischemia-reperfusion group when it was demonstrated statistically that brain unesterified arachidonic acid concentration was not elevated beyond the range of the control group. Brain unesterified fatty acid concentration was increased 4.4-fold in the ischemic-reperfused animals, with stearic acid and arachidonic acid increasing the most among the saturated and polyunsaturated fatty acids, respectively. The total acyl-CoA concentration remained unaffected, indicating that reacylation of membrane lysophospholipids is maintained during recovery. However, there was a substantial increase in the stearoyl- and arachidonoyl-CoA and a marked decrease in palmitoyl- and docosahexaenoyl-CoA. These results suggest that unesterified fatty acid reacylation into phospholipids is reprioritized according to the redistribution in concentration of acyl-CoA molecular species, with incorporation of stearic acid and especially arachidonic acid being favored.  相似文献   

15.
Experiments on rats with chronic bipolar electrodes implanted into the frontal cortex (FC), dorsal hippocampus (DH) and midbrain reticular formation (RF) established that the neurotic state (model "conflict of afferent excitation") was characterised by the increase in structure excitability: FC--15.4% (P less than 0.01), DH--12.4% (P = 0.05) and RF--17.5% (P less than 0.001). The presence of free fatty acids (FFA) revealed by chromatograph Schimadzu in brain cortex (BC), hippocampus (H) and midbrain (MB) in acute experiments evidenced the increase in the level of linolinic acid in all matters within the limits of 64-162% (P less than 0.05) and also different changes in arachidonic acid in BC and subcortical structures. The level of arachidonic acid increased by 120% (P less than 0.01) in BC but it decreased in H and MB within the limits of 34-56%. AVP (1 micrograms/kg) decreased excitability of FC by 6% (P less than 0.001), of H--by 8% (P less than 0.01) and RF--by 6%. In this case FFA, especially arachidonic acid, was increased in H and MB (by 2.5-6 times). The quantity of palmitic, stearic and oleic acids increased.  相似文献   

16.
The pool size and composition of free fatty acids (FFA) and diglycerides (DG) from the cerebrum and cerebellum of rats undergoing bicuculline-induced seizures were studied. A fourfold increase in cerebral FFA occurred 3-4 min after bicuculline injection; arachidonic and stearic acids were the principal fatty acids accumulated. Cerebellar FFA also increased, but to a lesser extent. An increased production of arachidonic acid took place in the cerebrum as a function of time after bicuculline injection. Other fatty acids produced were oleic, palmitic, and docosahexaenoic acids. A twofold increase in cerebral arachidonic acid was seen at the time of the first generalized tonic-clonic convulsion. However, a 13- to 17-fold increase in arachidonic acid was seen approximately 5-6 min after bicuculline injection. The rise in other FFA was much smaller. Stearoyl- and arachidonoyl-DG were also accumulated. The drug alpha-methyl-p-tyrosine was found to (a) potentiate the bicuculline-stimulated release of cerebellar FFA, and (b) inhibit by 70% the production of stearoyl- and arachidonoyl-DG in the cerebrum and cerebellum. Basal production of FFA was stimulated by p-chlorophenylalanine, but the drug had no effect on the bicuculline-induced changes. Hydrolysis of phospholipids enriched in stearoyl-arachidonoyl groups, such as phosphatidylinositol of excitable membranes, may be stimulated during seizures.  相似文献   

17.
Performance of a new lipase from Novozymes (Callera Trans L) was studied for fatty acid methylesters (FAMEs) production. In order to reduce the costs of the industrial enzymatic biodiesel production process, the enzyme was used in its soluble form instead of the common immobilized preparations. Cost reduction was also achieved by using crude (non-degummed) soybean oil as a cheaper raw material. The effect of water content during Callera Trans L-catalyzed FAMEs production was explored from evaluation of free fatty acids (FFAs), tri- di or monoacylglycerides (TAGs, DAGs, MAGs) variation during 24 h reaction. An excellent 96% FAMEs release was achieved when low (3–5%) water concentrations were used in the conversion of crude soybean oil. Time course HPLC analysis of the reaction products suggests that the soluble enzyme proceeds through a mechanism of methylester formation based on a first hydrolysis step that releases FFAs, DAGs or MAGs, followed by esterification of FFAs with methanol for FAMEs production.  相似文献   

18.
The content and acyl group composition of phosphatidylinositol, poly-phosphoinositides, diacylglycerols, phosphatidic acids, and free fatty acids in rat brain homogenates of cerebral cortex and subcellular fractions were examined with respect to a 2 min post-decapitative ischemic treatment. With the exception of free fatty acids, these lipids are involved in the cyclic event associated with the receptor-mediated poly-phosphoinositide turnover. The ischemic treatment elicited a decrease in poly-phosphoinositide level in brain homogenates, synaptosomes, plasma membranes, and microsomes but not in myelin, and an increase in diacylglycerols, which was observed in brain homogenates and synaptosomes but not in other subcellular fractions. On the other hand, the level of phosphatidylinositol was not altered. The acyl groups of phosphoinositides are enriched in stearic and arachidonic acids. The diacylglycerols and free fatty acids that accumulated during the ischemic treatment are also enriched with the same fatty acids. There is a decrease in phosphatidic acid level after the ischemic treatment, but the change was only found in brain homogenates and synaptosomes. Therefore, the diacylglycerols increased during the ischemic treatment may be derived from hydrolysis of poly-phosphoinositides and phosphatidic acids. However, the amount of poly-phosphoinositides degraded is not enough to account for both diacylglycerols and free fatty acid increase.  相似文献   

19.
Dietary ω3-polyunsaturated fatty acids are thought to influence the risk of Alzheimer’s disease (AD), and supplemental docosahexaenoic acid (DHA; 22:6n-3) has been reported to reduce neurodegeneration in mouse models of AD. We have analysed the fatty acid composition of frontal, temporal and parietal neocortex in 58 normal and 114 AD brains. Significant reductions were found for stearic acid (18:0) in frontal and temporal cortex and arachidonic acid (20:4n-6) in temporal cortex in AD, and increases in oleic acid in frontal and temporal cortex (18:1n-9) and palmitic acid (16:0) in parietal cortex. DHA level varied more in AD than controls but the mean values were not significantly different. Fatty acid composition was not related to APOE genotype, age, gender or post-mortem delay. Further research is needed to distinguish between alterations that are secondary to AD and those that contribute to the disease process.  相似文献   

20.
Preincubation of brain membranes with phospholipase A2 (PLA2) has been shown previously to affect the binding characteristics of various recognition sites associated with the gamma-aminobutyric acid (GABA) receptor complex. In the present study, we have investigated the effects of PLA2 (from Naja naja siamensis venom) on the functional activity of the GABA receptor/chloride ion channel. PLA2 (0.001-0.02 U/mg protein) preincubation decreased pentobarbital-induced 36Cl- efflux and muscimol-induced 36Cl- uptake in rat cerebral cortical synaptoneurosomes. The effect of PLA2 was prevented by EGTA and two nonselective PLA2 inhibitors, mepacrine and bromophenacyl bromide. The removal of free fatty acids by addition of bovine serum albumin both prevented and reversed the effect of PLA2. Products of the catalytic activity of PLA2, such as the unsaturated free fatty acids, arachidonic and oleic acids, mimicked the effect of PLA2. However, the saturated fatty acid, palmitic acid, and lysophosphatidyl choline had no effect on pentobarbital-induced 36Cl- efflux. Because unsaturated free fatty acids are highly susceptible to peroxidation by oxygen radicals, the role of oxygen radicals was investigated. Xanthine plus xanthine oxidase, a superoxide radical generating system, mimicked the effect of PLA2, whereas the superoxide radical scavenger, superoxide dismutase, diminished the effects of PLA2 and arachidonic acid on pentobarbital-induced 36Cl- efflux. Similarly, the effect of PLA2 was also inhibited by methanol (1 mM), a scavenger of the hydroxyl radical, and by catalase. These data indicate that exogenously added PLA2 induces alterations in membrane phospholipids, possibly promoting the generation of oxygen radicals and fatty acid peroxides which can ultimately modulate GABA/barbiturate receptor function in brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号