首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The distribution and movements of Buller's albatross in Australasian seas are analysed using results of shipborne surveys (13 238 10‐min counts), counts from trawlers, banding data, recoveries on beaches and fishing vessels, and records from the literature. Patterns of marine distribution are documented by monthly accounts and maps. During the breeding season, highest abundances are recorded over shelves and slopes off southern New Zealand (The Snares shelf to 41–43°S off the South Island, D. b. bulleri), around the Chatham Islands and over oceanic subtropical waters east of New Zealand (probably D. b. platei), with marked seasonal variations observed off southern New Zealand. Both subspecies disperse mostly outside Australasian waters during the non‐breeding season. Birds banded on The Snares were recovered off south‐eastern New Zealand (Stewart Island to Cook Strait) and in the eastern tropical Pacific. Immatures accounted for only 0.25% of birds censused during the ship‐borne surveys; they are recorded around the New Zealand mainland in August‐October and February‐May, off south‐eastern Australia and in the Tasman Sea in November‐December, February, and June‐July. Around New Zealand, males predominate among birds recovered along the eastern seaboard, whereas the sex ratio in south‐western waters tends to vary according to water depth and season. Distribution patterns and movements in New Zealand and Australian seas are discussed in relation to breeding events and breeding status.  相似文献   

2.
Abbott CL  Double MC 《Molecular ecology》2003,12(11):2953-2962
Six variable microsatellite loci were used to examine genetic structuring in the closely related shy albatross (Thalassarche cauta) and white-capped albatross (T. steadi). First, levels of genetic differentiation between the species, and among three populations within each species, were analysed using amova, FST and RST. We found high levels of genetic structuring and detected many unshared alleles between the species, which provide strong evidence against any contemporary gene flow between them. Within each species, shy albatross populations were found to be genetically distinct whereas white-capped albatross populations were undifferentiated, which implies that dispersal events are much rarer in the former than in the latter. These results formed the basis for the recommendation that the three white-capped albatross populations (as a whole) and each shy albatross population be treated as separate units for conservation. Second, levels of genetic diversity and allelic patterns in shy and white-capped albatrosses were assessed for whether they support earlier mtDNA results suggesting that shy albatrosses arose through range expansion of white-capped albatrosses. All measures indicated lower genetic diversity within shy albatrosses than within white-capped albatrosses and upheld the hypothesis that shy albatrosses were founded by white-capped albatrosses.  相似文献   

3.
The philopatric behaviour of albatrosses has intrigued biologists due to the high mobility of these seabirds. It is unknown how albatrosses maintain a system of fragmented populations without frequent dispersal movements, in spite of the long-term temporal heterogeneity in resource distribution at sea. We used both genetic (amplified fragment length polymorphism) and capture-mark-recapture (CMR) data to identify explicitly which among several models of population dynamics best applies to the wandering albatross (Diomedea exulans) and to test for migration-drift equilibrium. We previously documented an extremely low genetic diversity in this species. Here, we show that populations exhibit little genetic differentiation across the species' range (Theta(B) < 0.05, where Theta(B) is an F(ST) analogue). Furthermore, there was no evidence of hierarchical structure or isolation-by-distance. Wright's F(ST) between pairs of colonies were low in general and the pattern was consistent with a nonequilibrium genetic model. In contrast, CMR data collected over the last decades indicated that about one bird per cohort has dispersed among islands. Overall, F(ST) values were not indicative of contemporary dispersal as inferred from CMR data. Moreover, all genotypes grouped together in a cluster analysis, indicating that current colonies may have derived from one ancestral source that had a low genetic diversity. A metapopulation dynamics model including a recent (postglacial) colonization of several islands seems consistent with both the very low levels of genetic diversity and structure within the wandering albatross. Yet, our data suggest that several other factors including ongoing gene flow, recurrent long-distance dispersal and source-sink dynamics have contributed to different extent in shaping the genetic signature observed in this species. Our results show that an absence of genetic structuring may in itself reveal little about the true population dynamics in seabirds, but can provide insights into important processes when a comparison with other information, such as demographic data, is possible.  相似文献   

4.
The history of population structure is a key to effective wildlife management and conservation. However, inferring the history of population structure using present genetic structures is problematic when the method is applied to species that have experienced severe population bottlenecks. Ancient DNA analysis seemed to be a promising, direct method for inferring ancient population structures. However, the usual methods for inferring modern population structure, i.e. the phylogeographic approach using mitochondrial DNA and the Bayesian approach using microsatellite DNA, are often unsuitable for ancient samples. In this study, we combined ancient DNA obtained from zooarchaeological bones with carbon/nitrogen stable isotope ratios and morphological variations to infer ancient population structure of the short-tailed albatross Phoebastria albatrus. The results showed that the bird existed in two populations, between which the genetic distance was greater than that of distinct sister albatross species, although no subspecies of P. albatrus have been proposed. Our results suggest that the birds at the present two breeding regions (Torishima in the Izu Islands and two islets of the Senkaku Islands) are descended from these two ancient populations, and that reevaluation of the status and conservation strategy for the species is required. Our results also indicate that lineage breeding on the Senkaku Islands has drastically reduced genetic diversity, while that on Torishima has not. The approach proposed in this study would be useful for inferring ancient population structure, using samples of highly mobile animals and/or samples from archaeological sites, and the reconstructed ancient population structure would be useful for conservation and management recommendations.  相似文献   

5.
We assessed the genetic and morphological differences between the two largest breeding colonies of Audouin's Gull Larus audouinii , an endemic seabird species of the Mediterranean region. The two colonies comprise c. 75% of the total world population and are 655 km apart. The Ebro Delta colony was formed recently and, after dramatic growth mainly due to high rates of both immigration and reproductive success, is now the largest in the world (more than 60% of the total population). The Chafarinas Islands support an ancient colony with relatively little fluctuation in breeding numbers. The two colonies also differ greatly in environmental conditions, with the Ebro Delta being a higher quality breeding site. Very little movement occurs between the two colonies. We collected morphological data and blood samples from both colonies. Polymorphic microsatellite markers were used to study the genetic differentiation. These showed no significant variation between colonies, nor evidence of a founder effect in the Ebro Delta. Individuals from the Ebro Delta were larger than those from Chafarinas, the difference being greater for males. This probably reflects a stronger male susceptibility to worse environmental conditions during chick growth at the Chafarinas Islands.  相似文献   

6.
Abstract

Many albatross populations are declining and a major cause is believed to be incidental mortality from fishing. We investigated the effect of fishing on southern Buller's albatross Thalassarche bulleri bulleri, using a new approach to seabird population modelling that allows estimation of demographic parameters from multiple data types. Three types of data were used: a 60-year set of mark–recapture observations, four censuses of the breeding population, and estimates of fishing effort and bycatch. The fisheries risk to the viability of this population over the last 60 years appears to have been small, since the adult population is estimated to have increased about five-fold over that time. There is some cause for concern in recent changes (population growth has slowed, and perhaps reversed, and adult survival rates are falling). The most common age at first breeding was 12 years, and about 80% of adults breed each year. Annual survival was estimated to be 0.91 for juveniles, and varied between this value and 1 for adults. Though this population is not in immediate danger from fishing, there is a need for continued monitoring to see whether the recent fall in survival rates persists and causes a decline in abundance. Our analysis showed that when, as is common, mark–recapture data do not provide good estimates of all demographic rates, the assessment of seabird population trends can be improved by the use of other types of data, particularly abundance.  相似文献   

7.
The light-mantled sooty albatross is a medium-sized albatross with a circumpolar distribution in the Southern Ocean. The known breeding sites are restricted to Islands in sub-Antarctic latitudes close to the Antarctic convergence between 46° and 53°S. In the austral summer season 2008/2009 we discovered a new breeding colony with at least two confirmed and three probable nests at Fildes Peninsula, King George Island, South Shetland Islands, Antarctica (62°12′S, 59°01′W). The new breeding colony of light-mantled sooty albatross described here represents the southernmost breeding place of any albatross species ever recorded.  相似文献   

8.
Complex population structure can result from either sex-biased gene flow or population overlap during migrations. Loggerhead turtles (Caretta caretta) have both traits, providing an instructive case history for wildlife management. Based on surveys of maternally inherited mtDNA, pelagic post-hatchlings show no population structure across the northern Atlantic (phi(ST) < 0.001, P = 0.919), subadults in coastal habitat show low structure among locations (phi(ST) = 0.01, P < 0.005), and nesting colonies along the southeastern coast of the United States have strong structure (phi(ST) = 0.42, P < 0.001). Thus the level of population structure increases through progressive life history stages. In contrast, a survey of biparentally inherited microsatellite DNA shows no significant population structure: R(ST) < 0.001; F(ST) = 0.002 (P > 0.05) across the same nesting colonies. These results indicate that loggerhead females home faithfully to their natal nesting colony, but males provide an avenue of gene flow between regional nesting colonies, probably via opportunistic mating in migratory corridors. As a result, all breeding populations in the southeastern United States have similar levels of microsatellite diversity (H(E) = 0.70-0.89), whereas mtDNA haplotype diversity varies dramatically (h = 0.00-0.66). Under a conventional interpretation of the nuclear DNA data, the entire southeastern United States would be regarded as a single management unit, yet the mtDNA data indicate multiple isolated populations. This complex population structure mandates a different management strategy at each life stage. Perturbations to pelagic juveniles will have a diffuse impact on Atlantic nesting colonies, mortality of subadults will have a more focused impact on nearby breeding populations, and disturbances to adults will have pinpoint impact on corresponding breeding populations. These findings demonstrate that surveys of multiple life stages are desirable to resolve management units in migratory marine species.  相似文献   

9.
At least four species of New Zealand snipes (Coenocorypha) became extinct following the introduction of predatory mammals, and another two species suffered massive range reductions. To investigate species limits and population differentiation in six of the seven remaining offshore populations, we assayed variation in nine microsatellite loci and 1,980 base pairs of four mitochondrial DNA (mtDNA) genes. Genetic diversity in all populations except the largest one on Adams Island in the Auckland Islands was very low in both genomes. Alleles were fixed at many microsatellite loci and for single mtDNA haplotypes, particularly in the populations in the Chathams, Snares, Antipodes and Campbell Islands. Strong population structure has developed, and Chathams and Snares Islands populations are effectively genetically isolated from one another and from the more southern island populations. Based on reciprocal monophyly of lineages and their morphological distinctiveness we recommend that three phylogenetic species should be recognized, C. pusilla in the Chatham Islands, C. huegeli in the Snares Islands and C. aucklandica in the southern islands. The populations of C. aucklandica in the Auckland Islands, Antipodes Island and Campbell Island may warrant recognition as subspecies, and all should be managed as separate conservation units.  相似文献   

10.
This study is the first to utilize 30‐cm resolution imagery from the WorldView‐3 (WV‐3) satellite to count wildlife directly. We test the accuracy of the satellite method for directly counting individuals at a well‐studied colony of Wandering Albatross Diomedea exulans at South Georgia, and then apply it to the closely related Northern Royal Albatross Diomedea sanfordi, which is near‐endemic to the Chatham Islands and of unknown recent population status due to the remoteness and limited accessibility of the colonies. At South Georgia, satellite‐based counts were comparable to ground‐based counts of Wandering Albatross nests, with a slight over‐estimation due to the presence of non‐breeding birds. In the Chatham Islands, satellite‐based counts of Northern Royal Albatross in the 2015/2016 season were similar to ground‐based counts undertaken on the Forty‐Fours islands in 2009/2010, but much lower than ground‐based counts undertaken on The Sisters islands in 2009/2010, which is of major conservation concern for this endangered albatross species. We conclude that the ground‐breaking resolution of the newly available WV‐3 satellite will provide a step change in our ability to count albatrosses and other large birds directly from space without disturbance, at potentially lower cost and with minimal logistical effort.  相似文献   

11.
Termites (Isoptera) comprise a large and important group of eusocial insects, yet, in contrast to the eusocial Hymenoptera (ants, bees, wasps), the breeding systems of termites remain poorly understood. In this study, I inferred the breeding system of the subterranean termite Reticulitermes flavipes based on colony and population genetic structure as determined from microsatellite and mitochondrial DNA markers. Termites were sampled from natural wood debris from three undisturbed, forested sites in central North Carolina. In each site, two transects separated by 1 km were sampled at approximately 15-m intervals. A total of 1272 workers collected from 57 collection points were genotyped at six microsatellite loci, and mitochondrial DNA haplotype was determined for a subset of these individuals using either restriction fragment length polymorphism or sequence variation in the AT-rich region. Colonies appeared to be localized: workers from the 57 collection points represented 56 genetically distinct colonies with only a single colony occupying two collection points located 15 m apart. Genetic analysis of family structure and comparisons of estimates of F-statistics (F(IT), F(IC), F(CT)) and coefficients of relatedness (r) among nestmate workers with results of computer simulations of potential breeding systems suggested that 77% of all colonies were simple families headed by outbred monogamous pairs, whereas the remaining colonies were extended (inbred) families headed by low numbers of neotenics (about two females and one male) who were the direct offspring of the colony founders. There was no detectable isolation by distance among colonies along transects, suggesting that colony reproduction by budding is not common and that dispersal of reproductives during mating flights is not limited over this distance. Higher-level analysis of the microsatellite loci indicated weak but significant differentiation among sites (F(ST) = 0.06), a distance of 16-38 km, and between transects within sites (F(ST) = 0.06), a distance of 1 km. No significant differentiation at either the transect or site level was detected in the mitochondrial DNA sequence data. These results indicate that the study populations of R. flavipes have a breeding system characterized by monogamous pairs of outbred reproductives and relatively low levels of inbreeding because most colonies do not live long enough to produce neotenics, and those colonies that do generate neotenics contain an effectively small number of them.  相似文献   

12.
Local adaptation is a dynamic process driven by selection that can vary both in space and time. One important temporal adaptation for migratory animals is the time at which individuals return to breeding sites. Chinook salmon (Oncorhynchus tshawytscha) are excellent subjects for studying the genetic basis of temporal adaptation because their high seasonal homing fidelity promotes reproductive isolation leading to the formation of local populations across diverse environments. We tested for adaptive genetic differentiation between seasonal runs of Chinook salmon using two candidate loci; the circadian rhythm gene, OtsClock1b, and Ots515NWFSC, a microsatellite locus showing sequence identity to three salmonid genes central to reproductive development. We found significant evidence for two genetically distinct migratory runs in the Feather River, California (OtsClock1b: F(ST)=0.042, P=0.02; Ots515NWFSC: F(ST)=0.058, P=0.003). In contrast, the fall and threatened spring runs are genetically homogenous based on neutral microsatellite data (F(ST)=-0.0002). Similarly, two temporally divergent migratory runs of Chinook salmon from New Zealand are genetically differentiated based on polymorphisms in the candidate loci (OtsClock1b: F(ST)=0.083, P-value=0.001; Ots515NWFSC: F(ST)=0.095, P-value=0.000). We used an individual-based assignment method to confirm that these recently diverged populations originated from a single source in California. Tests for selective neutrality indicate that OtsClock1b and Ots515NWFSC exhibit substantial departures from neutral expectations in both systems. The large F(ST )estimates could therefore be the result of directional selection. Evidence presented here suggests that OtsClock1b and Ots515NWFSC may influence migration and spawning timing of Chinook salmon in these river systems.  相似文献   

13.
AIMS: Effect of ethidium bromide, a DNA intercalating agent, on laccase production from Cyathus bulleri was studied. METHODS AND RESULTS: The bird's nest fungus, Cyathus bulleri was grown on 2% (w/v) malt extract agar (MEA) supplemented with 1.5 microg ml(-1) of the phenanthridine dye ethidium bromide (EtBr) for 7 d and when grown subsequently in malt extract broth (MEB), produced a 4.2-fold increase in laccase production as compared to the untreated fungus. The fungal cultures following a single EtBr treatment, when regrown on MEA devoid of EtBr, produced a sixfold increase in laccase in MEB. However, on subsequent culturing on MEA in the absence of EtBr, only a 2.5-fold increase in laccase production could be maintained. In another attempt, the initial EtBr-treated cultures, when subjected to a second EtBr treatment (1.5 microg ml(-1)) on MEA for 7 d, produced a 1.4-fold increase in laccase production in MEB. CONCLUSIONS: The white-rot fungus Cyathus bulleri, when treated with EtBr at a concentration of 1.5 microg ml(-1) and regrown on MEA devoid of EtBr, produced a sixfold increase in laccase production in MEB. SIGNIFICANCE AND THE IMPACT OF THE STUDY: The variable form of C. bulleri capable of hyper laccase production can improve the economic feasibility of environmentally benign processes involving use of fungal laccases in cosmetics (including hair dyes), food and beverages, clinical diagnostics, pulp and paper industry, industrial effluent treatment, animal biotechnology and biotransformations.  相似文献   

14.

The two species of yellow-nosed albatross, Atlantic (Thalassarche chlororhynchos) and Indian (T. carteri), are morphologically similar, but they differ in breeding behaviour and distribution. Both species are listed as endangered by the IUCN due to the limited number of breeding sites, threats from introduced predators and diseases, and impact of commercial fishing. We quantified genetic variation between and within the two species. Using nuclear (microsatellites and two nuclear sequences) and mitochondrial (control region) markers, we analysed 354 samples from four breeding islands (Atlantic: Nightingale, Inaccessible, and Gough; Indian: Amsterdam) and bycatch samples from South Africa and New Zealand. In addition to all markers separating the two species, nuclear markers showed Atlantic yellow-nosed albatrosses from Gough Island are genetically distinct from those breeding at Nightingale and Inaccessible Islands in the Tristan da Cunha archipelago. Nuclear markers confirmed that all bycatch samples were Indian yellow-nosed albatrosses, however, the bycatch birds from South Africa and New Zealand were distinct from each other and from birds breeding on Amsterdam Island, suggesting colony specific dispersal at sea. Our study supports the current recognition of two yellow-nosed albatross species and recognises genetically distinct groups of both Atlantic and Indian yellow-nosed albatross breeding on different islands, which is important for their conservation and management.

  相似文献   

15.
Female otariids (eared seals) frequently display strong levels of philopatry, a behaviour that has the potential to influence population structure, particularly at the mitochondrial level. Conversely, male otariids often move between breeding colonies, likely facilitating nuclear gene flow between colonies. Such gender-specific movements have the potential to influence species population structure. Here we investigate the genetic population structure of the endangered New Zealand (NZ) sea lion, using nuclear (microsatellite) and mitochondrial molecular markers, with the intention to better inform conservation through identification of management units for the species. The strong levels of female philopatry in this species have potential to lead to population structure at the mitochondrial loci. In contrast, weak or no population structure is expected across nuclear loci. NZ sea lions were sampled from the main breeding areas across the species’ current distribution (three Auckland Islands sites, two Campbell Island sites, one Stewart Island site and one Otago Peninsula site). Individuals were screened for microsatellite (n?=?271; 16 loci) and mitochondrial (n?=?56; 1027 bp D-loop and 1189 bp cytb). Despite a small (c. 9880 individuals) population size, moderate levels of microsatellite variation are observed in the NZ sea lions, in contrast to low levels of mitochondrial genetic variation. Results from mitochondrial DNA analyses revealed no population structure, suggesting that the strong level of female philopatry in NZ sea lions alone is not sufficient to maintain genetic population structure. Due to the frequent male movements between breeding colonies, no population structure was detected across the nuclear loci either. The absence of genetic structure suggests that, from a genetic perspective, NZ sea lions can be considered to be a single population. Despite this, the differing impacts of threats (e.g. fisheries by-catch) to each individual breeding colony must also be taken into consideration when defining management units for this endangered species.  相似文献   

16.
There is an ongoing debate on the scale of pelagic larval dispersal in promoting connectivity among populations of shallow, benthic marine organisms. The linearly arranged Hawaiian Islands are uniquely suited to study scales of population connectivity and have been used extensively as a natural laboratory in terrestrial systems. Here, we focus on Hawaiian populations of the lobe coral Porites lobata, an ecosystem engineer of shallow reefs throughout the Pacific. Patterns of recent gene flow and population structure in P. lobata samples (n = 318) from two regions, the Hawaiian Islands (n = 10 sites) and from their nearest neighbour Johnston Atoll, were analysed with nine microsatellite loci. Despite its massive growth form, ~ 6% of the samples from both regions were the product of asexual reproduction via fragmentation. Cluster analysis and measures of genetic differentiation indicated that P. lobata from the Hawaiian Islands are strongly isolated from those on Johnston Atoll (F(ST) = 0.311; P < 0.001), with the descendants of recent migrants (n = 6) being clearly identifiable. Within the Hawaiian Islands, P. lobata conforms to a pattern of isolation by distance. Here, over 37% (P = 0.001) of the variation in genetic distance was explained by geographical distance. This pattern indicates that while the majority of ongoing gene flow in Hawaiian P. lobata occurs among geographically proximate reefs, inter-island distances are insufficient to generate strong population structure across the archipelago.  相似文献   

17.
Pathogen-driven balancing selection maintains high genetic diversity in many vertebrates, particularly in the major histocompatibility complex (MHC) immune system gene family, which is often associated with disease susceptibility. In large natural populations where subpopulations face different pathogen pressures, the MHC should show greater genetic differentiation within a species than neutral markers. We examined genetic diversity at the MHC-DQB locus and nine putatively neutral microsatellite markers in grey seals (Halichoerus grypus) from eight United Kingdom (UK) colonies, the Faeroe Islands and Sable Island, Canada. Five DQB alleles were identified in grey seals, which varied in prevalence across the grey seal range. Among the seal colonies, significant differences in DQB allele and haplotype frequencies and in average DQB heterozygosity were observed. Additionally, the DQB gene exhibited greater differentiation among colonies compared with neutral markers, yet a weaker pattern of isolation by distance (IBD). After correcting for the underlying IBD pattern, subpopulations breeding in similar habitats were more similar to one another in DQB allele frequencies than populations breeding in different habitats, but the same did not hold true for microsatellites, suggesting that habitat-specific pathogen pressure influences MHC evolution. Overall, the data are consistent with selection at MHC-DQB loci in grey seals with both varying selective pressures and geographic population structure appearing to influence the DQB genetic composition of breeding colonies.  相似文献   

18.
Accurate knowledge of population structure in cetaceans is critical for preserving and managing breeding habitat, particularly when habitat is not uniformly protected. Most eastern gray whales return to their major breeding range each winter along the Pacific coast of Baja California, Mexico, concentrating in 3 major calving lagoons, but it is unknown whether genetic differences exist between lagoons. Previous photo-identification studies and genetic studies suggest that gray whales may return to their natal lagoons to breed, potentially resulting in the buildup of genetic differences. However, an earlier genetic study used only one genetic marker and did not include samples from Bahia Magdalena, a major calving lagoon not currently designated as a wildlife refuge. To expand on this previous study, we collected genetic data from the mitochondrial control region (442 bp) and 9 microsatellite markers from 112 individuals across all 3 major calving lagoons. Our data suggest that migration rates between calving lagoons are high but that a small but significant departure from panmixia exists between Bahia Magdalena and Laguna San Ignacio (Fisher's Exact test, P < 0.0001; F(ST) = 0.006, P = 0.025). Coalescent simulations show that the lack of extensive population structure may result from the disruption of structure due to whaling. Another possibility is that rates of migration have always been high (>10% per generation). In addition, microsatellite data showed evidence of a severe population bottleneck. Eastern gray whales are still recovering from the impacts of whaling on their breeding grounds, and these populations should be protected and monitored for future genetic changes.  相似文献   

19.
Speciation processes are largely determined by the relative strength of divergent selection versus the magnitude of gene flow. The barn swallow (Hirundo rustica) has a broad geographic distribution that encompasses substantial geographic variation in morphology and behavior. The European (H. r. rustica) and East-Mediterranean (H. r. transitiva) subspecies are closely related, despite differing in morphological and life-history traits. To explore patterns of genetic differentiation and gene flow, we compared morphological and genetic variation among the nonmigratory breeding population of H. r. transitiva from Israel and the migratory population of H. r. rustica that passes through Israel and compared it with the genetic differentiation between H. r. transitiva from Israel and a breeding population of H. r. rustica from the United Kingdom that uses a different migratory flyway. Mitochondrial haplotype network analysis suggests that the European and East-Mediterranean populations are intermixed, although there was low but significant genetic differentiation between the subspecies based on both mitochondrial (F(ST) = 0.025-0.033) and microsatellite (F(ST) = 0.009-0.014) loci. Coalescent-based analyses suggest recent divergence and substantial gene flow between these populations despite their differences in morphological and behavioral traits. The results suggest that these subspecies are undergoing a differentiation process in the face of gene flow, with selection possibly operating on sexually selected traits.  相似文献   

20.
To unravel the postglacial colonization history and the current intercolony dispersal in the common eider, Somateria mollissima, we analysed genetic variation at a part of the mitochondrial control region and five unlinked autosomal microsatellite loci in 175 eiders from 11 breeding colonies, covering the entire European distribution range of this species. As a result of extreme female philopatry, mitochondrial DNA differentiation is substantial both among local colonies and among distant geographical regions. Our study further corroborates the previous hypothesis of a single Pleistocene refugium for European eiders. A nested clade analysis on mitochondrial haplotypes suggests that (i) the Baltic Sea eider population is genetically closest to a presumably ancestral population and that (ii) the postglacial recolonization progressed in a stepwise fashion via the North Sea region and the Faroe Islands to Iceland. Current long-distance dispersal is limited. Differentiation among colonies is much less pronounced at microsatellite loci. The geographical pattern of this nuclear genetic variation is to a large extent explained by isolation by distance. As female dispersal is very limited, the geographical pattern of nuclear variation is probably explained by male-mediated gene flow among breeding colonies. Our study provides genetic evidence for the assumed prominent postglacial colonization route shaping the present terrestrial fauna of the North Atlantic islands Iceland and the Faroes. It suggests that this colonization had been a stepwise process originating in continental Europe. It is the first molecular study on eider duck populations covering their entire European distribution range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号