共查询到20条相似文献,搜索用时 0 毫秒
1.
N-acetylcysteine (NAC), an antioxidant and a precursor of glutathione, is currently in clinical use for various pathological conditions. No data is available as to the relationship between NAC and muscular cell proliferation or muscular degenerative disease. In this study, we assessed the effect of NAC on growth of L6 myoblasts, a rat skeletal muscle cell line, under normal or bupivacaine-treated condition. Of interest, under normal growth conditions, NAC treatment concentration-dependently increased viability, cell number, and DNA incorporation of L6 cells. Remarkably, NAC treatment for 12 to 24 h led to increased phosphorylation of ERKs, a family of mitogen-activated protein kinase known to involve in cell proliferation, in L6 cells, and specific inhibition of ERKs by PD98059, a selective inhibitor of ERKs, greatly abolished the ability of NAC to increase the number of L6 cells. More importantly, pretreatment with NAC effectively blocked decrease in the number and ERKs phosphorylation in L6 cells induced by the exposure of bupivacaine, a local anesthetic with myotoxicity. These results collectively suggest that NAC has muscular cell proliferative and protective effects and the effects by NAC appear to be, in part, mediated via increase in ERKs activation. 相似文献
2.
V P Chauhan I Ray A Chauhan H M Wisniewski 《Biochemical and biophysical research communications》1999,258(2):241-246
Soluble amyloid beta-protein (Abeta) is normally present in the cerebrospinal fluid (CSF) and plasma. However, it is fibrillized and deposited as plaques in the brains of patients with Alzheimer's disease. Cerebrospinal fluid (CSF) contains several circulating proteins (apolipoprotein E, apolipoprotein J, and transthyretin) that bind to Abeta. We report here that gelsolin, a secretory protein, also binds to Abeta in a concentration-dependent manner. Under similar conditions, other proteins such as G-actin, protein kinase C, polyglutamic acid, and gelatin did not bind to Abeta. Solid phase binding assays showed two Abeta binding sites on gelsolin that have dissociation constants (Kd) of 1.38 and 2.55 microM. Abeta was found to co-immunoprecipitate along with gelsolin from the plasma, suggesting that gelsolin-Abeta complex exists under physiological conditions. The gelsolin-Abeta complex was sodium dodecyl sulfate (SDS)stable in the absence of reducing agent, but was dissociated when the SDS stop solution contained dithiothreitol (reducing agent). This study suggests that the function of secretory gelsolin in the CSF and plasma is to bind and sequester Abeta. 相似文献
3.
Gelsolin is a Ca2+-binding protein of mammalian leukocytes, platelets and other cells which has multiple and closely regulated powerful effects on actin. In the presence of micromolar Ca2+, gelsolin severs actin filaments, causing profound changes in the consistency of actin polymer networks. A variant of gelsolin containing a 25-amino acid extension at the NH2-terminus is present in plasma where it may be involved in the clearance of actin filaments released during tissue damage. Gelsolin has two sites which bind actin cooperatively. These sites have been localized using proteolytic cleavage and monoclonal antibody mapping techniques. The NH2-terminal half of the molecule contains a Ca2+-insensitive actin severing domain while the COOH-terminal half contains a Ca2+-sensitive actin binding domain which does not sever filaments. These data suggest that the NH2-terminal severing domain in intact gelsolin is influenced by the Ca2+-regulated COOH-terminal half of the molecule. The primary structure of gelsolin, deduced from human plasma gelsolin cDNA clones, supports the existence of actin binding domains and suggests that these may have arisen from a gene duplication event, and diverged subsequently to adopt their respective unique functions. The plasma and cytoplasmic forms of gelsolin are encoded by a single gene, and preliminary results indicate that separate mRNAs code for the two forms. Further application of molecular biological techniques will allow exploration into the structural basis for the multifunctionality of gelsolin, as well as the molecular basis for the genesis of the cytoplasmic and secreted forms of gelsolin. 相似文献
4.
5.
6.
Metallothioneins, a diverse protein family 总被引:1,自引:0,他引:1
Grennan AK 《Plant physiology》2011,155(4):1750-1751
7.
The Finnish type of familial amyloid polyneuropathy (FAF) is an autosomal dominant form of systemic amyloidosis caused by a mutation in the gelsolin gene. The mutation leads to the expression of amyloidogenic mutant Asp187----Asn gelsolin, an actin-modulating protein. We previously developed a DNA test based on amplification by the polymerase chain reaction followed by allele-specific oligonucleotide hybridization that identifies the base substitution adenine for guanine at nucleotide 654 in the gelsolin gene causing the disease. We show here that the same mutation is present in members of six apparently unrelated Finnish families and in a member of an unrelated American family. These results, taken together with previously published findings in nine additional Finnish families and another unrelated American family, indicate that most, perhaps all, FAF patients in Finland and possibly worldwide carry the same mutation. We suggest two alternative explanations: (i) the mutation arose in a very early common ancestor or (ii) the Asn187 mutation is particularly, perhaps uniquely, amyloidogenic. 相似文献
8.
Osanai K Takahashi K Nakamura K Takahashi M Ishigaki M Sakuma T Toga H Suzuki T Voelker DR 《Biological chemistry》2005,386(2):143-153
Rab38 is a new member of the Rab small G protein family that regulates intracellular vesicle trafficking. Rab38 is expressed in melanocytes and it has been clarified that a point mutation in the postulated GTP-binding domain of Rab38 is the gene responsible for oculocutaneous albinism in chocolate mice. However, basic information regarding recombinant protein production, intracellular location, and tissue-specific expression pattern has not yet been reported. We produced recombinant Rab38 using a baculovirus/insect cell-protein expression system. A combination of Triton X-114 phase separation and nickel-affinity chromatography yielded exclusively prenylated Rab38 that bound [alpha-32P]-GTP. The mRNA and the native protein were expressed in a tissue-specific manner, e.g., in the lung, skin, stomach, liver, and kidney. Freshly isolated rat alveolar type II cells were highly positive for the mRNA signal, but the signal was rapidly lost over time. Immunofluorescence staining demonstrated that expressed GST-tagged Rab38 was mainly co-localized with endoplasmic reticulum-resident protein and also partly with intermittent vesicles between the endoplasmic reticulum and the Golgi complex. These results indicate that Rab38 is expressed non-ubiquitously in specific tissues and regulates early vesicle transport relating to the endoplasmic reticulum, and hence suggest that Rab38 abnormality may cause multiple organ diseases as well as oculocutaneous albinism. 相似文献
9.
Kyohei Takahashi Tomohito Shibata Tatsuya Oba Tetsuya Ishikawa Masahito Yoshikawa Ryosuke Tatsunami Kazuhiko Takahashi Yoshiko Tampo 《Life sciences》2009,84(7-8):211-217
AimsMenadione, a redox-cycling quinone known to cause oxidative stress, binds to reduced glutathione (GSH) to form glutathione S-conjugate. Glutathione S-conjugates efflux is often mediated by multidrug-resistance-associated protein (MRP). We investigated the effect of a transporter inhibitor, MK571 (3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid), on menadione-induced oxidative stress in bovine aortic endothelial cells (BAECs).Main methodsBAECs were treated with menadione and MK571, and cell viability was measured. Modulation of intracellular GSH levels was performed with buthionine sulfoximine and GSH ethyl ester treatments. Intracellular superoxide was estimated by dihydroethidium oxidation using fluorescence microscopy or flow cytometry. Expression of MRP was determined by flow cytometry using phycoerythrin-conjugated anti-MRP monoclonal antibody.Key findingsIntracellular GSH depletion by buthionine sulfoximine promoted the loss of viability of BAECs exposed to menadione. Exogenous GSH, which does not permeate the cell membrane, or GSH ethyl ester protected BAECs against the loss of viability induced by menadione. The results suggest that GSH binds to menadione outside the cells as well as inside. Pretreatment of BAECs with MK571 dramatically increased intracellular levels of superoxide generated from menadione, indicating that menadione may accumulate in the intracellular milieu. Finally, we found that MK571 aggravated menadione-induced toxicity in BAECs and that MRP levels were increased in menadione-treated cells.SignificanceWe conclude that MRP plays a vital role in protecting BAECs against menadione-induced oxidative stress, presumably due to its ability to transport glutathione S-conjugate. 相似文献
10.
Matsushita E Asai N Enomoto A Kawamoto Y Kato T Mii S Maeda K Shibata R Hattori S Hagikura M Takahashi K Sokabe M Murakumo Y Murohara T Takahashi M 《Molecular biology of the cell》2011,22(6):736-747
Continued exposure of endothelial cells to mechanical/shear stress elicits the unfolded protein response (UPR), which enhances intracellular homeostasis and protect cells against the accumulation of improperly folded proteins. Cells commit to apoptosis when subjected to continuous and high endoplasmic reticulum (ER) stress unless homeostasis is maintained. It is unknown how endothelial cells differentially regulate the UPR. Here we show that a novel Girdin family protein, Gipie (78 kDa glucose-regulated protein [GRP78]-interacting protein induced by ER stress), is expressed in endothelial cells, where it interacts with GRP78, a master regulator of the UPR. Gipie stabilizes the interaction between GRP78 and the ER stress sensor inositol-requiring protein 1 (IRE1) at the ER, leading to the attenuation of IRE1-induced c-Jun N-terminal kinase (JNK) activation. Gipie expression is induced upon ER stress and suppresses the IRE1-JNK pathway and ER stress-induced apoptosis. Furthermore we found that Gipie expression is up-regulated in the neointima of carotid arteries after balloon injury in a rat model that is known to result in the induction of the UPR. Thus our data indicate that Gipie/GRP78 interaction controls the IRE1-JNK signaling pathway. That interaction appears to protect endothelial cells against ER stress-induced apoptosis in pathological contexts such as atherosclerosis and vascular endothelial dysfunction. 相似文献
11.
Cdk5 activator-binding protein C53 regulates apoptosis induced by genotoxic stress via modulating the G2/M DNA damage checkpoint 总被引:4,自引:0,他引:4
In response to DNA damage, the cellular decision of life versus death involves an intricate network of multiple factors that play critical roles in regulation of DNA repair, cell cycle, and cell death. DNA damage checkpoint proteins are crucial for maintaining DNA integrity and normal cellular functions, but they may also reduce the effectiveness of cancer treatment. Here we report the involvement of Cdk5 activator p35-binding protein C53 in regulation of apoptosis induced by genotoxic stress through modulating Cdk1-cyclin B1 function. C53 was originally identified as a Cdk5 activator p35-binding protein and a caspase substrate. Importantly, our results demonstrated that C53 deficiency conferred partial resistance to genotoxic agents such as etoposide and x-ray irradiation, whereas ectopic expression of C53 rendered cells susceptible to multiple genotoxins that usually trigger G(2)/M arrest. Furthermore, we found that Cdk1 activity was required for etoposide-induced apoptosis of HeLa cells. Overexpression of C53 promoted Cdk1 activity and nuclear accumulation of cyclin B1, whereas C53 deficiency led to more cytoplasmic retention of cyclin B1, suggesting that C53 acts as a pivotal player in modulating the G(2)/M DNA damage checkpoint. Finally, C53 and cyclin B1 co-localize and associate in vivo, indicating a direct role of C53 in regulating the Cdk1-cyclin B1 complex. Taken together, our results strongly indicate that in response to genotoxic stress, C53 serves as an important regulatory component of the G(2)/M DNA damage checkpoint. By overriding the G(2)/M checkpoint-mediated inhibition of Cdk1-cyclin B1 function, ectopic expression of C53 may represent a novel approach for chemo- and radio-sensitization of cancer cells. 相似文献
12.
Purification and structural properties of gelsolin, a Ca2+-activated regulatory protein of macrophages 总被引:30,自引:0,他引:30
We describe the purification procedure and some of the physiochemical properties of gelsolin, a major Ca2+-dependent regulatory protein of actin gel-sol transformation in rabbit lung macrophages. Gelsolin accounts for the majority of Ca2+ control of actin gelation in macrophage extracts. It is a single polypeptide chain with an average molecular weight of 91,000 a Stokes radius of 44 A, a sedimentation coefficient (s20(0),w) of 4.9 S, an isoelectric point of 6.1, and a frictional ratio of 1.43. Gelsolin binds 2 mol of Ca2+ with high affinity (Ka 1.09 X 10(6) M-1) in the presence of 0.1 M KCl and 2 mM MgCl2. 相似文献
13.
Identification of a bacterial type III effector family with G protein mimicry functions 总被引:4,自引:0,他引:4
Alto NM Shao F Lazar CS Brost RL Chua G Mattoo S McMahon SA Ghosh P Hughes TR Boone C Dixon JE 《Cell》2006,124(1):133-145
Many bacterial pathogens use the type III secretion system to inject "effector" proteins into host cells. Here, we report the identification of a 24 member effector protein family found in pathogens including Salmonella, Shigella, and enteropathogenic E. coli. Members of this family subvert host cell function by mimicking the signaling properties of Ras-like GTPases. The effector IpgB2 stimulates cellular responses analogous to GTP-active RhoA, whereas IpgB1 and Map function as the active forms of Rac1 and Cdc42, respectively. These effectors do not bind guanine nucleotides or have sequences corresponding the conserved GTPase domain, suggesting that they are functional but not structural mimics. However, several of these effectors harbor intracellular targeting sequences that contribute to their signaling specificities. The activities of IpgB2, IpgB1, and Map are dependent on an invariant WxxxE motif found in numerous effectors leading to the speculation that they all function by a similar molecular mechanism. 相似文献
14.
目的:探讨MC3T3-E1细胞在流体剪切力作用下LEF-1的表达。方法:通过流体剪切加载系统对MC3T3-E1爬片细胞施加12dyn/cm的流体剪切力,分别作用0h,2h,4h,8h,12h,用RT-PCR方法检测细胞受力前后LEF-1 mRNA表达的变化;应用免疫荧光双标记法检测不同时间点流体剪切力作用下MC3T3-E1细胞中的LEF-1 mRNA表达改变。结果:RT-PCR和免疫荧光双标记法的结果表明12dyn/cm 8h流体剪切力作用下的MC3T3-E1细胞LEF-1 mRNA的表达较其它各组明显增强。结论:通过流体剪切力力学刺激,激活了成骨细胞LEF-1/TCF1转录活动,LEF-1 mRNA的表达增强可能是成骨细胞经典Wnt信号通路对剪切应力的应答反应。 相似文献
15.
Ito H Atsuzawa K Sudo K Di Stefano P Iwamoto I Morishita R Takei S Semba R Defilippi P Asano T Usuda N Nagata K 《Journal of neurochemistry》2008,107(1):61-72
p140Cap (Cas-associated protein) is an adaptor protein considered to play pivotal roles in cell adhesion, growth and Src tyrosine kinase-related signaling in non-neuronal cells. It is also reported to interact with a pre-synaptic membrane protein, synaptosome-associated protein of 25 kDa, and may participate in neuronal secretion. However, properties and precise functions of p140Cap in neuronal cells are almost unknown. Here we show, using biochemical analyses, that p140Cap is expressed in rat brain in a developmental stage-dependent manner, and is relatively abundant in the synaptic plasma membrane fraction in adults. Immunohistochemistry showed localization of p140Cap in the neuropil in rat brain and immunofluorescent analyses detected p140Cap at synapses of primary cultured rat hippocampal neurons. Electron microscopy further revealed localization at pre- and post-synapses. Screening of p140Cap-binding proteins identified a multidomain adaptor protein, vinexin, whose third Src-homology 3 domain interacts with the C-terminal Pro-rich motif of p140Cap. Immunocomplexes between the two proteins were confirmed in COS7 and rat brain. We also clarified that a pre-synaptic protein, synaptophysin, interacts with p140Cap. These results suggest that p140Cap is involved in neurotransmitter release, synapse formation/maintenance, and signaling. 相似文献
16.
Decreased expression of Flightless I, a gelsolin family member and developmental regulator, in early-gestation fetal wounds improves healing 总被引:1,自引:0,他引:1
Cheng-Hung Lin James M. Waters Barry C. Powell Ruth M. Arkell Allison J. Cowin 《Mammalian genome》2011,22(5-6):341-352
Up until late in the third trimester of gestation and through to adulthood, the healing response acts more to regenerate than to repair a wound. The mechanisms underlying this ??scar-free?? healing remain unknown although the actin cytoskeleton has a major role. Flightless I (Flii), an actin-remodelling protein and essential developmental regulator, negatively affects wound repair but its effect on scar-free fetal healing is unknown. Using fetal skin explants from E17 (regenerate) and E19 (repair) rats, the function of Flii in fetal wound repair was determined. Expression of Flii increased between E17 and E19?days of gestation and wounding transiently increased Flii expression in E17 but not E19 wounds. However, both confocal and immunofluorescent analysis showed E17 keratinocytes immediately adjacent to the wounds downregulated Flii. As a nuclear coactivator and inhibitor of proliferation and migration, the absence of Flii in cells at the edge of the wound could be instrumental in allowing these cells to proliferate and migrate into the wound deficit. In contrast, Flii was strongly expressed within the cytoplasm and nucleus of keratinocytes within epidermal cells at the leading edge of E19 wounded fetal skin explants. This increase in Flii expression in E19 wounds could affect the way these cells migrate into the wound space and contribute to impaired wound healing. Neutralising Flii protein improved healing of early- but not late-gestation wounds. Flii did not colocalise with actin cables formed around E17 wounds suggesting an independent mechanism of action distinct from its actin-binding function in scar-free wound repair. 相似文献
17.
Deokhwe Hur Suhee Hong 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2013,164(2):89-98
Scinderin like (ScinL) gene is a unique gelsolin family gene found only in fish. In this study ScinL gene was cloned in olive flounder for the first time and characterized its expression and function. Flounder ScinL cDNA consists of 2911 nucleotides encoding a putative protein of 720 amino acids (79.4 kDa). In phylogenetic analysis, flounder ScinL is closely related to ScinL of zebra fish, anableps, and fugu with the similarity of 51–72%. Fish ScinLs are positioned between gelsolin and scinderin of other species. Flounder ScinL protein has the highly conserved actin and PIP2 binding sites, Ca2 + coordination site, and a C-terminal latch helix preventing the activation of ScinL protein in the absence of Ca2 +. Putative binding sites for NFAT and AP-1 were found in 5′ flanking region. Constitutive ScinL expression was found in most organs and the expression level was higher in gill, head kidney, trunk kidney, spleen and skin than muscle, stomach, intestine and brain. In Q-PCR analysis ScinL and CYP1A1 gene expression were significantly upregulated by BaP in head kidney in vivo and in vitro, and in macrophage cells. Upregulated ScinL expression by BaP was blocked by EGTA, indicating a calcium dependent regulation of ScinL expression. 相似文献
18.
Renal damage mediated by oxidative stress: a hypothesis of protective effects of red wine 总被引:10,自引:0,他引:10
Over the last decade, oxidative stress has been implicated in the pathogenesis of a wide variety of seemingly unrelated renal diseases. Epidemiological studies have documented an association of moderate wine consumption with a decreased risk of cardiovascular and neurological diseases; however, similar studies in the kidney are still lacking. The kidney is an organ highly vulnerable to damage caused by reactive oxygen species (ROS), likely due to the abundance of polyunsaturated fatty acids in the composition of renal lipids. ROS are involved in the pathogenic mechanism of conditions such as glomerulosclerosis and tubulointerstitial fibrosis. The health benefits of moderate consumption of red wine can be partly attributed to its antioxidant properties. Indeed, the kidney antioxidant defense system is enhanced after chronic exposure to moderate amounts of wine, a response arising from the combined effects of ethanol and the nonalcoholic components, mainly polyphenols. Polyphenols behave as potent ROS scavengers and metal chelators; ethanol, in turn, modulates the activity of antioxidant enzymes. Therefore, a hypothesis that red wine causes a decreased vulnerability of the kidney to the oxidative challenges could be proposed. This view is partly supported by direct evidences indicating that wine and antioxidants isolated from red wine, as well as other antioxidants, significantly attenuate or prevent the oxidative damage to the kidney. The present hypothesis paper provides a collective body of evidence suggesting a protective role of moderate wine consumption against the production and progression of renal diseases, based on the existing concepts on the pathophysiology of kidney injury mediated by oxidative stress. 相似文献
19.
Rabconnectin-3, a novel protein that binds both GDP/GTP exchange protein and GTPase-activating protein for Rab3 small G protein family. 总被引:1,自引:0,他引:1
Fumiko Nagano Hiroshi Kawabe Hiroyuki Nakanishi Masahiko Shinohara Maki Deguchi-Tawarada Masakazu Takeuchi Takuya Sasaki Yoshimi Takai 《The Journal of biological chemistry》2002,277(12):9629-9632
Rab3A, a member of the Rab3 small G protein family, regulates Ca(2+)-dependent exocytosis of neurotransmitter. The cyclical activation and inactivation of Rab3A are essential for the Rab3A action in exocytosis. GDP-Rab3A is activated to GTP-Rab3A by Rab3 GDP/GTP exchange protein (Rab3 GEP), and GTP-Rab3A is inactivated to GDP-Rab3A by Rab3 GTPase-activating protein (Rab3 GAP). It remains unknown how or in which step of the multiple exocytosis steps these regulators are activated and inactivated. We isolated here a novel protein that was co-immunoprecipitated with Rab3 GEP and GAP by their respective antibodies from the crude synaptic vesicle fraction of rat brain. The protein, named rabconnectin-3, bound both Rab3 GEP and GAP. The cDNA of rabconnectin-3 was cloned from a human cDNA library and its primary structure was determined. Human rabconnectin-3 consisted of 3,036 amino acids and showed a calculated M(r) of 339,753. It had 12 WD domains. Tissue and subcellular distribution analyses in rat indicated that rabconnectin-3 was abundantly expressed in the brain where it was enriched in the synaptic vesicle fraction. Immunofluorescence and immunoelectron microscopy revealed that rabconnectin-3 was concentrated on synaptic vesicles at synapses. These results indicate that rabconnectin-3 serves as a scaffold molecule for both Rab3 GEP and GAP on synaptic vesicles. 相似文献