首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We evaluated the effect of haloperidol (HP) and its metabolites on [3H](+)-pentazocine binding to σ1 receptors in SH-SY5Y human neuroblastoma cells and guinea pig brain P1, P2 and P3 subcellular fractions. Three days after a single i.p. injection in guinea pigs of HP (but not of other σ1 antagonists or (−)-sulpiride), [3H](+)-pentazocine binding to brain membranes was markedly decreased. Recovery of σ1 receptor density to steady state after HP-induced inactivation required more than 30 days. HP-metabolite II (reduced HP, 4-(4-chlorophenyl)-α-(4-fluorophenyl)-4-hydroxy-1-piperidinebutanol), but not HP-metabolite I (4-(4-chlorophenyl)-4-hydroxypiperidine), irreversibly blocked σ1 receptors in guinea pig brain homogenate and P2 fraction in vitro . We found similar results in SH-SY5Y cells, which suggests that this process may also take place in humans. HP irreversibly inactivated σ1 receptors when it was incubated with brain homogenate and SH-SY5Y cells, but not when incubated with P2 fraction membranes, which suggests that HP is metabolized to inactivate σ1 receptors. Menadione, an inhibitor of the ketone reductase activity that leads to the production of HP-metabolite II, completely prevented HP-induced inactivation of σ1 receptors in brain homogenates. These results suggest that HP may irreversibly inactivate σ1 receptors in guinea pig and human cells, probably after metabolism to reduced HP.  相似文献   

3.
4.
5.
6.
7.
α-Conotoxins interact with nicotinic acetylcholine receptors (nAChRs) and acetylcholine-binding proteins (AChBPs) at the sites for agonists/competitive antagonists. α-Conotoxins blocking muscle-type or α7 nAChRs compete with α-bungarotoxin. However, α-conotoxin ImII, a close homolog of the α7 nAChR-targeting α-conotoxin ImI, blocked α7 and muscle nAChRs without displacing α-bungarotoxin ( Ellison et al. 2003, 2004 ), suggesting binding at a different site. We synthesized α-conotoxin ImII, its ribbon isomer (ImII iso ), 'mutant' ImII(W10Y) and found similar potencies in blocking human α7 and muscle nAChRs in Xenopus oocytes. Both isomers displaced [125I]-α-bungarotoxin from human α7 nAChRs in the cell line GH4C1 (IC50 17 and 23 μM, respectively) and from Lymnaea stagnalis and Aplysia californica AChBPs (IC50 2.0–9.0 μM). According to SPR measurements, both isomers bound to immobilized AChBPs and competed with AChBP for immobilized α-bungarotoxin ( K d and IC50 2.5–8.2 μM). On Torpedo nAChR, α-conotoxin [125I]-ImII(W10Y) revealed specific binding ( K d 1.5–6.1 μM) and could be displaced by α-conotoxin ImII, ImII iso and ImII(W10Y) with IC50 2.7, 2.2 and 3.1 μM, respectively. As α-cobratoxin and α-conotoxin ImI displaced [125I]-ImII(W10Y) only at higher concentrations (IC50≥ 90 μM), our results indicate that α-conotoxin ImII and its congeners have an additional binding site on Torpedo nAChR distinct from the site for agonists/competitive antagonists.  相似文献   

8.
9.
σ32 controls expression of heat shock genes in Escherichia coli and is widely distributed in proteobacteria. The distinguishing feature of σ32 promoters is a long −10 region (CCCCATNT) whose tetra-C motif is important for promoter activity. Using alanine-scanning mutagenesis of σ32 and in vivo and in vitro assays, we identified promoter recognition determinants of this motif. The most downstream C (−13) is part of the −10 motif; our work confirms and extends recognition determinants of −13C. Most importantly, our work suggests that the two upstream Cs (−16, −15) constitute an 'extended −10' recognition motif that is recognized by K130, a residue universally conserved in β- and γ-proteobacteria. This residue is located in the α-helix of σDomain 3 that mediates recognition of the extended −10 promoter motif in other σs. K130 is not conserved in α- and δ-/ε-proteobacteria and we found that σ32 from the α-proteobacterium Caulobacter crescentus does not need the extended −10 motif for high promoter activity. This result supports the idea that K130 mediates extended −10 recognition. σ32 is the first Group 3 σ shown to use the 'extended −10' recognition motif.  相似文献   

10.
11.
12.
13.
14.
A Cryptococcus flavus gene ( AMY1 ) encoding an extracellular α-amylase has been cloned. The nucleotide sequence of the cDNA revealed an ORF of 1896 bp encoding for a 631 amino acid polypeptide with high sequence identity with a homologous protein isolated from Cryptococcus sp. S-2. The presence of four conserved signature regions, (I) 144DVVVNH149, (II) 235GLRIDSLQQ243, (III) 263GEVFN267, (IV) 327FLENQD332, placed the enzyme in the GH13 α-amylase family. Furthermore, sequence comparison suggests that the C. flavus α-amylase has a C-terminal starch-binding domain characteristic of the CBM20 family. AMY1 was successfully expressed in Saccharomyces cerevisiae . The time course of amylase secretion in S. cerevisiae resulted in a maximal extracellular amylolytic activity (3.93 U mL−1) at 60 h of incubation. The recombinant protein had an apparent molecular mass similar to the native enzyme ( c . 67 kDa), part of which was due to N-glycosylation.  相似文献   

15.
16.
17.
18.
A novel radioligand, 6-chloro-3-((2-( S )-azetidinyl)methoxy)-5-(2-fluoropyridin-4-yl)pyridine (NIDA522131), for imaging extrathalamic nicotinic acetylcholine receptors (nAChRs) was characterized in vitro and in vivo using positron emission tomography. The Kd and T1/2 of dissociation of NIDA522131 binding measured at 37°C in vitro were 4.9 ± 0.4 pmol/L and 81 ± 5 min, respectively. The patterns of radioactivity distribution in monkey brain in vivo was similar to that of 2-[18F]fluoro-3-(2( S )-azetidinylmethoxy)pyridine (2FA), a radioligand that has been successfully used in humans, and matched the α4β2* nAChRs distribution. Comparison between [18F]NIDA522131 and 2FA demonstrated better in vivo binding properties of the new radioligand and substantially greater radioactivity accumulation in brain. Consistent with [18F]NIDA522131 elevated affinity for nAChRs and its increased lipophilicity, both, the total and non-displaceable distribution volumes were substantially higher than those of 2FA. Estimated binding potential values in different brain regions, characterizing the specificity of receptor binding, were 3–4 fold higher for [18F]NIDA522131 than those of 2FA. Pharmacological evaluation in mice demonstrated a toxicity that was comparable to 2FA and is in agreement with a 2300 fold higher affinity at α4β2* versus α3β4* nAChRs. These results suggest that [18F]NIDA522131 is a promising positron emission tomography radioligand for studying extrathalamic nAChR in humans.  相似文献   

19.
A toluene-degrading microbial consortium was enriched directly in a BTEX-contaminated aquifer under sulfate-reducing conditions using in situ microcosms consisting of toluene-loaded activated carbon pellets. Degradation of toluene and concomitant sulfide production by the consortium was subsequently demonstrated in laboratory microcosms. The consortium was physiologically and phylogenetically characterized by isotope tracer experiments using nonlabeled toluene, [13C]-α-toluene or [13C7]-toluene as growth substrates. Cells incubated with [13C]-α-toluene or [13C7]-toluene incorporated 8–15 at.%13C and 51–57 at.%13C into total lipid fatty acids, respectively, indicating a lower specific incorporation of 13C from [13C7]-toluene. In order to identify the toluene-assimilating bacteria, the incorporation of carbon from both [13C]-α-toluene and [13C7]-toluene into rRNA was analyzed by stable isotope probing. Time and buoyant density-resolved 16S rRNA gene-based terminal restriction fragment length polymorphism profiles, combined with cloning and sequencing, revealed that an uncultured bacterium (99% sequence similarity) related to the genus Desulfocapsa was the main toluene-degrading organism in the consortium. The ratio of the respective terminal restriction fragments changed over time, indicating trophic interactions within this consortium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号