首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
The apparent intracellular Mg2+ buffering, or muffling (sum of processes that damp changes in the free intracellular Mg2+ concentration, [Mg2+](i), e.g., buffering, extrusion, and sequestration), was investigated in Retzius neurons of the leech Hirudo medicinalis by iontophoretic injection of H+, OH-, or Mg2+. Simultaneously, changes in intracellular pH and the intracellular Mg2+, Na+, or K+ concentration were recorded with triple-barreled ion-selective microelectrodes. Cell volume changes were monitored measuring the tetramethylammonium (TMA) concentration in TMA-loaded neurons. Control measurements were carried out in electrolyte droplets (diameter 100-200 microm) placed on a silver wire under paraffin oil. Droplets with or without ATP, the presumed major intracellular Mg2+ buffer, were used to quantify the pH dependence of Mg2+ buffering and to determine the transport index of Mg2+ during iontophoretic injection. The observed pH dependence of [Mg2+](i) corresponded to what would be expected from Mg2+ buffering through ATP. The quantity of Mg2+ muffling, however, was considerably larger than what would be expected if ATP were the sole Mg2+ buffer. From the decrease in Mg2+ muffling in the nominal absence of extracellular Na+ it was estimated that almost 50% of the ATP-independent muffling is due to the action of Na+/Mg2+ antiport.  相似文献   

2.
In isolated erythrocyte membranes, increasing the free Mg2+ concentration from 0.5 to 10 mM progressively activates the membrane-bound phosphatidylinositol (PtdIns) kinase and leads to the establishment of a new equilibrium with higher phosphatidylinositol 4-phosphate (PtdIns4P) and lower PtdIns concentrations. The steady-state turnover of the phosphomonoester group of PtdIns4P also increases at high Mg2+ concentrations, indicating a simultaneous activation of PtdIns4P phosphomonoesterase by Mg2+. Half-maximum inhibition of PtdIns kinase occurs at 10 microM free Ca2+ in the presence of physiological free Mg2+ concentrations. Increasing free Mg2+ concentrations overcome Ca2+ inhibition of PtdIns kinase. In the presence of Ca2+, calmodulin activates Ca2+-transporting ATPase 5-fold, but does not alter pool size and radiolabelling of PtdIns4P. In intact erythrocytes, adding EGTA or EGTA plus Mg2+ and the ionophore A23187 to the external medium does not exert significant effects on concentration and radiolabelling of polyphosphoinositides when compared with controls in the presence of 1.4 mM free Ca2+.  相似文献   

3.
An initial rapid phase and a subsequent slow phase of 45Ca2+ uptake were observed following the addition of 45Ca2+ to Ca2+-deprived hepatocytes. The magnitude of the rapid phase increased 15-fold over the range 0.1-11 mM extracellular Ca2+ (Ca2+o) and was a linear function of [Ca2+]o. The increases in the rate of 45Ca2+ uptake were accompanied by only small increases in the intracellular free Ca2+ concentration. In cells made permeable to Ca2+ by treatment with saponin, the rate of 45Ca2+ uptake (measured at free Ca2+ concentrations equal to those in the cytoplasm of intact cells) increased as the concentration of saponin increased from 1.4 to 2.5 micrograms per mg wet weight cells. Rates of 45Ca2+ uptake by cells permeabilized with an optimal concentration of saponin were comparable with those of intact cells incubated at physiological [Ca2+o], but were substantially lower than those for intact cells incubated at high [Ca2+o]. It is concluded that Ca2+ which enters the hepatocyte across the plasma membrane is rapidly removed by binding and transport to intracellular sites and by the plasma membrane (Ca2+ + Mg2+)-ATPase and the plasma membrane Ca2+ inflow transporter is not readily saturated with Ca2+o.  相似文献   

4.
J M Zhou  P D Boyer 《Biochemistry》1992,31(12):3166-3171
Previous studies have not provided definitive information about whether ADP or Pi or their complexes with Mg2+ serve as substrates for photophosphorylation and whether free Mg2+ or ADP is required. Results presented show MgADP, MgGDP, or MgUDP are substrates. At variable Mg2+ concentrations, observed velocities are determined by MgADP and not the free ADP concentration. The approximate Km for MgADP with spinach chloroplasts is about 30 microM, for MgGDP 260 microM, and for MgUDP above 5 mM. The apparent Km values for added ADP or Mg2+ are decreased to constant low values near 30 microM as the added Mg2+ or ADP concentrations, respectively, are increased to the millimolar range. With 100 microM added Mg2+, near-maximal velocities can be obtained with excess ADP, but not with excess GDP or UDP. This is explainable by the apparent Km values for MgGDP and MgUDP being well above 100 microM. High phosphorylation rates with excess of either Mg2+ or ADP present show that little or no (less than 2-3 microM) free Mg2+ or ADP is required. In addition, the results show that during rapid photophosphorylation, when one or more catalytic sites are always filled with nucleotide, free ADP does not combine and block the combination of MgADP to catalytic sites that become vacant. This is in contrast to the ability of free ADP to combine tightly with one catalytic site when all catalytic sites are empty. The apparent Km for added ADP above a few micromolar concentration, and with excess Mg2+ present, results from binding of MgADP at a second catalytic site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
J J Pernelle  C Creuzet  J Loeb  G Gacon 《FEBS letters》1991,281(1-2):278-282
In particulate fractions from LSTRA lymphoma cells, tyrosine phosphorylation of the lymphoid specific tyrosine kinase p56lck is elicited by Zn2+ in the absence of other divalent cations. Zn2+ alone also induces autophosphorylation of immunoprecipitated p56lck. The effect of Zn2+ is dose dependent; it is detected at concentrations of Zn2+ as low as 5 microM and reaches a maximum at 100 microM Zn2+. Among other divalent cations tested, Mn2+, and Co2+ to a lesser extent, were also effective. Zn2+ also stimulated p56lck phosphorylation in the presence of Mg2+ ions at physiological concentration, whereas orthovanadate had no effect. These results suggest that Zn2+ activates the autophosphorylation of p56lck; this fact could be related with the stimulating effect of Zn2+ in the activation of T lymphocytes.  相似文献   

6.
The effects of adrenaline on 45Ca2+-exchange curves for isolated hepatocytes incubated under various steady-state conditions were investigated. Kinetic analysis showed that the simplest compartment configuration consistent with each set of data was a series configuration of a three-compartment closed system comprising compartment 1 (C1), the extracellular medium, and two kinetically distinct compartments of cellular exchangeable Ca2+, C2 and C3 (C1 = C2 = C3). Subcellular fractionation of hepatocytes labelled with 45Ca2+ at 0.1 mM-Ca2+ indicated that C3 includes exchangeable Ca2+ in the mitochondria and endoplasmic reticulum. The following results were obtained from experiments conducted at 37 degrees C at five different extracellular Ca2+ concentrations. For both untreated and adrenaline-treated cells, plots of the flux from C1 to C2 as a function of the extracellular Ca2+ concentration were best described by straight lines consistent with Ca2+ influx across the plasma membrane being a diffusion process. Adrenaline increased the value of the permeability constant for Ca2+ influx by 40%. For untreated cells, plots of the flux between C2 and C3 as a function of the concentrations of Ca2+ in these compartments approached a plateau at high Ca2+ concentrations. Adrenaline caused a 3-fold increase in the concentration of Ca2+ that gives half-maximal rate of Ca2+ transport from C2 to C3. At 1.3 mM extracellular Ca2+, a decrease in incubation temperature from 37 degrees C to 20 degrees C decreased the quantity of Ca2+ in C3 and the flux and fractional transfer rates for the transport of Ca2+ between C2 and C3. At 20 degrees C adrenaline increased the quantity of Ca2+ in C3 and the fractional transfer rates for the transfer of Ca2+ from C1 to C2, and from C2 to C3. At 37 degrees C and 2.4 mM extracellular Ca2+, antimycin A plus oligomycin decreased the quantity of Ca2+ in C3 and increased the fractional transfer rate for the transport of Ca2+ from C3 to C2. In the presence of antimycin A and oligomycin, adrenaline did not increase the quantity of Ca2+ in C2 or the flux and fractional transfer rate for the transport of Ca2+ from C1 to C2, whereas these parameters were increased in the absence of the inhibitors.  相似文献   

7.
Ca2+ release from sarcoplasmic reticulum membranes, activated by alkaline pH occurs only when EGTA is present in the release medium. Addition of very low concentrations of Ca2+ to the medium inhibits Ca2+ release. The concentration of free Ca2+ required for 50% inhibition ranges from between 5 and 20 nM in different experiments and/or membrane preparations, irrespective of whether the free Ca2+ concentration is controlled by EGTA or CDTA. Other divalent cations such as Mn2+, Ba2+, Cu2+, Cd2+ and Mg2+ also exert an inhibitory effect on Ca2+ release, with higher or lower potency than that of Ca2+. The inactivation of Ca2+ release by Ca2+ is reversible. We suggest the involvement of high-affinity Ca2+-binding sites in the control of Ca2+ release.  相似文献   

8.
The activity of chicken liver mevalonate 5-diphosphate decarboxylase was measured over a wide range of Mg2+ and ATP concentrations. It was found that free ATP activated the enzyme, whereas free Mg2+ had no effect on the enzyme activity. Computed analyses of free species concentrations and pH studies indicated that MgATP2- is the true substrate. The relative efficiencies of Mg2+, Mn2+, Cd2+, and Zn2+ as activating metal ions were evaluated in terms of V/Km for the corresponding (metal-ATP)2- complexes, and the relative ratios were: Mn2+ 100, Cd2+ 37, Mg2+ 14, Zn2+ 1.7. Inhibitory effects were demonstrated for all free divalent cations tested, except for Mg2+, and were in the order Zn2+ greater than Cd2+ greater than Mn2+.  相似文献   

9.
We developed a sedimentation assay to characterize and quantify the association of purified lysosomes to reconstituted microtubules (Mithieux, G., Audebet, C. and Rousset. B. (1988) Biochim. Biophys. Acta 969, 121-130). In the present work, we have examined the potential regulatory role of ATP and Mg2+ on the microtubule-lysosome interaction. The formation of microtubule-lysosome complexes takes place in the absence of Mg2+, but is activated by the addition of Mg2+; both the rate of the interaction and the amount of complexes formed are increased. The maximal effect is observed between 1.5 and 3.5 mM free Mg2+. Measured at the plateau of the interaction, the proportion of microtubules bound to lysosomes increases as a function of free Mg2+ concentration; at optimal concentration of free Mg2+, 90% of the microtubules present in the incubation mixture are bound to lysosomes. ATP induces a concentration-dependent inhibition of the formation of microtubule-lysosome complexes. The half-maximal effect is obtained at an ATP concentration of 0.83 +/- 0.11 mM (n = 7). The effect of ATP is not related to ATP hydrolysis, since ATP exerts its inhibitory action in the presence of EDTA. The ATP effect is mimicked by GTP, p[NH]ppA and tripolyphosphate, ADP and pyrophosphate, but not by AMP or phosphate. In the presence of 1 mM ATP, a Mg2+ concentration of 3 mM (corresponding to 2 mM free Mg2+) is required to overcome the inhibition caused by ATP; above 3 mM, Mg2+ exerts its activating effect. Since the modulating effects of ATP and Mg2+ are obtained at concentrations closed to those occurring in intact cells, we conclude that the regulation of the microtubule-lysosome interaction reported in this paper could be of physiological significance.  相似文献   

10.
When pig liver phosphorylase kinase was assayed at various concentrations of Mg2+, about 2-fold stimulation was observed around 2-3 mM Mg2+ (Mg2+/ATP ratio, 20-30) compared with the activity at 0.3 mM Mg2+ (Mg2+/ATP ratio, 3). This stimulation was specific for Mg2+ among the divalent cations tested and the process was reversible. Km values for ATP and phosphorylase b were decreased 3.6- and 9.5-fold, respectively, at 3 mM Mg2+ compared with those obtained at 0.3 mM Mg2+. These results indicate that the activity of liver phosphorylase kinase is influenced by free Mg2+.  相似文献   

11.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold. Activation of K+-stimulated ATPase activity by Ca2+ was maximal at an ionized Ca2+ concentration of approx. 1 microM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

12.
Adrenal cortex mitochondria prepared by a standard method do not exhibit malic enzyme activity. Addition of physiological concentrations of Ca2+ and Mg2+ enables these mitochondria to reduce added NADP+ by malate to form free NADPH. Half-maximum activation of the mitochondrial malic enzyme requires 0.3 mM Ca2+ and 1 mM Mg2+. Solubilized mitochondrial malic enzymes is independent of Ca2+ and has a K M of 0.2 mM for Mg2+. The Ca2+ effect is dependent on an initial period of active Ca2+ uptake which also causes other changes in respiratory properties similar to those observed with mitochondria from other tissues. After Ca2+ accumulation has taken place, free Ca2+, but not additional accumulation, is still required for malic enzyme activity. The requirement for Mg2+ can be met by Mn2+ (1 mM). This concentration of Mn2+ alone yielded only a slight activation of mitochondrial malic enzyme while higher concentrations of Mn2+ alone gave good activation of the mitochondrial malic enzy.e The NADPH generated by the Ca2+-Mg2+ activated malic enzyme effectively supports the 11beta-hydroxylation of deoxycorticosterone, whereas in the presence of malate, or malate plus Mg2+ but absence of Ca2+, the energy linked transhydrogenase supplies all the required NADPH. The activated malic enzyme appears to be more efficient than transhydrogenase in generating NADPH to support 11beta-hydroxylation. Cyanide and azide have been found to inhibit solubilized mitochondrial malic enzyme.  相似文献   

13.
To understand the mechanisms of neuronal Zn2+ homeostasis better, experimental data obtained from cultured cortical neurons were used to inform a series of increasingly complex computational models. Total metals (inductively coupled plasma-mass spectrometry), resting metallothionein, (65)Zn2+ uptake and release, and intracellular free Zn2+ levels using ZnAF-2F were determined before and after neurons were exposed to increased Zn2+, either with or without the addition of a Zn2+ ionophore (pyrithione) or metal chelators [EDTA, clioquinol (CQ), and N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine]. Three models were tested for the ability to match intracellular free Zn2+ transients and total Zn2+ content observed under these conditions. Only a model that incorporated a muffler with high affinity for Zn2+, trafficking Zn2+ to intracellular storage sites, was able to reproduce the experimental results, both qualitatively and quantitatively. This "muffler model" estimated the resting intracellular free Zn2+ concentration to be 1.07 nM. If metallothionein were to function as the exclusive cytosolic Zn2+ muffler, the muffler model predicts that the cellular concentration required to match experimental data is greater than the measured resting concentration of metallothionein. Thus Zn2+ buffering in resting cultured neurons requires additional high-affinity cytosolic metal binding moieties. Added CQ, as low as 1 microM, was shown to selectively increase Zn2+ influx. Simulations reproduced these data by modeling CQ as an ionophore. We conclude that maintenance of neuronal Zn2+ homeostasis, when challenged with Zn2+ loads, relies heavily on the function of a high-affinity muffler, the characteristics of which can be effectively studied with computational models.  相似文献   

14.
Co2+ and o-phenanthroline formed a 1:3 complex with absorption maxima at 346, 332, 313, and 301 nm. The complex obeyed Beer's Law at the first three maxima. Standard curves constructed by monitoring the E346 at different concentrations of Co2+ had a maximum sensitivity of about 1 microM Co2+. At this concentration of Co2+ the delta E346 was 0.003 absorption units. This assay was not affected greatly by Ca2+, Mg2+, K+, Na+, or Tris. Erbium ions (Er3+) produced a small, nonspecific increase in absorbance at all wavelengths. Zn2+ also formed a complex with o-phenanthroline with maxima at 343, 328, and 313 nm. The absorbance of the Zn2+-o-phenanthroline complex was about 10% that of the Co2+-o-phenanthroline complex at 346 nm, but was still sufficient to cause interference at Zn2+ concentrations above 10 microM.  相似文献   

15.
Ca2+ homeostasis in unstimulated platelets   总被引:4,自引:0,他引:4  
Unstimulated platelets maintain a low cytosolic free Ca2+ concentration and a steep plasma membrane Ca2+ gradient. The mechanisms that are required have not been completely defined. In the present studies, 45Ca2+ was used to examine the kinetics of Ca2+ exchange in intact unstimulated platelets. Quin2 was used to measure the cytosolic free Ca2+ concentration. Under steady-state conditions, the maximum rate of Ca2+ exchange across the platelet plasma membrane, 2 pmol/10(8) platelets/min, was observed at extracellular free Ca2+ concentrations 20-fold less than in plasma. Two intracellular exchangeable Ca2+ pools were identified. The size of the more rapidly exchanging pool (t 1/2, 17 min) and the cytosolic free Ca2+ concentration were relatively unaffected by large changes in the extracellular Ca2+ concentration. In contrast, the size of the more slowly exchanging Ca2+ pool (t 1/2, 300 min) varied with the extracellular Ca2+ concentration, which suggests that it is physically as well as kinetically distinct from the rapidly exchangeable Ca2+ pool. The locations of the Ca2+ pools were determined by differential permeabilization of 45Ca2+-loaded platelets with digitonin. 45Ca2+ in the rapidly exchanging pool was released with lactate dehydrogenase, which suggests that it is located in the cytosol. 45Ca2+ in the slowly exchanging pool was released with markers for both the dense tubular system and mitochondria, but inhibition of mitochondrial Ca2+ uptake with carbonyl cyanide m-chlorophenylhydrazone had no effect on the size of the slowly exchangeable Ca2+ pool or the cytosolic free Ca2+ concentration. In contrast, addition of metabolic inhibitors (KCN plus carbonyl cyanide m-chlorophenylhydrazone plus deoxyglucose) or trifluoperazine caused a decrease in the size of the slowly exchangeable Ca2+ pool and an increase in the cytosolic free Ca2+ concentration. These observations suggest that Ca2+ homeostasis in unstimulated platelets is maintained by limiting Ca2+ influx from plasma, actively promoting Ca2+ efflux, and sequestering Ca2+ within an internal site, which is most likely the dense tubular system and not mitochondria.  相似文献   

16.
赵树兰  多立安 《广西植物》2008,28(1):100-106
采用砂培法,研究了匍茎翦股颖对Cu2+、Zn2+、Cd2+与Pb2+胁迫的生长响应及阈限浓度,结果表明:种子萌发率随着4种重金属浓度的增加而下降。对株高的影响是当重金属浓度小于100mg/L时会促进株高生长,高于100mg/L则产生抑制作用。Cu2+显著抑制根系生长,并随浓度的增加抑制效应愈加显著;在Cu2+浓度为600mg/L时匍茎翦股颖的根长比对照下降了93.75%。Cu2+、Zn2+、Pb2+浓度小于200mg/L时会促进地上生物量的增加,但高于200mg/L时,地上生物量会随着3种重金属的增加而减少。Cu2+、Zn2+浓度小于100mg/L或Cd2+、Pb2+浓度小于200mg/L会增加叶绿素的含量,高浓度会降低叶绿素的含量;Cd2+在浓度为600mg/L时显著降低叶绿素含量,与对照相比,下降了43.55%。匍茎翦股颖生长的综合效应分析表明,匍茎翦股颖对Cu2+胁迫最敏感,具有较低的阈限浓度,而Zn2+胁迫对匍茎翦股颖的生长影响最小,阈限浓度相对较高。  相似文献   

17.
Media prepared with CDTA and low concentrations of Ca2+, as judged by the lack of Na+-dependent phosphorylation and ATPase activity of (Na+ +K+)-ATPase preparations are free of contaminant Mg2+. In these media, the Ca2+-ATPase from human red cell membranes is phosphorylated by ATP, and a low Ca2+-ATPase activity is present. In the absence of Mg2+ the rate of phosphorylation in the presence of 1 microM Ca2+ is very low but it approaches the rate measured in Mg2+-containing media if the concentration of Ca2+ is increased to 5 mM. The KCa for phosphorylation is 2 microM in the presence and 60 microM in the absence of Mg2+. Results are consistent with the idea that for catalysis of phosphorylation the Ca2+-ATPase needs Ca2+ at the transport site and Mg2+ at an activating site and that Ca2+ replaces Mg2+ at this site. Under conditions in which it increases the rate of phosphorylation, Ca2+ is without effect on the Ca2+-ATPase activity in the absence of Mg2+ suggesting that to stimulate ATP hydrolysis Mg2+ accelerates a reaction other than phosphorylation. Activation of the E1P----E2P reaction by Mg2+ is prevented by Ca2+ after but not before the synthesis of E1P from E1 and ATP, suggesting that Mg2+ stabilizes E1 in a state from which Mg2+ cannot be removed by Ca2+ and that Ca2+ stabilizes E1P in a state insensitive to Mg2+. The response of the Ca2+-ATPase activity to Mg2+ concentration is biphasic, activation with a KMg = 88 microM is followed by inhibition with a Ki = 9.2 mM. Ca2+ at concentration up to 1 mM acts as a dead-end inhibitor of the activation by Mg2+, and Mg2+ at concentrations up to 0.5 mM acts as a dead-end inhibitor of the effects of Ca2+ at the transport site of the Ca2+-ATPase.  相似文献   

18.
Divalent cation ATPases were prepared from rat brain synaptic vesicles, synaptosomal plasma membranes, and plasma membranes from the brain stem and sciatic nerve and tested for optimal stimulation by Mn2+, Mg2+, or Ca2+. ATPase in the synaptic vesicle subfraction was optimally stimulated by Mn2+. All plasma membrane preparations were optimally stimulated by Mg2+. Separate Mn2+ and Mg2+ ATPases could not be distinguished by either chemical inactivation or substrate preference criteria. Mn2+ stimulated ATPase in the micromolar range and it is suggested that Mn2+ interaction with ATPase may be of physiological and/or toxicological importance by being related to the cellular metabolism of this element.  相似文献   

19.
1. The effect of free Mg2+, MgEDTA and MgCDTA on the phofphorylation of the (Na+ + K+)-activated ATPase (ATP phosphohydrolase, EC 3.6.1.3) has been studied. 2. 10 mM trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) added simultaneously with [gamma-32P]ATP to a solution containing the enzyme, 1 mM Mg2+ and 150 mM Na+ does not prevent formation of phospho-enzyme. When [gamma-32P]ATP is added after CDTA the level of phospho-enzyme obtained decreases with increase in the time interval between addition of CDTA and ATP. The inability of CDTA to prevent the formation of phospho-enzyme becomes more pronounced when the medium contains MgEDTA. In the presence of CDTA the maximum amount of phospho-enzyme formed increases with the MgEDTA concentration. 3. Without CDTA the steady-state level of phospho-enzyme is directly proportional to the logarithm of free Mg2+ concentration. Neither with suboptimal nor with optimal concentrations of free Mg2+ does MgEDTA have an effect on the level of phospho-enzyme formed. 4. Using the phospho-enzyme level as a measure of free Mg2+ the experiments show that CDTA reacts slower with Mg2+ than does EDTA, but the stability constant of MgCDTA complex is higher than of MgCDTA, complex. 5. Due to the higher stability constant, of MgCDTA, as compared to MgEDTA, addition of CDTA to a medium containing free Mg2+ and MgEDTA will not only chelate the free Mg2+, but it will also shift the equilibrium from MgEDTA towards MgCDTA, i.e. MgEDTA acts as a source of free Mg2+ which is then chelated by CDTA. The experiments show that it takes minutes before Mg2+, EDTA and CDTA come to equilibrium. Provided the dissociation of MgEDTA is faster than the formation of the MgCDTA complex, the medium will contain a concentration of free Mg2+ which at any given instant is near in equilibrium with a slowly decreasing concentration of MgEDTA; this free Mg2+ can support phosphorylation. This can explain why the rate with which CDTA stops phosphorylation decreases with an increase in the MgEDTA concentration. 6. When phosphorylation is stopped by addition of unlabelled ATP, the rate of dephosphorylation is faster than when it is stopped by addition of CDTA both with and without EDTA in the medium. CDTA reacts too slowly with Mg2+ to be used as a chelator in studies where a fast removal of Mg2+ is required. 7. A previous finding has been verified, namely that the rate of spontaneous, of K+-stimulated and of ADP-stimulated dephosphorylation is independent of the Mg2+ concentration during formation of phospho-enzyme.  相似文献   

20.
The effects of various divalent cations on the Ca2+ uptake by microsomes from bovine aortic smooth muscle were studied. High concentrations (1 mM) of Co2+, Zn2+, Mn2+, Fe2+, and Ni2+ inhibited neither the Ca2+ uptake by the microsomes nor the formation of the phosphorylated intermediate (E approximately P) of the Ca2+,Mg2+-ATPase of the microsomes. The cadmium ion, however, inhibited both the Ca2+ uptake and the E approximately P formation by the microsomes. Dixon plot analysis indicated Cd2+ inhibited (Ki = 135 microM) the Ca2+ dependent E approximately P formation in a non-competitive manner. The inhibitory effect of Cd2+ was lessened by cysteine or dithiothreitol. The strontium ion inhibited the Ca2+ uptake competitively, while the E approximately P formation increased on the addition of Sr2+ at low Ca2+ concentrations. At a low Ca2+ concentration (1 microM), Sr2+ was taken up by the aortic microsomes in the presence of 1 mM ATP. It is thus suggested that Sr2+ replaces Ca2+ at the Ca2+ binding site on the ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号