首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous study of T338C CFTR (cystic fibrosis transmembrane conductance regulator) we found that protons and thiol-directed reagents modified channel properties in a manner consistent with the hypothesis that this residue lies within the conduction path, but the observed reactivity was not consistent with the presence of a single thiolate species in the pore. Here we report results consistent with the notion that the thiol moiety can exist in at least three chemical states, the simple thiol, and two altered states. One of the altered states displays reactivity toward thiols like dithiothreitol and 2-mercaptoethanol as well as reagents: mixed disulfides (methanethiosulfonate reagents: MTSET+, MTSES-) and an alkylating agent (iodoacetamide). The other altered state is unreactive. The phenotype associated with the reactive, altered state could be replicated by exposing oocytes expressing T338C CFTR to CuCl2, but not by glutathionylation or nitrosylation of the thiol or by oxidation with hydrogen peroxide. The results are consistent with the hypothesis that substituting a cysteine at 338 can create an adventitious metal binding site. Metal liganding alters thiol reactivity and may, in some cases, catalyze oxidation of the thiol to an unreactive form such as a sulfinic or sulfonic acid.  相似文献   

2.
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is gated by intracellular factors; however, conformational changes in the channel pore associated with channel activation have not been identified. We have used patch clamp recording to investigate the state-dependent accessibility of substituted cysteine residues in the CFTR channel pore to a range of cysteine-reactive reagents applied to the extracellular side of the membrane. Using functional modification of the channel current-voltage relationship as a marker of modification, we find that several positively charged reagents are able to penetrate deeply into the pore from the outside irrespective of whether or not the channels have been activated. In contrast, access of three anionic cysteine-reactive reagents, the methanesulfonate sodium (2-sulfonatoethyl)methanesulfonate, the organic mercurial p-chloromercuriphenylsulfonic acid, and the permeant anion Au(CN)(2)(-), to several different sites in the pore is strictly limited prior to channel activation. This suggests that in nonactivated channels some ion selectivity mechanism exists to exclude anions yet permit cations into the channel pore from the extracellular solution. We suggest that activation of CFTR channels involves a conformational change in the pore that removes a strong selectivity against anion entry from the extracellular solution. We propose further that this conformational change occurs in advance of channel opening, suggesting that multiple distinct closed pore conformations exist.  相似文献   

3.
The cystic fibrosis transmembrane conductance regulator (CFTR) has been known for the past 11 years to be a membrane glycoprotein with chloride channel activity. Only recently has the glycosylation of CFTR been examined in detail, by O'Riordan et al in Glycobiology. Using cells that overexpress wild-type (wt)CFTR, the presence of polylactosamine was noted on the fully glycosylated form of CFTR. In the present commentary the results of that work are discussed in relation to the glycosylation phenotype of cystic fibrosis (CF), and the cellular localization and processing of ΔF508 CFTR. The significance of the glycosylation will be known when endogenous CFTR from primary human tissue is examined.  相似文献   

4.
Peptide toxins from animal venom have been used for many years for the identification and study of cation-permeable ion channels. However, no peptide toxins have been identified that interact with known anion-selective channels, including cystic fibrosis transmembrane conductance regulator (CFTR), the protein defective in cystic fibrosis and a member of the ABC transporter superfamily. Here, we describe the identification and initial characterization of a novel 3.7-kDa peptide toxin, GaTx1, which is a potent and reversible inhibitor of CFTR, acting from the cytoplasmic side of the membrane. Thus, GaTx1 is the first peptide toxin identified that inhibits a chloride channel of known molecular identity. GaTx1 exhibited high specificity, showing no effect on a panel of nine transport proteins, including Cl(-) and K(+) channels, and ABC transporters. GaTx1-mediated inhibition of CFTR channel activity is strongly state-dependent; both potency and efficacy are reduced under conditions of elevated [ATP], suggesting that GaTx1 may function as a non-competitive inhibitor of ATP-dependent channel gating. This tool will allow the application of new quantitative approaches to study CFTR structure and function, particularly with respect to the conformational changes that underlie transitions between open and closed states.  相似文献   

5.
Cystic fibrosis is caused by mutations inthe cystic fibrosis transmembrane conductance regulator (CFTR) gene.CFTR is a chloride channel whose activity requires protein kinaseA-dependent phosphorylation of an intracellular regulatory domain(R-domain) and ATP hydrolysis at the nucleotide-binding domains (NBDs).To identify potential sites of domain-domain interaction within CFTR,we expressed, purified, and refolded histidine (His)- andglutathione-S-transferase (GST)-tagged cytoplasmic domainsof CFTR. ATP-binding to his-NBD1 and his-NBD2 was demonstrated bymeasuring tryptophan fluorescence quenching. Trypticdigestion of in vitro phosphorylated his-NBD1-R and in situphosphorylated CFTR generated the same phosphopeptides. An interactionbetween NBD1-R and NBD2 was assayed by tryptophan fluorescencequenching. Binding among all pairwise combinations of R-domain, NBD1,and NBD2 was demonstrated with an overlay assay. To identifyspecific sites of interaction between domains of CFTR, an overlay assaywas used to probe an overlapping peptide library spanning allintracellular regions of CFTR with his-NBD1, his-NBD2, andGST-R-domain. By mapping peptides from NBD1 and NBD2 that bound toother intracellular domains onto crystal structures for HisP, MalK, andRad50, probable sites of interaction between NBD1 and NBD2 wereidentified. Our data support a model where NBDs form dimers with theATP-binding sites at the domain-domain interface.

  相似文献   

6.
Tector M  Hartl FU 《The EMBO journal》1999,18(22):6290-6298
The cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel with 12 membrane-spanning sequences, undergoes inefficient maturation in the endoplasmic reticulum (ER). Potentially charged residues in transmembrane segments may contribute to this defect in biogenesis. We demonstrate that transmembrane segment 6 of CFTR, which contains three basic amino acids, is extremely unstable in the lipid bilayer upon membrane insertion in vitro and in vivo. However, two distinct mechanisms counteract this anchoring deficiency: (i) the ribosome and the ER translocon co-operate to prevent transmembrane segment 6 from passing through the membrane co- translationally; and (ii) cytosolic domains of the ion channel post-translationally maintain this segment of CFTR in a membrane-spanning topology. Although these mechanisms are essential for successful completion of CFTR biogenesis, inefficiencies in their function retard the maturation of the protein. It seems possible that some of the disease-causing mutations in CFTR may reduce the efficiency of proper membrane anchoring of the protein.  相似文献   

7.
Phosphorylation of the cystic fibrosis transmembrane conductance regulator.   总被引:17,自引:0,他引:17  
Regulation of epithelial chloride flux, which is defective in patients with cystic fibrosis, may be mediated by phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) by cyclic AMP-dependent protein kinase (PKA) or protein kinase C (PKC). Part of the R-domain of CFTR (termed CF-2) was expressed in and purified from Escherichia coli. CF-2 was phosphorylated on seryl residues by PKA, PKC, cyclic GMP-dependent protein kinase (PKG), and calcium/calmodulin-dependent protein kinase I (CaM kinase I). Direct amino acid sequencing and peptide mapping of CF-2 revealed that serines 660, 700, 737, and 813 as well as serine 768, serine 795, or both were phosphorylated by PKA and PKG, and serines 686 and 790 were phosphorylated by PKC. CFTR was phosphorylated in vitro by PKA, PKC, or PKG on the same sites that were phosphorylated in CF-2. Kinetic analysis of phosphorylation of CF-2 and of synthetic peptides confirmed that these sites were excellent substrates for PKA, PKC, or PKG. CFTR was immunoprecipitated from T84 cells labeled with 32Pi. Its phosphorylation was stimulated in response to agents that activated either PKA or PKC. Peptide mapping confirmed that CFTR was phosphorylated at several sites identified in vitro. Thus, regulation of CFTR is likely to occur through direct phosphorylation of the R-domain by protein kinases stimulated by different second messenger pathways.  相似文献   

8.
9.
Mismanaged protein trafficking by the proteostasis network contributes to several conformational diseases, including cystic fibrosis, the most frequent lethal inherited disease in Caucasians. Proteostasis regulators, as cystamine, enable the beneficial action of cystic fibrosis transmembrane conductance regulator (CFTR) potentiators in ΔF508-CFTR airways beyond drug washout. Here we tested the hypothesis that functional CFTR protein can sustain its own plasma membrane (PM) stability. Depletion or inhibition of wild-type CFTR present in bronchial epithelial cells reduced the availability of the small GTPase Rab5 by causing Rab5 sequestration within the detergent-insoluble protein fraction together with its accumulation in aggresomes. CFTR depletion decreased the recruitment of the Rab5 effector early endosome antigen 1 to endosomes, thus reducing the local generation of phosphatidylinositol-3-phosphate. This diverts recycling of surface proteins, including transferrin receptor and CFTR itself. Inhibiting CFTR function also resulted in its ubiquitination and interaction with SQSTM1/p62 at the PM, favoring its disposal. Addition of cystamine prevented the recycling defect of CFTR by enhancing BECN1 expression and reducing SQSTM1 accumulation. Our results unravel an unexpected link between CFTR protein and function, the latter regulating the levels of CFTR surface expression in a positive feed-forward loop, and highlight CFTR as a pivot of proteostasis in bronchial epithelial cells.  相似文献   

10.
We have investigated several purification strategies for the cystic fibrosis transmembrane regulator (CFTR) based on its structural similarity to other proteins of the traffic ATPase/ABC transporter family. Recombinant CFTR expressed in heterologous cells was readily solubilized by digitonin and initially separated from the majority of other cellular proteins by sucrose density gradient centrifugation. CFTR, with two predicted nucleotide binding domains, bound avidly to several triazine dye columns, although elution with MgATP, MgCl2, or high ionic strength buffers was inefficient. CFTR did not bind to either ATP or ADP coupled to agarose. Because CFTR is a glycoprotein we investigated its binding to lectin columns. CFTR bound readily to wheat germ agglutinin, but poorly to Lens culinaris agglutinin. CFTR was enriched 9-10 times when eluted from wheat germ agglutinin with N-acetylglucosamine. This enrichment was tripled if lectin chromatography followed sucrose gradient centrifugation. Our results suggest the combination of sucrose density gradient centrifugation and lectin chromatography would be a satisfactory approach to initial purification of CFTR expressed in heterologous cells.  相似文献   

11.
Cheung JC  Deber CM 《Biochemistry》2008,47(6):1465-1473
Understanding the structural basis for defects in protein function that underlie protein-based genetic diseases is the fundamental requirement for development of therapies. This situation is epitomized by the cystic fibrosis transmembrane conductance regulator (CFTR)-the gene product known to be defective in CF patients-that appears particularly susceptible to misfolding when its biogenesis is hampered by mutations at critical loci. While the primary CF-related defect in CFTR has been localized to deletion of nucleotide binding fold (NBD1) residue Phe508, an increasing number of mutations (now ca. 1,500) are being associated with CF disease of varying severity. Hundreds of these mutations occur in the CFTR transmembrane domain, the site of the protein's chloride channel. This report summarizes our current knowledge on how mutation-dependent misfolding of the CFTR protein is recognized on the cellular level; how specific types of mutations can contribute to the misfolding process; and describes experimental approaches to detecting and elucidating the structural consequences of CF-phenotypic mutations.  相似文献   

12.
13.
Expression of thecystic fibrosis transmembrane conductance regulator (CFTR), and of atleast one other member of the ATP-binding cassette family of transportproteins, P-glycoprotein, is associated with the electrodiffusionalmovement of the nucleotide ATP. Evidence directly implicating CFTRexpression with ATP channel activity, however, is still missing. Hereit is reported that reconstitution into a lipid bilayer of highlypurified CFTR of human epithelial origin enables the permeation of bothCl and ATP. Similar topreviously reported data for in vivo ATP currents of CFTR-expressingcells, the reconstituted channels displayed competition betweenCl and ATP and had multipleconductance states in the presence of Cl and ATP. PurifiedCFTR-mediated ATP currents were activated by protein kinase A and ATP(1 mM) from the "intracellular" side of the molecule and wereinhibited by diphenylamine-2-carboxylate, glibenclamide, and anti-CFTRantibodies. The absence of CFTR-mediated electrodiffusional ATPmovement may thus be a relevant component of the pleiotropic cysticfibrosis phenotype.

  相似文献   

14.
Abnormal fluid accumulation in tissues, including the life-threatening cerebral and pulmonary edema, is a severe consequence of bacteria infection. Chlamydia (C.) trachomatis is an obligate intracellular gram-negative human pathogen responsible for a spectrum of diseases, causing tissue fluid accumulation and edema in various organs. However, the underlying mechanism for tissue fluid secretion induced by C. trachomatis and most of other infectious pathogens is not known. Here, we report that in mice C. trachomatis infection models, the expression of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP activated chloride channel, is up regulated together with increased cytokine release and tissue fluid accumulation that can be reversed by treatment with antibiotic specific for C. trachomatis and CFTR channel blocker. However, C. trachomatis infection cannot induce tissue edema in CFTRtm1Unc mutant mice. Administration of exogenous IL-1beta to mice mimics the C. trachomatis infection-induced CFTR upregulation, enhanced CFTR channel activity and fluid accumulation, further confirming the involvement of CFTR in infection-induced tissue fluid secretion.  相似文献   

15.
Cystic fibrosis (CF) is considered to be a monogenic disease caused by molecular lesions within the cystic fibrosis transmembrane conductance regulator (CFTR) gene and is diagnosed by elevated sweat electrolytes. We have investigated the clinical manifestations of cystic fibrosis, CFTR genetics and electrophysiology in a sibpair in which the brother is being treated as having CF, whereas his sister is asymptomatic. The diagnosis of CF in the index patient is based on highly elevated sweat electrolytes in the presence of CF-related pulmonary symptoms. The investigation of chloride conductance in respiratory and intestinal tissue by nasal potential difference and intestinal current measurements, respectively, provides no evidence for CFTR dysfunction in the siblings who share the same CFTR alleles. No molecular lesion has been identified in the CFTR gene of the brother. Findings in the investigated sibpair point to the existence of a CF-like disease with a positive sweat test without CFTR being affected. Other factors influencing sodium or chloride transport are likely to be the cause of the symptoms in the patient described. Received: 25 August 1997 / Accepted: 20 January 1998  相似文献   

16.
17.
18.
Summary Three mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene were discovered in a pancreas-insufficient patient with cystic fibrosis (CF) who displayed an uncommon combination of almost normal chloride concentration in sweat tests and typical symptoms of gastrointestinal and pulmonary disease. The R553Q mutation was found on the maternal F508-CFTR gene. Codon 553 is located within a consensus motif of the ATP-binding cassette transport proteins at a less conserved position. Other members of this protein superfamily contain a glutamine instead of arginine at the homologous position, suggesting a modulating rather than disease-causing role of the R553Q mutation in CFTR. The amplification refractory mutation system did not detect the R553Q mutation in a further 65 normal, 113 F508, and 91 non-F508 CF chromosomes. The index case carried the R553X nonsense mutation on the paternal chromosome. The R553X mutation was present on a further 9 out of 86 German nonF508 CF chromosomes linked with the XV2c-KM19Mp6d9-J44-GATT haplotypes 2-2-2-1-1 and 1-1-2-1-2. The location of R553X on separate haplotypes including both alleles of the intragenic GATT repeat suggests an ancient and/or multiple origins of the R553X mutations. The association of the genotype of the CFTR mutation and the clinical phenotype was assessed for the patients carrying the related genotypes F508/F508 (n = 80), F508/R553X (n = 9) and F508-R553Q/R553X (n = 1). In compound heterozygotes, the median chloride concentration in pilocarpine iontophoresis sweat tests was significantly lower than in the F508 homozygotes (P < 0.01). The patient groups were significantly different with respect to the distributions of the centiles for height (P < 0.001) and weight (P < 0.01) as the most sensitive predictors of the course and prognosis in CF. Growth retardation was more pronounced in the compound heterozygotes.  相似文献   

19.
Liu X  Dawson DC 《Biochemistry》2011,50(47):10311-10317
Cysteine scanning has been widely used to identify pore-lining residues in mammalian ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR). These studies, however, have been typically conducted at room temperature rather than human body temperature. Reports of substantial effects of temperature on gating and anion conduction in CFTR channels as well as an unexpected pattern of cysteine reactivity in the sixth transmembrane segment (TM6) prompted us to investigate the effect of temperature on the reactivity of cysteines engineered into TM6 of CFTR. We compared reaction rates at temperatures ranging from 22 to 37 °C for cysteines placed on either side of an apparent size-selective accessibility barrier previously defined by comparing reactivity toward channel-permeant and channel-impermeant, thiol-directed reagents. The results indicate that the reactivity of cysteines at three positions extracellular to the position of the accessibility barrier, 334, 336, and 337, is highly temperature-dependent. At 37 °C, cysteines at these positions were highly reactive toward MTSES(-), whereas at 22 °C, the reaction rates were 2-6-fold slower to undetectable. An activation energy of 157 kJ/mol for the reaction at position 337 is consistent with the hypothesis that, at physiological temperature, the extracellular portion of the CFTR pore can adopt conformations that differ significantly from those that can be accessed at room temperature. However, the position of the accessibility barrier defined empirically by applying channel-permeant and channel-impermeant reagents to the extracellular aspect of the pore is not altered. The results illuminate previous scanning results and indicate that the assay temperature is a critical variable in studies designed to use chemical modification to test structural models for the CFTR anion conduction pathway.  相似文献   

20.
We investigated the mechanisms by which S-nitrosoglutathione (GSNO) alters cystic fibrosis transmembrane conductance regulator (CFTR) mediated chloride (Cl(-)) secretion across Calu-3 cells, an extensively used model of human airway gland serous cells. Confluent monolayers of Calu-3 cells, grown under an air-liquid interface, were mounted in Ussing chambers for the measurements of chloride short circuit current (I(sc)) and trans-epithelial resistance (R(t)). Addition of GSNO into the apical compartment of these chambers resulted in significant and sustained increase of I(sc) with an IC(50) of 3.2 +/- 1 mum (mean +/- 1 S.E.; n = 6). Addition of either glibenclamide or pre-treatment of Calu-3 cells with the soluble guanylate cyclase inhibitor 1H-(1,2,4)-oxadiazolo[4,3-a]quinoxalin-1-one totally prevented the GSNO-induced increase of I(sc). Conversely, BAY 41-2272, a sGC stimulator, increased I(sc) in a dose-response fashion. The GSNO increase of I(sc) was reversed by addition of two phosphatases (PP2A1, PP2A2) into the apical compartment of Ussing chambers containing Calu-3 monolayers. Oxy-myoglobin (oxy-Mb, 300 mum) added into the apical compartment of Ussing chambers either prior or after GSNO either completely prevented or immediately reversed the increase of I(sc). However, smaller concentrations of oxy-Mb (1-10 mum), sufficient to scavenge NO in the medium (as assessed by direct measurement of NO in the Ussing chamber using an ISO-NO meter) decreased I(sc) partially. Oxy-Mb did not reverse the increase of I(sc) following addition of GSNO and cysteine (50 mum). These findings indicate that GSNO stimulates Cl secretion via both cGMP-dependent and cGMP-independent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号