首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of rats to the cold (4-5 degrees C) caused large (2-3-fold) increases in the mass of interscapular brown adipose tissue (BAT), its mitochondrial content and the basal metabolic rate of the animals. The rate of substrate oxidation by BAT mitochondria also increased about 3-fold. When cold-acclimated animals were exposed to heat (37 degrees C), the BMR decreased by half in 3 h, the earliest time interval tested. Mitochondrial substrate oxidation, as well as substrate-dependent H2O2 generation, showed a proportionate decrease in rates. In these mitochondria, activities of cytochrome c reductases, but not dehydrogenases with NADH, alpha-glycerophosphate and succinate as substrates, also showed a significant decrease. The concentration of cytochromes aa3 and b, but not cytochrome c, also decreased in BAT mitochondria from 12-h heat-exposed animals, while the change in concentration of cytochrome b alone was found as early as 3 h of heat exposure. These results identify the change in cytochromes as a mechanism of regulation of oxidative activities in BAT mitochondria under conditions of acute heat stress.  相似文献   

2.
3.
The presence of redox systems in microsomes of brown adipose tissue (BAT) in cold exposed rats was investigated and compared with liver. BAT microsomes showed high activity of lipid peroxidation measured both by the formation of malondialdehyde (MDA) and by oxygen uptake. NADH and NADPH dependent cytochrome c reductase activity were present in both BAT and liver microsomes. Aminopyrine demethylase and aniline hydroxylase activities, the characteristic detoxification enzymes in liver microsomes could not be detected in BAT microsomes. BAT minces showed very poor incorporation of [1-14C]acetate and [2-14C]-mevalonate in unsaponifiable lipid fraction compared to liver. Biosynthesis of cholesterol and ubiquinone, but not fatty acids, and the activity of 3-hydroxy-3-methyl glutaryl CoA reductase appear to be very low in BAT. Examination of difference spectra showed the presence of only cytochrome b 5 in BAT microsomes. In addition to the inability to detect the enzyme activities dependent on cytochrome P-450, a protein with the characteristic spectrum, molecular size in SDS-PAGE and interaction with antibodies in double diffusion test, also could not be detected in BAT microsomes. The high activity of lipid peroxidation in microsomes, being associated with large oxygen uptake and oxidation of NADPH, will also contribute to the energy dissipation as heat in BAT, considered important in thermogenesis.Abbreviations BAT Brown Adipose Tissue - MDA malondialdehyde  相似文献   

4.
In brown adipose tissue (BAT) adrenaline promotes a rise of the cytosolic Ca(2+) concentration from 0.05 up to 0.70 mum. It is not known how the rise of Ca(2+) concentration activates BAT thermogenesis. In this report we compared the effects of Ca(2+) in BAT and liver mitochondria. Using electron microscopy and immunolabeling we identified a sarco/endoplasmic reticulum (ER) Ca(2+)-ATPase bound to the inner membrane of BAT mitochondria. A Ca(2+)-dependent ATPase activity was detected in BAT mitochondria when the respiratory substrates malate and pyruvate were included in the medium. ATP and Ca(2+) enhanced the amount of heat produced by BAT mitochondria during respiration. The Ca(2+) concentration needed for half-maximal activation of the ATPase activity and rate of heat production were the same and varied between 0.1 and 0.2 mum. Heat production was partially inhibited by the proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone and abolished by thapsigargin, a specific ER Ca(2+)-ATPase inhibitor, and by both rotenone and KCN, two substances that inhibit the electron transfer trough the mitochondrial cytochrome chain. In liver mitochondria Ca(2+) did not stimulate the ATPase activity nor increase the rate of heat production. Thapsigargin had no effect on liver mitochondria. In conclusion, this is the first report of a Ca(2+)-ATPase in mitochondria that is BAT-specific and can generate heat in the presence of Ca(2+) concentrations similar to those noted in the cell during adrenergic stimulation.  相似文献   

5.
Brown adipose tissue (BAT) mitochondria thermogenesis is regulated by uncoupling protein 1 (UCP 1), GDP and fatty acids. In this report, we observed fusion of the endoplasmic reticulum (ER) membrane with the mitochondrial outer membrane of rats BAT. Ca2+-ATPase (SERCA 1) was identified by immunoelectron microscopy in both ER and mitochondria. This finding led us to test the Ca2+ effect in BAT mitochondria thermogenesis. We found that Ca2+ increased the rate of respiration and heat production measured with a microcalorimeter both in coupled and uncoupled mitochondria, but had no effect on the rate of ATP synthesis. The Ca2+ concentration needed for half-maximal activation varied between 0.08 and 0.11 µM. The activation of respiration was less pronounced than that of heat production. Heat production and ATP synthesis were inhibited by rotenone and KCN.Liver mitochondria have no UCP1 and during respiration synthesize a large amount of ATP, produce little heat, GDP had no effect on mitochondria coupling, Ca2+ strongly inhibited ATP synthesis and had little or no effect on the small amount of heat released. These finding indicate that Ca2+ activation of thermogenesis may be a specific feature of BAT mitochondria not found in other mitochondria such as liver.  相似文献   

6.
Summary To assess the thermogenic importance of BAT in Djungarian hamsters we removed about 40% of their BAT and compared their thermogenic abilities before and after the operation. BAT was weighed and assayed for its respiratory properties (Cox, mitochondria). Following removal of BAT we observed considerable reductions of NST. The comparison of NST with BAT weight and with respiratory properties of BAT following partial removal of BAT revealed that at least three different pathways for heat production were involved in NST. In cold-adapted hamsters (values for warm-adapted hamsters in parentheses) we estimated that 66.2% (37.0%) of all NST was produced by mitochondrial respiration in BAT; 16.3% (38.4%) was produced in other organ sites but required the presence of BAT, i.e. there was a mediatory action of BAT on thermogenesis in other organ sites. A further 11.5% (23%) of NST occurred outside of and independent of BAT. Mitochondrial respiration in BAT was the only compartment of NST which increased its contribution during cold adaptation (238 mW to 1,062 mW), whereas the other sources of heat remained largely unchanged.Abbreviations BAT brown adipose tissue - BATex partial removal of brown adipose tissue - BMR basal metabolic rate at thermoneutrality - Cox cytochrome c oxidase - NA noradrenaline - NST nonshivering thermogenesis  相似文献   

7.
In vitro, cytochrome b5 modulates the rate of cytochrome P450-dependent mono-oxygenation reactions. However, the role of this enzyme in determining drug pharmacokinetics in vivo and the consequential effects on drug absorption distribution, metabolism, excretion, and toxicity are unclear. In order to resolve this issue, we have carried out the conditional deletion of microsomal cytochrome b5 in the liver to create the hepatic microsomal cytochrome b5 null mouse. These mice develop and breed normally and have no overt phenotype. In vitro studies using a range of substrates for different P450 enzymes showed that in hepatic microsomal cytochrome b5 null NADH-mediated metabolism was essentially abolished for most substrates, and the NADPH-dependent metabolism of many substrates was reduced by 50-90%. This reduction in metabolism was also reflected in the in vivo elimination profiles of several drugs, including midazolam, metoprolol, and tolbutamide. In the case of chlorzoxazone, elimination was essentially unchanged. For some drugs, the pharmacokinetics were also markedly altered; for example, when administered orally, the maximum plasma concentration for midazolam was increased by 2.5-fold, and the clearance decreased by 3.6-fold in hepatic microsomal cytochrome b5 null mice. These data indicate that microsomal cytochrome b5 can play a major role in the in vivo metabolism of certain drugs and chemicals but in a P450- and substrate-dependent manner.  相似文献   

8.
Umbilical cord compression (UCC) sufficient to reduce umbilical blood flow by 30% for 3 days, results in increased fetal plasma cortisol and catecholamines that are likely to promote maturation of the fetal lung and brown adipose tissue (BAT). We determined the effect of UCC on the abundance of uncoupling protein (UCP)1 (BAT only) and -2, glucocorticoid receptor (GR), and 11beta-hydroxysteroid dehydrogenase (11beta-HSD)1 and -2 mRNA, and mitochondrial protein voltage-dependent anion channel (VDAC) and cytochrome c in these tissues. At 118 +/- 2 days of gestation (dGA; term approximately 145 days), 14 fetuses were chronically instrumented. Eight fetuses were then subjected to 3 days of UCC from 125 dGA, and the remaining fetuses were sham operated. All fetuses were then exposed to two 1-h episodes of hypoxemia at 130 +/- 1 and 134 +/- 1 dGA before tissue sampling at 137 +/- 2 dGA. In both tissues, UCC upregulated UCP2 and GR mRNA, plus VDAC and cytochrome c mitochondrial proteins. In lung, UCC increased 11beta-HSD1 mRNA but decreased 11beta-HSD2 mRNA abundance, a pattern reversed for BAT. UCC increased UCP1 mRNA and its translated protein in BAT. UCP2, GR, 11beta-HSD1 and -2 mRNA, plus VDAC and cytochrome c protein abundance were all significantly correlated with fetal plasma cortisol and catecholamine levels, but not thyroid hormone concentrations, in the lung and BAT of UCC fetuses. In conclusion, chronic UCC results in precocious maturation of the fetal lung and BAT mitochondria, an adaptation largely mediated by the surge in fetal plasma cortisol and catecholamines that accompanies UCC.  相似文献   

9.
  • (1)To investigate the changes of brown adipose tissue (BAT) thermogenic capacity in primiparous Brandt's voles during different phases of reproduction, BAT weight, mitochondrial protein concentration, cytochrome c oxidase (COX) activity, and uncoupling protein (UCP1) contents were measured.
  • (2)Both cytochrome c oxidase activity and UCP1 contents decreased significantly during lactation, suggesting that thermogenic capacity was suppressed.
  • (3)The decrease of thermogenic capacity during reproduction, especially during lactation, is compensation to the large demand of energy for reproduction. This is advantageous for energy conservation and lactation in Brandt's voles. UCP1 is the base of molecular thermogenesis of BAT in Brandt's voles.
  相似文献   

10.
We studied the influence of light-dark (L:D) cycle reversal on daily variations in the brown adipose tissue (BAT) capacity for nonshivering thermogenesis (NST) in Siberian hamsters (Phodopus sungorus). Continuous and simultaneous measurements of BAT temperature (T(BAT)) and preferred ambient temperature (PT(a)) were made after noradrenaline (NA) injections administered every 4 hr. First, hamsters were acclimated for 4 weeks to an ambient temperature (T(a)) of 23 degrees C and 12L:12D, and then to a reversed photoschedule 12D:12L for 8 weeks. The same was done after a 4- and 8-week acclimation period at the same T(a). We found that after photoschedule reversal, the re-entrainment of T(BAT) and PT(a) rhythms preceded re-entrainment of the NST rhythm. The daily rhythms of T(BAT) and PT(a) were fully re-entrained after 4 weeks of acclimation to the reversed photoschedule, but rhythmicity of the response to NA disappeared. This rhythm was restored in hamsters acclimated to a reversed photoschedule for 8 weeks. We suggest that the daily rhythm of NST capacity is not responsible for generating the rhythm of body temperature (T(b)). Rather, it is a result of the daily rhythm of T(b), but adjusts to the new environment more slowly than the T(b) rhythm. When a daily rhythm of NST was present, the increase in T(BAT) after NA injection was inversely correlated with the pre-injection T(BAT). In addition, NA-induced changes in PT(a) reflected the intensity of NST in BAT; namely, increased T(BAT) was correlated with the post-injection decrease in PT(a). When the increase in T(BAT) was large, animals chose a lower T(a) to dissipate excessive heat and prevent overheating. In the course of the experiments, we recorded a decreased mean NST capacity and increased body mass of hamsters. These changes are representative of the time of photorefractoriness and a transition to a summer status. Despite prolonged exposure to an intermediate day length (12 hr of light) and photoschedule reversal, hamsters continued to change towards their summer condition and were able to acclimate to the new D:L cycle.  相似文献   

11.
1. The consequences of essential fatty acid (EFA) deficiency on the resting metabolism, food efficiency and brown adipose tissue (BAT) thermogenic activity were examined in rats maintained at thermal neutrality (28 C). 2. Weanling male Long-Evans rats were fed a hypolipidic semi-purified diet (control diet: 2% sunflower oil; EFA-deficient diet: 2% hydrogenated coconut oil) for 9 weeks. 3. They were kept at 28 C for the last 5 weeks. Compared to controls, in EFA-deficient rats the growth shortfall reached 21% at killing. 4. As food intake was the same in EFA-deficient and control rats, food efficiency was thus decreased by 40%. 5. Resting metabolism expressed per surface unit was 15% increased. 6. Non-renal water loss was increased by 88%. 7. BAT weight was 28% decreased but total and mitochondrial proteins were not modified. 8. Heat production capacity, tested by GDP binding per BAT was 69% increased in BAT of deficient rats. 9. The stimulation of BAT was established by two other tests: GDP inhibition of mitochondrial O2 consumption and swelling of mitochondria. 10. It is suggested that the observed enhancement of resting metabolism in EFA-deficient rats is, in part, due to an activation of heat production in BAT.  相似文献   

12.
Changes in total weight, protein content and activity of cytochrome oxidase have been followed in the brown adipose tissue (BAT) of golden hamsters, white mice and white rats adapted to various temperatures. Important interspecies differences have been detected. The weight and the cytochrome oxidase activity of the BAT of the white mouse changes little under the influence of different adaptational temperatures, whereas in the white rat and in the golden hamster a decrease of adaptational temperature considerably increases the total weight, protein content and cytochrome oxidase activity of this organ. Different adaptational temperatures induce variable effects on the BAT of the golden hamster. Mild cold stimuli favour the accumulation of proteins and of oxidative enzymes, in particular. Severe cold stress also induces growth processes, so that the weight of the BAT increases proportionally to the total body weight of animals. The metabolic capacity of the BAT, measured as total cytochrome oxidase activity, changes substantially with decreasing temperature of adaptation in all species studied, increasing twice, six times and almost twelve times in the mouse, rat and golden hamster, respectively.  相似文献   

13.
The effect of exercise training on brown adipose tissue (BAT) thermogenesis was studied by measuring cytochrome oxidase activity, as a marker of mitochondrial abundance, mitochondrial guanosine-5'-diphosphate (GDP) binding, as an indicator of thermogenic activity and oxygen consumption in BAT in ovariectomized (OVX) obese rats and sham-operated rats. Six-week exercise training significantly suppressed body weight gain in OVX rats to the level of sedentary control rats, although food intake in exercise trained OVX rats increased more than in the sedentary OVX rats. Exercise training increased cytochrome oxidase activity, mitochondrial GDP binding and oxygen consumption in BAT in OVX rats, which were reduced in a sedentary condition, as well as in the control rats. These results suggest that exercise training potentiates BAT thermogenesis, which may contribute to the reduction of body weight in OVX obese rats.  相似文献   

14.
Brown adipose tissue (BAT) physiology and imaging have recently attracted considerable attention. BAT is characterized both by enhanced perfusion and increased mitochondrial activity. (99m)Tc-sestamibi is a lipophilic cationic tracer that concentrates in mitochondria. Data on the accumulation of (99m)Tc-sestamibi in BAT are currently lacking. This study investigates the in vivo (99m)Tc-sestamibi uptake in rat BAT. (99m)Tc-sestamibi was administered in male Wistar rats of various age and body size. (99m)Tc-sestamibi uptake was measured in vitro in BAT and white fat (WF) together with cytochrome c oxidase activity. Both (99m)Tc-sestamibi uptake and cytochrome c oxidase activity were higher in BAT than in WF (P<0.05). (99m)Tc-Sestamibi uptake in both BAT and WF was negatively related to body weight (r = -0.96 and -0.89, respectively) as was the BAT/WF uptake ratio (r = -0.85). These data show a higher (99m)Tc-sestamibi uptake in BAT compared to WF, in agreement with the high mitochondrial content and respiratory activity of the former. The strong negative correlation between (99m)Tc-sestamibi uptake in BAT and body weight (negative allometry), is in accordance to increased needs of thermogenesis in smaller animals. Implications of increased (99m)Tc-sestamibi uptake in BAT in radionuclide imaging are also discussed.  相似文献   

15.
16.
布氏田鼠胎后发育过程中褐色脂肪组织和肝脏的产热特征   总被引:2,自引:2,他引:0  
为探讨布氏田鼠胎后恒温能力的发育过程,本文测定了1、5、9、17、21、33 和41 日龄幼体的褐色脂肪组织(BAT)和肝脏的重量、线粒体蛋白含量和细胞色素c氧化酶(COX) 的活性。布氏田鼠胎后发育期间BAT 增补明显,主要表现为重量的增加和单位组织重量COX 活性的升高等,属典型的晚成型发育特征。布氏田鼠胎后发育过程中BAT 和肝脏产热特征的变化与幼体的产热特点和恒温能力的发育是相一致的。  相似文献   

17.
Intestinal chemosensory signaling pathways involving the gustatory G-protein, gustducin, and bitter taste receptors (TAS2R) have been implicated in gut hormone release. Alterations in gut hormone profiles may contribute to the success of bariatric surgery. This study investigated the involvement of the gustatory signaling pathway in the development of diet-induced obesity and the therapeutic potential of targeting TAS2Rs to induce body weight loss. α-gustducin-deficient (α-gust-/-) mice became less obese than wild type (WT) mice when fed a high-fat diet (HFD). White adipose tissue (WAT) mass was lower in α-gust-/- mice due to increased heat production as a result of increases in brown adipose tissue (BAT) thermogenic activity, involving increased protein expression of uncoupling protein 1. Intra-gastric treatment of obese WT and α-gust-/- mice with the bitter agonists denatonium benzoate (DB) or quinine (Q) during 4 weeks resulted in an α-gustducin-dependent decrease in body weight gain associated with a decrease in food intake (DB), but not involving major changes in gut peptide release. Both WAT and 3T3-F442A pre-adipocytes express TAS2Rs. Treatment of pre-adipocytes with DB or Q decreased differentiation into mature adipocytes. In conclusion, interfering with the gustatory signaling pathway protects against the development of HFD-induced obesity presumably through promoting BAT activity. Intra-gastric bitter treatment inhibits weight gain, possibly by directly affecting adipocyte metabolism.  相似文献   

18.
The role of insulin in norepinephrine turnover (NE) and thermogenesis in brown adipose tissue (BAT) after acute cold-exposure was studied using streptozocin (STZ)-induced diabetic rats. NE turnover was estimated by the NE synthesis inhibition technique with alpha-methyl-p-tyrosine. BAT thermogenesis was estimated by measuring mitochondrial guanosine-5'-diphosphate (GDP), cytochrome oxidase activity and mitochondrial oxygen consumption in BAT at an ambient temperature of 22 degrees C and during a six-hour cold-exposure at 4 degrees C. In insulin-deficient diabetic rats, the NE turnover, mitochondrial GDP binding, cytochrome oxidase activity and mitochondrial oxygen consumption in BAT at 22 degrees C were significantly reduced, compared with those of control rats. Treatment of STZ-induced diabetic rats with insulin prevented a decrease in NE turnover and BAT thermogenesis. Acute cold-exposure increased the NE turnover of BAT in insulin-deficient diabetic rats. The BAT thermogenic response to acute cold-exposure, however, did not occur in insulin-deficient diabetic rats. These results suggest that insulin is not essential in potentiating NE turnover in BAT after acute cold-exposure, but is required for cold-induced thermogenesis.  相似文献   

19.
20.
The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylation. The conversion of CYP6A1 to its P420 form was decreased by the addition of apo-b5. The effects of cytochrome b5 may involve allosteric modification of the P450 enzyme that modify the conformation of the active site. The overall stoichiometry of the P450 reaction was substrate-dependent. High uncoupling of CYP6A1 was observed with generation of hydrogen peroxide, in excess over the concomitant testosterone hydroxylation or heptachlor epoxidation. Inclusion of cytochrome b5 in the reconstituted system improved efficiency of oxygen consumption and electron utilization from NADPH, or coupling of the P450 reaction. Depending on the reconstitution conditions, coupling efficiency varied from 8 to 25% for heptachlor epoxidation, and from 11 to 70% for testosterone hydroxylation. Because CYP6A1 is a P450 involved in insecticide resistance, this suggests that xenobiotic metabolism by constitutively overexpressed P450s may be linked to significant oxidative stress in the cell that may carry a fitness cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号