首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tubulin Code   总被引:1,自引:0,他引:1  
Microtubules create diverse arrays with specific cellular functions such as the mitotic spindle, cilia, and bundles inside neurons. How microtubules are regulated to enable specific functions is not well understood. Recent work has shown that posttranslational modifications of the tubulin building blocks mark subpopulations of microtubules and regulate downstream microtubule-based functions. In this way, the tubulin modifications generate a “code” that can be read by microtubule-associated proteins in a manner analogous to how the histone code directs diverse chromatin functions. Here we review recent progress in understanding how the tubulin code is generated, maintained, and read by microtubule effectors.  相似文献   

2.
3.
This review discusses the role of microtubules in the formation of processes from neuronal and non-neuronal cells. In elongating axons of the neuron, tubulin molecules are transported toward the end of pre-existing microtubules, which may be nucleated at the centrosome, via a mechanism called slow axonal flow. Two different hypotheses are presented to explain this mechanism; the transport of soluble monomers and/or oligomers versus the transport of polymerized microtubules. The majority of tubulin seems to be transported as small oligomers as shown by the data presented so far. Alternatively, an active transport of polymerized microtubules driven by microtubule-based motor proteins is postulated as being responsible for the non-uniform polarity of microtubule bundles in dendrites of the neuron. Microtubule-associated proteins (MAPs) play a crucial role in stabilizing the microtubular arrays, whereas the non-uniform polarity of microtubules may be established with the aid of microtubule-based motor proteins. The signals activating centrosomal proteins and MAPs, resulting in process formation, include phosphorylation and dephosphorylation of these proteins. Not only neuronal cells, but also renal glomerular podocytes develop prominent cell processes equipped with well-organized microtubular cytoskeletons, and intermediate and actin filaments. A novel cell culture system for podocytes, in which process formation can be induced, should provide further evidence that microtubules play a pivotal role in process formation of non-neuronal cells.  相似文献   

4.
The microtubular cytoskeleton of plant cells provides support for several functions (including the anchoring of proteins, assembly of the mitotic spindle, cytoplasmic streaming and construction of cell walls). Both α‐ and β‐tubulins are encoded through multigene families that are differentially expressed in different organs and tissues. To increase the variability of expression, both protein subunits are subjected to post‐translational modifications, which could contribute to the assembly of specific microtubule structures. This review aims to highlight the role of specific post‐translational modifications of tubulin in plant cells. We initially describe the expression and accumulation of α‐ and β‐tubulin isoforms in different plants and at different stages of plant development. Second, we discuss the different types of post‐translational modifications that, by adding or removing specific functional groups, increase the isoform heterogeneity and functional variability of tubulin. Modifications are proposed to form a ‘code’ that can be read by proteins interacting with microtubules. Therefore, the subpopulations of microtubules may bind to different associated proteins (motor and non‐motor), thus creating the physical support for various microtubule functions.  相似文献   

5.
In higher organisms, there is a large variety of tubulin isoforms, due to multiple tubulin genes and extensive post-translational modification. The properties of microtubules may be modulated by their tubulin isoform composition. Polyglutamylation is a post-translational modification that is thought to influence binding of both structural microtubule associated proteins (MAPs) and mechano-chemical motors to tubulin. The present study investigates the role of tubulin polyglutamylation in a vesicle transporting system, cod (Gadus morhua) melanophores. We did this by microinjecting an antibody against polyglutamylated tubulin into these cells. To put our results into perspective, and to be able to judge their universal application, we characterized cod tubulin polyglutamylation by Western blotting technique, and compared it to what is known from mammals. We found high levels of polyglutamylation in tissues and cell types whose functions are highly dependent on interactions between microtubules and motor proteins. Microinjection of the anti-polyglutamylation antibody GT335 into cultured melanophores interfered with pigment granule dispersion, while dynein-dependent aggregation was unaffected. Additional experiments showed that GT335-injected cells were able to aggregate pigment even when actin filaments were depolymerized, indicating that the maintained ability of pigment aggregation in these cells was indeed microtubule-based and did not depend upon actin filaments. The results indicate that dynein and the kinesin-like dispersing motor protein in cod melanophores bind to tubulin on slightly different sites, and perhaps depend differentially on polyglutamylation for their interaction with microtubules. The binding site of the dispersing motor may bind directly to the polyglutamate chain, or more closely than dynein.  相似文献   

6.
Microtubules are hollow tubes essential for many cellular functions such as cell polarization and migration, intracellular trafficking and cell division. They are polarized polymers composed of α and β tubulin that are, in most cells, nucleated at the centrosome at the center of the cell. Microtubule plus-ends are oriented towards the periphery of the cell and explore the cytoplasm in a very dynamic manner. Microtubule alternate between phases of growth and shrinkage in a manner described as dynamic instability. Their dynamics is highly regulated by multiple factors: tubulin post-translational modifications such as detyrosination or acetylation, and microtubule-associated proteins, among them the plus-tip tracking proteins. This regulation is necessary for microtubule functions in the cell. In this review, we will focus on the role of microtubules in intracellular organization. After an overview of the mechanisms responsible for the regulation of microtubule dynamics, the major roles of microtubules dynamics in organelle positioning and organization in interphase cells will be discussed. Conversely, the role of certain organelles, like the nucleus and the Golgi apparatus as microtubule organizing centers will be reviewed. We will then consider the role of microtubules in the establishment and maintenance of cell polarity using few examples of cell polarization: epithelial cells, neurons and migrating cells. In these cells, the microtubule network is reorganized and undergoes specific and local regulation events; microtubules also participate in the intracellular reorganization of different organelles to ensure proper cell differentiation.  相似文献   

7.
Post-translational modifications to tubulin are important for many microtubule-based functions inside cells. It was recently shown that methylation of tubulin by the histone methyltransferase SETD2 occurs on mitotic spindle microtubules during cell division, with its absence resulting in mitotic defects. However, the catalytic mechanism of methyl addition to tubulin is unclear. We used a truncated version of human wild type SETD2 (tSETD2) containing the catalytic SET and C-terminal Set2–Rpb1–interacting (SRI) domains to investigate the biochemical mechanism of tubulin methylation. We found that recombinant tSETD2 had a higher activity toward tubulin dimers than polymerized microtubules. Using recombinant single-isotype tubulin, we demonstrated that methylation was restricted to lysine 40 of α-tubulin. We then introduced pathogenic mutations into tSETD2 to probe the recognition of histone and tubulin substrates. A mutation in the catalytic domain (R1625C) allowed tSETD2 to bind to tubulin but not methylate it, whereas a mutation in the SRI domain (R2510H) caused loss of both tubulin binding and methylation. Further investigation of the role of the SRI domain in substrate binding found that mutations within this region had differential effects on the ability of tSETD2 to bind to tubulin versus the binding partner RNA polymerase II for methylating histones in vivo, suggesting distinct mechanisms for tubulin and histone methylation by SETD2. Finally, we found that substrate recognition also requires the negatively charged C-terminal tail of α-tubulin. Together, this study provides a framework for understanding how SETD2 serves as a dual methyltransferase for both histone and tubulin methylation.  相似文献   

8.
Tubulin undergoes posttranslational modifications proposed to specify microtubule subpopulations for particular functions. Most of these modifications occur on the C-termini of tubulin and may directly affect the binding of microtubule-associated proteins (MAPs) or motors. Acetylation of Lys-40 on α-tubulin is unique in that it is located on the luminal surface of microtubules, away from the interaction sites of most MAPs and motors. We investigate whether acetylation alters the architecture of microtubules or the conformation of tubulin, using cryo–electron microscopy (cryo-EM). No significant changes are observed based on protofilament distributions or microtubule helical lattice parameters. Furthermore, no clear differences in tubulin structure are detected between cryo-EM reconstructions of maximally deacetylated or acetylated microtubules. Our results indicate that the effect of acetylation must be highly localized and affect interaction with proteins that bind directly to the lumen of the microtubule. We also investigate the interaction of the tubulin acetyltransferase, αTAT1, with microtubules and find that αTAT1 is able to interact with the outside of the microtubule, at least partly through the tubulin C-termini. Binding to the outside surface of the microtubule could facilitate access of αTAT1 to its luminal site of action if microtubules undergo lateral opening between protofilaments.  相似文献   

9.
Bundles of microtubules occur adjacent to ectoplasmic specializations (ESs) that line Sertoli cell crypts and support developing spermatids. These microtubules are oriented parallel to the direction of spermatid movement during spermatogenesis. We propose a model in which ESs function as vehicles, and microtubules as tracks, for microtubule-based transport of spermatids through the seminiferous epithelium. Microtubule polarity provides the basis for the direction of force generation by available mechanoenzymes. As part of a more general study designed to investigate the potential role of microtubule-based transport during spermatogenesis, we have studied the polarity of cytoplasmic microtubules of Sertoli cells. Rat testis blocks were incubated in a lysis/decoration buffer, with and without exogenous purified bovine brain tubulin. This treatment results in the decoration of endogenous microtubules with curved tubulin protofilament sheets (seen as hooks in cross section). The direction of curvature of the hooks indicates microtubule polarity; that is, clockwise hooks are seen when viewing microtubules from the plus to the minus end. We found that, in Sertoli cells, most of the hooks were orientated in the same direction. Significantly, when viewed from the base of the epithelium, hooks pointed in a clockwise direction. The clockwise direction of dynein arms on axonemes of sperm tails, in the same section, provided an internal check of the section orientation. Electron micrographs of fields of seminiferous epithelium were assembled into montages for quantitative analysis of microtubule polarity. Our data indicate that Sertoli cell cytoplasmic microtubules are of uniform polarity and are orientated with their minus ends toward the cell periphery. These observations have significant implications for our proposed model of microtubule-based transport of spermatids through the seminiferous epithelium.  相似文献   

10.
Half a century of biochemical and biophysical experiments has provided attractive models that may explain the diverse functions of microtubules within cells and organisms. However, the notion of functionally distinct microtubule types has not been explored with similar intensity, mostly because mechanisms for generating divergent microtubule species were not yet known. Cells generate distinct microtubule subtypes through expression of different tubulin isotypes and through post-translational modifications, such as detyrosination and further cleavage to Δ2-tubulin, acetylation, polyglutamylation and polyglycylation. The recent discovery of enzymes responsible for many tubulin post-translational modifications has enabled functional studies demonstrating that these post-translational modifications may regulate microtubule functions through an amazing range of mechanisms.  相似文献   

11.
It is well established that microtubules interact with intracellular membranes of eukaryotic cells. There is also evidence that tubulin, the major subunit of microtubules, associates directly with membranes. In many cases, this association between tubulin and membranes involves hydrophobic interactions. However, neither primary sequence nor known posttranslational modifications of tubulin can account for such an interaction. The goal of this study was to determine the molecular nature of hydrophobic interactions between tubulin and membranes. Specifically, I sought to identify a posttranslational modification of tubulin that is found in membrane proteins but not in cytoplasmic proteins. One such modification is the covalent attachment of the long chain fatty acid palmitate. The possibility that tubulin is a substrate for palmitoylation was investigated. First, I found that tubulin was palmitoylated in resting platelets and that the level of palmitoylation of tubulin decreased upon activation of platelets with thrombin. Second, to obtain quantities of palmitoylated tubulin required for protein structure analysis, a cell-free system for palmitoylation of tubulin was developed and characterized. The substrates for palmitoylation were nonpolymerized tubulin and tubulin in microtubules assembled with the slowly hydrolyzable GTP analogue guanylyl-(alpha, beta)-methylene-diphosphonate. However, tubulin in Taxol-assembled microtubules was not a substrate for palmitoylation. Likewise, palmitoylation of tubulin in the cell-free system was specifically inhibited by the antimicrotubule drugs Colcemid, podophyllotoxin, nocodazole, and vinblastine. These experiments identify a previously unknown posttranslational modification of tubulin that can account for at least one type of hydrophobic interaction with intracellular membranes.  相似文献   

12.
13.
Polarized transport by microtubule-based motors is critical for neuronal development and function. Selective translocation of the Kinesin-1 motor domain is the earliest known marker of axonal identity, occurring before morphological differentiation. Thus, Kinesin-1–mediated transport may contribute to axonal specification. We tested whether posttranslational modifications of tubulin influence the ability of Kinesin-1 motors to distinguish microtubule tracks during neuronal development. We detected no difference in microtubule stability between axons and minor neurites in polarized stage 3 hippocampal neurons. In contrast, microtubule modifications were enriched in a subset of neurites in unpolarized stage 2 cells and the developing axon in polarized stage 3 cells. This enrichment correlated with the selective accumulation of constitutively active Kinesin-1 motors. Increasing tubulin acetylation, without altering the levels of other tubulin modifications, did not alter the selectivity of Kinesin-1 accumulation in polarized cells. However, globally enhancing tubulin acetylation, detyrosination, and polyglutamylation by Taxol treatment or inhibition of glycogen synthase kinase 3β decreased the selectivity of Kinesin-1 translocation and led to the formation of multiple axons. Although microtubule acetylation enhances the motility of Kinesin-1, the preferential translocation of Kinesin-1 on axonal microtubules in polarized neuronal cells is not determined by acetylation alone but is probably specified by a combination of tubulin modifications.  相似文献   

14.
Two Drosophila beta tubulin isoforms are not functionally equivalent   总被引:10,自引:1,他引:9       下载免费PDF全文
We have tested the functional capacity of different beta tubulin isoforms in vivo by expressing beta 3-tubulin either in place of or in addition to beta 2-tubulin in the male germ line of Drosophila melanogaster. The testes-specific isoform, beta 2, is conserved relative to major metazoan beta tubulins, while the developmentally regulated isoform, beta 3, is considerably divergent in sequence. beta 3-tubulin is normally expressed in discrete subsets of cells at specific times during development, but is not expressed in the male germ line. beta 2-Tubulin is normally expressed only in the postmitotic germ cells of the testis, and is required for all microtubule-based functions in these cells. The normal functions of beta 2-tubulin include assembly of meiotic spindles, axonemes, and at least two classes of cytoplasmic microtubules, including those associated with the differentiating mitochondrial derivatives. A hybrid gene was constructed in which 5' sequences from the beta 2 gene were joined to protein coding and 3' sequences of the beta 3 gene. Drosophila transformed with the hybrid gene express beta 3-tubulin in the postmitotic male germ cells. When expressed in the absence of the normal testis isoform, beta 3-tubulin supports assembly of one class of functional cytoplasmic microtubules. In such males the microtubules associated with the membranes of the mitochondrial derivatives are assembled and normal mitochondrial derivative elongation occurs, but axoneme assembly and other microtubule-mediated processes, including meiosis and nuclear shaping, do not occur. These data show that beta 3 tubulin can support only a subset of the multiple functions normally performed by beta 2, and also suggest that the microtubules associated with the mitochondrial derivatives mediate their elongation. When beta 3 is coexpressed in the male germ line with beta 2, at any level, spindles and all classes of cytoplasmic microtubules are assembled and function normally. However, when beta 3-tubulin exceeds 20% of the total testis beta tubulin pool, it acts in a dominant way to disrupt normal axoneme assembly. In the axonemes assembled in such males, the doublet tubules acquire some of the morphological characteristics of the singlet microtubules of the central pair and accessory tubules. These data therefore unambiguously demonstrate that the Drosophila beta tubulin isoforms beta 2 and beta 3 are not equivalent in intrinsic functional capacity, and furthermore show that assembly of the doublet tubules of the axoneme imposes different constraints on beta tubulin function than does assembly of singlet microtubules.  相似文献   

15.
Peter Nick 《Protoplasma》2012,249(2):81-94
Plant microtubules have evolved into a versatile tool to link environmental signals into flexible morphogenesis. Cortical microtubules define the axiality of cell expansion by control of cellulose orientation. Plant-specific microtubule structures such as preprophase band and phragmoplast determine symmetry and axiality of cell divisions. In addition, microtubules act as sensors and integrators for stimuli such as mechanic load, gravity, but also osmotic stress, cold and pathogen attack. Many of these functions are specific for plants and involve specific proteins or the recruitment of proteins to new functions. The review aims to ventilate the potential of microtubule-based strategies for biotechnological application by highlighting representative case studies. These include reorientation of cortical microtubules to increase lodging resistance, control of microtubule dynamics to alter the gravity-dependent orientation of leaves, the use of microtubules as sensitive thermometers to improve adaptive cold tolerance of chilling and freezing sensitive plants, the reduction of microtubule treadmilling to inhibit cell-to-cell transport of plant viruses, or the modulation of plant defence genes by pharmacological manipulation of microtubules. The specificity of these responses is controlled by a great variety of specific associated proteins opening a wide field for biotechnological manipulation of plant architecture and stress tolerance.  相似文献   

16.
Assembly of brain microtubule proteins isolated from the Atlantic cod, Gadus morhua, was found to be much less sensitive to colchicine than assembly of bovine brain microtubules, which was completely inhibited by low colchicine concentrations (10 microM). The degree of disassembly by colchicine was also less for cod microtubules. The lack of colchicine effect was not caused by a lower affinity of colchicine to cod tubulin, as colchicine bound to cod tubulin with a dissociation constant, Kd, and a binding ratio close to that of bovine tubulin. Cod brain tubulin was highly acetylated and mainly detyrosinated, as opposed to bovine tubulin. When cod tubulin, purified by means of phosphocellulose chromatography, was assembled by addition of DMSO in the absence of microtubule-associated proteins (MAPs), the microtubules became sensitive to low concentrations of colchicine. They were, however, slightly more stable to disassembly, indicating that posttranslational modifications induce a somewhat increased stability to colchicine. The stability was mainly MAPs dependent, as it increased markedly in the presence of MAPs. The stability was not caused by an extremely large amount of cod MAPs, since there were slightly less MAPs in cod than in bovine microtubules. When "hybrid" microtubules were assembled from cod tubulin and bovine MAPs, these microtubules became less sensitive to colchicine. This was not a general effect of MAPs, since bovine MAPs did not induce a colchicine stability of microtubules assembled from bovine tubulin. We can therefore conclude that MAPs can induce colchicine stability of colchicine labile acetylated tubulin.  相似文献   

17.
With the emergences of engineered devices at microscale and nanoscale dimensions, there is a growing need for controlled actuation and transport at these length scales. The kinesin–microtubule system provides a highly evolved biological transport system well suited for these tasks. Accordingly, there is an ongoing effort to create hybrid nanodevices that integrate biological components with engineered materials for applications such as biological separations, nanoscale assembly, and sensing. Adopting microtubules for these applications generally requires covalent attachment of biotin, fluorophores, or other biomolecules to tubulin enable surface or cargo attachment, or visualization. This review summarizes different strategies for functionalizing microtubules for application-focused as well as basic biological research. These functionalization strategies must maintain the integrity of microtubule proteins so that they do not depolymerize and can be transported by kinesin motors, while adding utility such as the ability to reversibly bind cargo. The relevant biochemical and electrical properties of microtubules are discussed, as well as strategies for microtubule stabilization and long-term storage. Next, attachment strategies, such as antibodies and DNA hybridization that have proven useful to date, are discussed in the context of ongoing hybrid nanodevice research. The review concludes with a discussion of less explored opportunities, such as harnessing the utility of tubulin posttranslational modifications and the use of recombinant tubulin that may enable future progress in nanodevice development.  相似文献   

18.
Post-translational modifications of tubulin in the nervous system   总被引:1,自引:0,他引:1  
Many studies have shown that microtubules (MTs) interact with MT-associated proteins and motor proteins. These interactions are essential for the formation and maintenance of the polarized morphology of neurons and have been proposed to be regulated in part by highly diverse, unusual post-translational modifications (PTMs) of tubulin, including acetylation, tyrosination, detyrosination, Δ2 modification, polyglutamylation, polyglycylation, palmitoylation, and phosphorylation. However, the precise mechanisms of PTM generation and the properties of modified MTs have been poorly understood until recently. Recent PTM research has uncovered the enzymes mediating tubulin PTMs and provided new insights into the regulation of MT-based functions. The identification of tubulin deacetylase and discovery of its specific inhibitors have paved the way to understand the roles of acetylated MTs in kinesin-mediated axonal transport and neurodegenerative diseases such as Huntington's disease. Studies with tubulin tyrosine ligase (TTL)-null mice have shown that tyrosinated MTs are essential in normal brain development. The discovery of TTL-like genes encoding polyglutamylase has led to the finding that polyglutamylated MTs which accumulate during brain development are involved in synapse vesicle transport or neurite outgrowth through interactions with motor proteins or MT-associated proteins, respectively. Here we review current exciting topics that are expected to advance MT research in the nervous system.  相似文献   

19.
Nick P 《Protoplasma》2012,249(Z2):S81-S94
Plant microtubules have evolved into a versatile tool to link environmental signals into flexible morphogenesis. Cortical microtubules define the axiality of cell expansion by control of cellulose orientation. Plant-specific microtubule structures such as preprophase band and phragmoplast determine symmetry and axiality of cell divisions. In addition, microtubules act as sensors and integrators for stimuli such as mechanic load, gravity, but also osmotic stress, cold and pathogen attack. Many of these functions are specific for plants and involve specific proteins or the recruitment of proteins to new functions. The review aims to ventilate the potential of microtubule-based strategies for biotechnological application by highlighting representative case studies. These include reorientation of cortical microtubules to increase lodging resistance, control of microtubule dynamics to alter the gravity-dependent orientation of leaves, the use of microtubules as sensitive thermometers to improve adaptive cold tolerance of chilling and freezing sensitive plants, the reduction of microtubule treadmilling to inhibit cell-to-cell transport of plant viruses, or the modulation of plant defence genes by pharmacological manipulation of microtubules. The specificity of these responses is controlled by a great variety of specific associated proteins opening a wide field for biotechnological manipulation of plant architecture and stress tolerance.  相似文献   

20.
On and Around Microtubules: An Overview   总被引:1,自引:0,他引:1  
Microtubules are hollow tubes some 25 nm in diameter participating in the eukaryotic cytoskeleton. They are built from αβ-tubulin heterodimers that associate to form protofilaments running lengthwise along the microtubule wall with the β-tubulin subunit facing the microtubule plus end conferring a structural polarity. The α- and β-tubulins are highly conserved. A third member of the tubulin family, γ-tubulin, plays a role in microtubule nucleation and assembly. Other members of the tubulin family appear to be involved in microtubule nucleation. Microtubule assembly is accompanied by hydrolysis of GTP associated with β-tubulin so that microtubules consist principally of ‘GDP-tubulin’ stabilized at the plus end by a short ‘cap’. An important property of microtubules is dynamic instability characterized by growth randomly interrupted by pauses and shrinkage. Many proteins interact with microtubules within the cell and are involved in essential functions such as microtubule growth, stabilization, destabilization, and interactions with chromosomes during cell division. The motor proteins kinesin and dynein use microtubules as pathways for transport and are also involved in cell division. Crystallography and electron microscopy are providing a structural basis for understanding the interactions of microtubules with antimitotic drugs, with motor proteins and with plus end tracking proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号