首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rich variety of vertebrate footprints is known from a number of Upper Eocene to Lower Miocene localities of Navarre (western Pyrenees). The sediments were deposited in a wide range of depositional environments, from marginal marine to diversified terrestrial. Abundant bird tracks have been found in the coastal deposits of the Upper Eocene Liedena Sandstone of the Yesa and Itzagaondoa areas. Ciconiiformes-like (Leptoptilostipus pyrenaicus) and Charadriiformes-like (Charadriipeda ichnospp.) footprints have been recognized. Mammal ichnites have been discovered in the Oligocene and Lower Miocene deposits of Navarre. Equoid perissodactyl ichnites similar to those of Plagiolophustipus occur in the Oligocene fluviatile rocks of the Mués Sandstone of Olexoa and the Rocaforte Sandstone near Oibar and Sada. Trackways of entelodontids (Entelodontipus) are known in fluviatile-palustrine beds of the Oligocene Mués Sandstone of Olkotz. Additionally, bird (Charadriiformes-like) tracks are known in fluviatile-palustrine floodplain deposits of the Lower Miocene Ujué Formation of Los Arcos. In the same area, the Desoio and Los Arcos outcrops have also yielded perissodactyl trackways of possible Equoidea. Trackways of rhinocerotids (?) and artiodactyls (possibly Pecoripeda) are described from the Lower Miocene (Ramblian) palustrine limestones marginal to the Lerín Formation of Kaparroso and from alluvial fan deposits of the Uncastillo-Perdón Formation of Altzorritz, respectively.  相似文献   

2.
The Paleocene–Eocene Taleh Zang Formation of the Zagros Basin is a sequence of shallow-water carbonates. We have studied carbonate platform, sedimentary environments and its changes based on the facies analysis with particular emphasis on the biogenic assemblages of the Late Paleocene Sarkan and Early Eocene Maleh kuh sections. In the Late Paleocene, nine microfacies types were distinguished, dominated by algal taxa and corals at the lower part and larger foraminifera at the upper part. The Lower Eocene section is characterised by 10 microfacies types, which are dominated by diverse larger foraminifera such as alveolinids, orbitolitids and nummulitids. The Taleh Zang Formation at the Sarkan and Maleh kuh sections represents sedimentation on a carbonate ramp.

The deepening trends show a gradual increase in perforate foraminifera, the deepest environment is marked by the maximum occurrence of perforate foraminifers (Nummulites), while the shallowing trends are composed mainly of imperforate foraminifera and also characterised by lack of fossils in tidal flat facies.

Based on the facies changes and platform evolution, three stages are assumed in platform development: I; algal and coralgal colonies (coralgal platform), II; coralgal reefs giving way to larger foraminifera, III; dominance of diverse and newly developing larger foraminifera lineages in oligotrophic conditions.  相似文献   

3.
Abstract

Integrated ichnology, sedimentology and sequence stratigraphy of the Lower Quartzite Member to the Arkosic Sandstone Member of the Koti Dhaman Formation (Cambrian Series 2, Stage 4), Tal Group, Nigali Dhar Syncline, Lesser Himalayan lithotectonic zone are presented. Trilobite traces of Gondwanan affinity i.e., Cruziana salomonis, Cruziana fasciculata, Rusophycus dispar and Rusophycus burjensis are recorded along with Arenicolites isp. and Skolithos isp. from the Lower Quartzite Member. A rich and diverse ichnoassemblage attributed to the Cruziana ichnofacies is described for the first time from the Arkosic Sandstone Member of the same formation. Seven ichnofossil assemblages, i.e., Cruziana-Rusophycus, Planolites-Palaeophycus, Cruziana problematica, Diplichnites, Cochlichnus anguineus, Bergaueria perata and Psammichnites gigas have been recognized in the Lower Quartzite to Arkosic Sandstone members of the Koti Dhaman Formation. Seven sedimentary facies i.e., sandstone–shale facies (FT1), cross-bedded (trough and planar) sandstone (FT2), bedded sandstone facies (FT3), shale facies (FT4), shale–sandstone facies (FT5), shale-rippled sandstone facies (FT6) and planar and trough cross-laminated sandstone (FT7) and four facies associations FA1-FA4 are identified in the Koti Dhaman Formation. The formation contains shallowing upward parasequences of a tidal flat complex. Overall, two major events are recognized: i) the break in sedimentation between the Lower Quartzite Member and the overlying Shale Member probably related to forced-regressive event and ii) the facies shift from FT6 to FT7 of the Arkosic Sandstone Member represents an erosive transgressive event; the surface is interpreted as wave ravinement surface, which also serves as a sequence boundary. Integrated ichnology, sedimentology and sequence stratigraphic studies indicate that the Lower Quartzite Member was deposited in a shallow subtidal sand sheet complex and tidal flat complex; the Shale Member was deposited in a mud flat setting of a tidal flat complex, and the Arkosic Sandstone Member in a mixed-flat (tidal flat complex) to sand sheet complex front and margin (subtidal sand sheet complex). Overall, the lower to middle part of the Koti Dhaman Formation represents a tide-dominated shallow subtidal–intertidal to mud-flat subenvironments of the tidal flat complex. A palaeogeographic reconstruction of lower Cambrian (516–514?Ma) is presented based on the distribution of trilobite traces from the Lesser Himalaya and the Bikaner–Nagaur area of Peninsular India (eastern Gondwana), Egypt, Jordan, Turkey (western Gondwana) and Canada (Avalonia).  相似文献   

4.
The Late Precambrian Porsanger Dolomite Formation, occurring beneath the Varanger tillite in Arctic Norway, consists of various dolomitic lithofacies of subtidal, intertidal and supratidal environments. The lithofacies belong to three facies associations, A, B and C, which are repeated several times in the sequence. Facies association A comprises cryptalgal laminites, dolomicrites and thin-bedded grainstones and flakestones. The environment represented by this facies is broadly intertidal (locally supratidal) flat, with the interbedded carbonate sands representing storm deposits. Facies association B, of shallow subtidal to low intertidal origin, comprises cross-bedded carbonate sands (flakestones, grainstones and oolites) forming units up to 10 m thick. Small stromatolite bioherms (5 m wide, 2 m high) are locally developed within these “high-energy” deposits. Facies association C formed in a subtidal environment consists of laterally extensive (over 20 km) uniformly developed stromatolite biostromes, up to 16 m thick. The biostromes, locally divided by channels filled with grainstones and intraformational conglomerates, are composed of cylindrical and turbinate columnar (SH-V and SH-C) and digitate stromatolites (Gymnosolen, Inseria and Tungussia) in their lower parts. Larger, bulbous (SH-C and LLH-C) and conical (Conophyton) stromatolites occur in the upper parts, as well as the branching conophyte, Jacutophyton.All of the biostromes are always developed above cross-bedded carbonate sands (facies association B). A broadly symmetrical cyclic pattern, A B C B A, of tidal flat deposits (facies association A) passing up into carbonate sands (B), into biostrome (C), overlain by carbonate sands (B) and then tidal flat deposits (A), is repeated four times in the Porsanger Dolomite sequence. The pattern is interpreted in terms of two controls on sedimentation: (1) a slow transgressive phase followed by (2) depositional regression. The former (1) took place either through eustatic sea-level rise or more likely through accelerated subsidence because of tectonic instability and compaction of underlying sediments. This resulted in the sequence: tidal flat sediments, low intertidal/shallow subtidal carbonate sands, subtidal biostrome (A, B, C). Depositional regression through prograding tidal flats, generated the shoaling upward part of the cycle: biostrome, carbonate sands, tidal flat sediments (C, B, A).  相似文献   

5.
The shallow carbonate facies at the top of the Yacoraite Formation (Late Cretaceous–Early Palaeocene) in the Metán sub‐basin, Salta Basin (Cretaceous‐Eocene), northern Argentina, have domal stromatolitic boundstones with peculiar cavities, interpreted here as bioclaustrations. The cavities appear to have been produced by organisms that lived within the microbial mat contemporarily with its growth, producing a distinctive ichnofabric. This is the oldest reported record of bioclaustrations in stromatolites, and the first in shallow marine environments. The interpretation of the facies suggests a stressed shallow, restricted setting with variations in salinity, represented by an intertidal environment with an extensive tidal flat. Bioclaustrations, stromatolites, endobiont Yacoraite Formation (Cretaceous‐Palaeogene), Northwestern Argentina.  相似文献   

6.
The Solen 98 well corresponds to the limestones of the Lower Tithonian Cazals Formation (Gigas Zone). The iterative succession of six sedimentary terms expresses a cyclic peritidal dynamic. Limited by two emersion surfaces, each sequence evolves from an upper subtidal lagoon to a tidal flat, upper intertidal or supratidal environment, and ends with open sea depositional bioclastic and oolitic shoals deposits. Hierarchical ascendant classification applied to palynological data define 6 palynofacies types associated with different depositional facies. Type 1, characterizing open marine deposits, shows a diversified and balanced assemblage. The blade-shape woody particles are abundant and the amorphous organic matter is absent. Types 2 and 3 are linked to lagoonal and skeletal shoals deposits. Then microfossil population is dominated by Corculodinium or long-spine Micrhystridium. The Shannon-Weaver and the equitability indices are moderate. Type 4 is associated with the upper tidal flat, lagoonal and skeletal shoal deposits. When microfossils are present, the algal assemblages are more balanced than in type 5. This type, observed in all the palaeo-environments except the open marine, is enriched in elements attributed to the Hyalinsphaeridia complex. The marine component assemblages are balanced. The amorphous organic matter is relatively abundant and the oxydized woody particles absent. Type 6, mainly composed of amorphous organic matter and phytoclasts, is principally associated with the stromatolitic facies of tidal flat deposits. The example of the Solen 98 well, shows that hierarchical ascendant classification method is well suited for identification of palynofacies  相似文献   

7.
On the basis of thin-section studies of cuttings and a core from two wells in the Amapá Formation of the Foz do Amazonas Basin, five main microfacies have been recognized within three stratigraphic sequences deposited during the Late Paleocene to Early Eocene. The facies are: 1) Ranikothalia grainstone to packstone facies; 2) ooidal grainstone to packstone facies; 3) larger foraminiferal and red algal grainstone to packstone facies; 4) Amphistegina and Helicostegina packstone facies; and 5) green algal and small benthic foraminiferal grainstone to packstone facies, divisible locally into a green algal and the miliolid foraminiferal subfacies and a green algal and small rotaliine foraminiferal subfacies. The lowermost sequence (S1) was deposited in the Late Paleocene–Early Eocene (biozone LF1, equivalent to P3–P6?) and includes rudaceous grainstones and packstones with large specimens of Ranikothalia bermudezi representative of the mid- and inner ramp. The intermediate and uppermost sequences (S2 and S3) display well-developed lowstand deposits formed at the end of the Late Paleocene (upper biozone LF1) and beginning of the Early Eocene (biozone LF2) on the inner ramp (larger foraminiferal and red algal grainstone to packstone facies), in lagoons (green algal and small benthic foraminiferal facies) and as shoals (ooidal facies) or banks (Amphistegina and Helicostegina facies). Depth and oceanic influence were the main controls on the distribution of these microfacies. Stratal stacking patterns evident within these sequences may well have been related to sea level changes postulated for the Late Paleocene and Early Eocene. During this time, the Amapá Formation was dominated by cyclic sedimentation on a gently sloping ramp. Environmental and ecological stress brought about by sea level change at the end of the biozone LF1 led to the extinction of the larger foraminifera (Ranikothalia bermudezi).  相似文献   

8.
Within the Gavrovo–Tripolitza area (southern continental Greece), marine carbonate platforms existed from the Late Triassic to the Late Eocene. The Middle–Upper Eocene marine shallow-water carbonates of the Klokova Mountain represent remnants of the large volumes of sediment that were produced on a middle ramp sedimentary system which culminated in the Lower Oligocene terrigenous deposits. Facies analysis of Bartonian–Priabonian shallow-water carbonate successions and the integration with palaeoecological analysis are used to produce a detailed palaeoenvironmental model. In the proximal middle ramp, porcelaneous foraminiferal packstone facies is characterised by larger foraminifera such as Praturlonella and Spirolina. These forms thrived in a shallow-water setting with low turbidity, high-light intensity and low-substrate stability. The foraminiferal packstone facies, the thin coralline wacke–packstone facies and the rhodolith packstone facies deposited approximately in the same depth range adjacent to one another in the middle-ramp. Nummulitids (Nummulites, Assilina, Pellatispira, Heterostegina and Spiroclypeus) increase in abundance in the middle to distal mid-ramp together with the orthophragminids. Coralline algae, represented by six genera, are present in all facies. Rhodoliths occur in all facies but they show different shapes and growth forms. They develop laminar sub-ellipsoidal shapes in higher turbulence conditions on mobile sand substrates (foraminiferal packstones and rhodolith rudstones), whilst sub-discoidal shapes often bound by thin encrusting coralline plants in lower hydrodynamic settings. The distinctive characteristics of the palaeoecological middle-ramp gradient are an increase in dominance of melobesioids, a thinning of the encrusting coralline plants and a flattening of the larger benthic foraminiferal shells.  相似文献   

9.
The Tale-Zang Formation in Zagros Mountains (south-west Iran) is a Lower to Middle Eocene carbonate sequence. Carbonate sequences of the Tale-Zang Formation consist mainly of large benthic foraminifera (e.g. Nummulites and Alveolina), along with other skeletal and non-skeletal components. Water depth during deposition of the formation was determined based on the variation and types of benthic foraminifera, and other components in different facies. Microfacies analysis led to the recognition of ten microfacies that are related to four facies belts such as tidal flat, lagoon, shoal and open marine. An absence of turbidite deposits, reefal facies, gradual facies changes and widespread tidal flat deposits indicate that the Tale-Zang Formation was deposited in a carbonate ramp environment. Due to the great diversity and abundance of larger benthic foraminifera, this carbonate ramp is referred to as a “foraminifera-dominated carbonate ramp system”. Based on the field observations, microfacies analysis and sequence stratigraphic studies, three third-order sequences in the Langar type section and one third-order sequence in the Kialo section were identified. These depositional sequences have been separated by both type-1 and type-2 sequence boundaries. The transgressive systems tracts of sequences show a gradual upward increase in perforate foraminifera, whereas the highstand systems tracts of sequences contain predominantly imperforate foraminifera.  相似文献   

10.
Sponges and corals from the Bartonian marly formations of the Pamplona Basin (South Pyrenean area, Navarre) are described for the first time. The fossiliferous levels correspond respectively to flood-influenced delta-front (Ardanatz Sandstone) and restricted outer-platform (Ilundain Marls Fm.) environments. The fossil sponges exhibit diagenetic fragmentation, but they are often complete specimens. The skeleton appears partially or totally replaced by calcite and/or in some cases large crystals of celestite. Celestite forms relatively early during diagenesis in a dysoxic environment. Neomorphic fibrous quartzine-lutecine spherulites are also present. Hexactinellids and lithistids occur, but the former predominate. The associations include the species Laocoetis samueli, Guettardiscyphia thiolati and/or Pleuroguettardia iberica, cf. Rhizocheton robustus, and two lithistids indet. Corals are present only in the Ardanatz Sandstone. The fossil skeletons are composed of large neomorphic sparry calcite crystals. The assigned species are Stylocoenia taurinensis, Astrocoenia octopartita, Ceratotrochus bodellei, Placosmiliopsis bilobatus, and Desmophyllum castellolense. The sponge and coral taxa are similar to those previously described from other contemporaneous geological formations of the Pyrenean realm. The Pamplona Basin assemblages appear less diverse than those of the Bartonian of the eastern South Pyrenean area, more similar to that of the Eocene of Biarritz (Aquitanian Basin). This lower diversity is not due to a lower-resolution sampling but to taphonomic bias and/or paleoecological differences. The dominance of hexactinellids, erect morphologies, and sedimentological and micropaleontological data show that the sponge communities lived in deep shelfal waters. The corals, mainly associated with levels with high terrigenous content, seem reworked from shallower and more proximal environments.  相似文献   

11.
During the Late Miocene, the marginal areas of the Mediterranean Basin were characterized by the development of mixed siliciclastic-carbonate ramps. This paper deals with a temperate siliciclastic-carbonate ramp (late Tortonian–early Messinian in age) which crops out in the Capo Vaticano area, Southern Apennines (Italy). Carbonate components are mainly represented by calcitic skeletal fragments of coralline red algae, bryozoans, bivalves, and larger foraminifera, whereas corals, brachiopods, echinoderms, and planktonic foraminifera are subordinate. In the studied ramp, the depositional geometries of the main unit, the ‘Sabbie gialle ad Heterostegina’, show a gradual steepening from low/middle (dip about 2–5°) to steep slope settings (up to 25°). The microfacies observations, the quantitative analyses of the main biogenic components as well as the rhodolith shapes and growth forms allowed the differentiation between the middle and the outer ramp depositional setting and the refining of the stratigraphic framework. The middle ramp is characterized by coralline red algal debris packstone facies often associated with larger foraminiferal floatstone/packstone facies, while the outer ramp is characterized by rhodolith floatstone/rudstone facies. These facies pass basinward into typical open-marine deposits (planktonic foraminiferal facies). The taxonomic composition of the coralline red algal assemblage points to a temperate paleoclimate and emphasizes the Miocene Mediterranean phytogeographic patterns. The absence of non-skeletal grains (ooids and green algae), the paucity of Porites patch reefs, the rare occurrence of primary marine cementation, all confirm that the studied ramp was poorly lithified within a warm–temperate setting. The flat depositional profile of the ramp can be related to the absence or paucity of primary marine carbonate cements.  相似文献   

12.
13.
Aquatic vertebrates are reported from several facies of the Late Mississippian (Chesterian/Elviran/Serpukhovian) Buffalo Wallow Formation in western Kentucky, USA. Rhizodont bones and the partially articulated skeleton of a large anthracosaur (proterogyrinid) were found in rocks interpreted as a fluvial‐estuarine palaeochannel. Smaller, disarticulated tetrapod remains (anthracosaurs, whatcheeriids) were found in a weathered siltstone in an apparent channel margin‐sand flat facies. A putative oxbow‐abandoned channel facies contains skeletal elements of rhizodonts (cf. Rhizodus), colosteiids, Gyracanthus, Ageleodus, Cynopodius, xenacanthoids and palaeonisiciforms. Near the top of the channel fill, lungfish (cf. Tranodis) are found in carbonate‐rich nodules, which appear to be aestivation burrows. A presumed lacustrine facies contained a near‐complete colosteid. Thinning section, palaeosols, pedogenically‐altered carbonates and missing strata suggest tectonic and climatic overprints upon these depositional sequences. Multiple, incised channels in a low‐accommodation setting are interpreted to have provided local faunal traps for aquatic vertebrates. Late Mississippian palaeoclimate changes may have caused water table fluctuations, which might have aided in trapping and preserving aquatic vertebrates.  相似文献   

14.
The Paleocene to Middle Eocene Tarcau Sandstone at Buzau Valley, eastern Carpathians, Romania, records sedimentation in a turbidite system. These strata contain a diverse and abundant pre‐ and postdepositional ichnofauna consisting of 35 ichnogenera and 54 ichnospecies. The predepositional assemblage is rich in graphoglyptids and ornate grazing trails; simple grazing trails, resting traces, and feeding structures also occur. The predepositional assemblage includes Acan‐thorhaphe, Belorhaphe, Cardioichnus, Circulichnus, Coch‐lichnus, Cosmorhaphe, Desmograpton, Fustiglyphus, Gordia, Helicolithus, Helminthopsis, Helminthorhaphe, Lorenzinia, Megagrapton, Paleodictyon, Paleomeandron, Protopaleodictyon, Scolicia (S. strozzii), Spirorhaphe, Spirophycus, Treptichnus, and Urohelminthoida. The ich‐nodiversity, composition, ethology, and morphologic complexity of the predepositional association are indicative of the Nereites ichnofacies. The postdepositional association essentially consists of dwelling, feeding, and grazing traces, and is represented by Chondrites, Glockerichnus, Halopoa, Nereites, Ophiomorpha, Phycodes, Planolites, Polykampton, Scolicia(S. prisca. S. striata), Taenidium, Thalassinoides, and Zoophycos. Palaeophycus occurs in both assemblages. Allochthonous Teredolites is present in wood fragments, The postdepositional association includes elements of the Skolithos ichnofacies and facies‐crossing forms that are commonly present in deep‐marine deposits, Elements of the Skolithos ichnofacies are present not only in the most proximal parts of the turbidite system, but also in distal parts. The number of predepositional forms greatly exceeds postdepositional ones, reflecting a dominance of K‐selected over r‐selected population strategies in a stable environment. High levels of ichnodiversity in the Tarcau Sandstone are comparable with deep‐sea ichnofaunas from the Polish Carpathians and with other flysch trace‐fossil assemblages of similar age. This abundant and diverse Eocene ichnofauna supports the idea of extremely rich deep‐sea ichnofaunas in the Cenozoic.  相似文献   

15.
The analysis of planktic foraminiferal assemblages from Site 1090 (ODP Leg 177), located in the central part of the Subantarctic Zone south of South Africa, provided a geochronology of a 330-m-thick sequence spanning the Middle Eocene to Early Pliocene. A sequence of discrete bioevents enables the calibration of the Antarctic Paleogene (AP) Zonation with lower latitude biozonal schemes for the Middle–Late Eocene interval. In spite of the poor recovery of planktic foraminiferal assemblages, a correlation with the lower latitude standard planktic foraminiferal zonations has been attempted for the whole surveyed interval. Identified bioevents have been tentatively calibrated to the geomagnetic polarity time scale following the biochronology of Berggren et al. (1995). Besides planktic foraminiferal bioevents, the disappearance of the benthic foraminifera Nuttallides truempyi has been used to approximate the Middle/Late Eocene boundary. A hiatus of at least 11.7 Myr occurs between 78 and 71 m composite depth extending from the Early Miocene to the latest Miocene–Early Pliocene. Middle Eocene assemblages exhibit a temperate affinity, while the loss of several planktic foraminiferal species by late Middle to early Late Eocene time reflects cooling. During the Late Eocene–Oligocene intense dissolution caused impoverishment of planktic foraminiferal assemblages possibly following the emplacement of cold, corrosive bottom waters. Two warming peaks are, however, observed: the late Middle Eocene is marked by the invasion of the warmer water Acarinina spinuloinflata and Hantkenina alabamensis at 40.5 Ma, while the middle Late Eocene experienced the immigration of some globigerinathekids including Globigerinatheka luterbacheri and Globigerinatheka cf. semiinvoluta at 34.3 Ma. A more continuous record is observed for the Early Miocene and the Late Miocene–Early Pliocene where planktic foraminiferal assemblages show a distinct affinity with southern mid- to high-latitude faunas.  相似文献   

16.
Summary Late Eocene sediments of the Upper Austrian Alpine Foreland Basin discordantly overlie Mesozoic and crystalline rocks, which are deeply eroded and form a distinct pre-Eocene relief. Late Eocene deposits contain red algal limestones with a remarkable lateral extent and a high diversity of sedimentary facies. Towards the south the algal limestones change into more clastic sediments, which are characterized by larger foraminifera and bryozoans. Main components are coralline algal branches and detritus, coralline crusts, rhodoliths, peyssonneliacean aggregates and crusts, nummulitid and orthophragminid foraminifera, corals, bryozoans, as well as terrigenous components. Rank correlation and factor analysis were calculated in order to obtain informations about relations between components. Hierarchical cluster analysis allowed the designation of 17 facies, most of them are dominated by coralline algae. Actualistic comparisons and correlations obtained from statistical analyses allowed the reconstruction of the depositional environments. Main features of the northern area are huge accumulations of unattached coralline algae (branches, rhodoliths, detritus), which are comparable to the present-day “Maerl”-facies. They formed loose frameworks cut by sand channels. The frequency of coralline detritus decreases upsection. Peyssonneliacean algae in higher parts of the profiles show growth-forms that are comparable to peyssonneliaceans of the Mediterranean circalittoral soft bottoms. This succession can be interpreted by an increasing relative sea level. Besides, crustose coralline algal frameworks were growing on morphological highs which are partially comparable to the present-day “Coralligéne de Plateau” of the Mediterranean Sea. In contrast to the northern area, sedimentation rate of the southern area is too low to keep up with rising sea level. The typical succession from nummulitid- to orthophragminid-and bryozoan-dominated facies can be interpreted by an increasing water depth from shallowest subtidal to the deeper photic zone and finally to the aphotic zone.  相似文献   

17.
H. Wopfner  X.C. Jin   《Palaeoworld》2009,18(2-3):169-192
The maximum concentration of continental crust at the Pangea stage is characterized by a specific depositional sequence generally referred to as the Pangea Megasequence. Extending in time from the Late Carboniferous to the middle of the Triassic, the succession exhibits similar trends across the whole of Gondwana. Invariably, the sequence was initiated by Late Carboniferous to Early Permian glacial and periglacial deposits. Deglaciation occurred in Early Sakmarian time, evidenced by a typical, commonly transgressive facies. The succeeding formations comprise, in ascending order, coal measures, redbeds, some more coal measures and again redbeds with an intercalation of fluviatile sands in the Early Triassic.After deglaciation the basic depositional theme was modified, depending on postglacial adjustments of climate and on the type of regional tectonic regimes. Extension of the tropical climatic belt after deglaciation was one factor that governed the resulting sediment facies. Coal deposition that prevailed in central Gondwana in the Early Permian gave way to dominance of redbeds in the Middle and Late Permian and, in more distal positions, evaporitic deposits were laid down, following deglaciation. Within marine realms, coralline limestones were formed.Within Gondwana the depositional period of the Pangea Megasequence was governed by three distinctive tectonic regimes: collision dominated the Panthalassa margin, transpressional sag controlled the interior basins, and extension and rifting was experienced along the entire Tethyan margin. In the Early Permian, large and complex graben structures commenced to develop between Africa and India (Malagasy Trough) and between India and Australia (West Australian Trough), giving access to Tethyan waters during deglaciation, commencing in the late Early Sakmarian.Rifting along the Tethyan margin commenced in the Early Permian and was associated with active volcanism between Cashmere and Yunnan and in north-western Australia. Spreading of Neo-Tethys and the formation of oceanic crust, leading to the separation of the Cimmerian Blocks from Gondwana, commenced in the late Early Permian and continued into the Triassic. Thus two facies realms developed, an intracratonic rift facies comprising the Cashmere, Lhasa and Baoshan blocks and a facies controlled by detachment, comprising more distal blocks, such as Tengchong, Malay and Sumatra. The present distribution of individual blocks was governed by fold movements of the Himalayan Orogeny, complicated by transpression along the eastern Himalayan Syntaxis.  相似文献   

18.
19.
The most extensive latest Cretaceous deposits of the Pyrenees are non-marine facies traditionally called “Garumnian”, which represent the first continentalization of the Pyrenean Foreland Basins. The age and paleogeography of the basal Garumnian facies in the different parts of the Pyrenean Basin has been a matter of debate. Charophyte biostratigraphy and microfacies analysis suggest that the continentalization was diachronous in the Central Southern Pyrenean basins, i.e., between the Àger and Tremp basins, and the emersion progressed from south to north. In the Àger Basin, to the south, the first Upper Cretaceous non-marine rocks are represented by the La Maçana Formation. This unit is mainly formed by freshwater lacustrine limestones organized into hundreds of shallowing-upwards sequences ranging from deeper lacustrine facies, through marginal, well-illuminated environments dominated by characean meadows, and finishing with lakeshores dominated by clavatoracean meadows. The charophyte assemblage from the La Maçana Fm is mainly formed by Peckichara cancellata, P. sertulata, Microchara cristata, M. parazensis, Platychara caudata, and Clavator brachycerus, which belong to the Peckichara cancellata charophyte biozone (Late Campanian). In contrast, in the Tremp Basin, located to the north, the beginning of the non-marine sedimentation is organized into a few cycles of the well-known La Posa Fm. These cycles begin with brackish deposits formed by thick marls with euryhaline molluscs at the base, followed by lignite and brackish to freshwater limestones. The brackish facies are dominated by porocharaceans. The charophyte assemblage of the La Posa Formation is formed by Feistiella malladae, Peckichara sertulata, Microchara cristata, and Clavator brachycerus, which belong to the Septorella ultima charophyte biozone (Early Maastrichtian).  相似文献   

20.
Abstract:  Well-preserved arthropod trackways are described from the laminated limestones of the Crayssac Lagerstätte (south-west France, Lower Tithonian). They occur in sediments deposited in the temporary coastal mudflats of intertidal to supratidal zones. The trackways are referred to Pterichnus isopodicus isp. nov., and are interpreted as the locomotion traces of isopods. Different trackway morphotypes are recognized and clearly resulted from variations in the original consistency of the sediment. Sinuous trackways may correspond to vagrant activity on wet mud whereas numerous straight ones indicate a more rapid crawling on a soft-to-firm substratum (e.g. tidal flat during emersion). The preferred orientation of trackways indicates that isopods were crawling in a direction perpendicular to shoreline as a result of possible taxis induced by sediment wetness and/or by a migratory behaviour controlled by tidal rhythm. Unusually long emergence of the sediments may have favoured the preservation of dense networks of trackways. An isopod identity is supported by the general morphology of the tracks and the association of trackways with isopod body fossils. Archaeoniscus , which occurs abundantly in Late Jurassic deposits of England and France, was probably the trace-maker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号