首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The entire chicken lysozyme gene locus including all known cis-regulatory sequences and the 5' and 3' matrix attachment sites defining the borders of the DNase I sensitive chromatin domain, is expressed at a high level and independent of its chromosomal position in macrophages of transgenic mice. It was concluded that the lysozyme gene locus carries a locus control function. We analysed several cis-regulatory deletion mutants to investigate their influence on tissue specificity and level of expression. Position independent expression of the gene is lost whenever one of the upstream tissue specific enhancer regions is deleted, although tissue specific expression is usually retained. Deletion of the domain border fragments has no influence on copy number dependency of expression. However, without these regions an increased incidence of ectopic expression is observed. This suggests that the domain border fragments may help to suppress transgene expression in inappropriate tissues. We conclude, that position independent expression of the lysozyme gene is not controlled by a single specific region of the locus but is the result of the concerted action of several tissue specific upstream regulatory DNA elements with the promoter.  相似文献   

2.
3.
4.
A 21.5 kb DNA fragment carrying the entire chicken lysozyme gene locus was introduced into the germ line of mice. The fragment contains the transcribed region plus 11.5 kb 5'-flanking and 5.5 kb 3'-flanking sequences including all known cis-regulatory elements and the 5' and 3' attachment elements (A-elements) which define the borders of the DNase I sensitive chromatin domain. All sequences which adopt a DNase I hypersensitive chromatin conformation in vivo are present on the construct. Seven founder mice were analysed. All of these expressed chicken lysozyme RNA at high levels specifically in macrophages, as is the case in the donor species. Expression levels are dependent on the copy number of integrated genes indicating that a complete gene locus, as defined by its chromatin structure, functions as an independent regulatory unit when introduced into a heterologous genome.  相似文献   

5.
6.
7.
8.
We have examined the chicken Very Low Density Apolipoprotein II (apoVLDL II) gene locus in transgenic mice. A DNA fragment composed of the transcribed region, 16 kb of 5' flanking and 400 bp of 3' flanking sequences contained all the information sufficient for estrogen-inducible, liver-specific expression of the apoVLDL II gene. The far-upstream region contains a Negative Regulating Element coinciding with a DNaseI-hypersensitive site at -11 kb. In transgenic mice, the NRE at -11 kb is used for downregulating the expression to a lower maximum level. The NRE might be used for modulating apoVLDL II gene expression, and may be involved in the rapid shut-down of the expression after hormone removal.  相似文献   

9.
We have fused various DNA sequences located upstream of the Drosophila melanogaster s36 chorion gene TATA box to a heterologous basal promoter and reporter gene (hsp70/lacZ). The expression of these constructs, following P-element-mediated germline transformation, was examined in 144 independent lines by histological staining of dissected ovaries for beta-galactosidase activity. A short 84 bp segment of the proximal 5' flanking DNA was sufficient to confer a wild-type gene expression pattern, including temporal specificity for early choriogenic follicles. Surprisingly, initial expression was very localized at the anterior and posterior poles of the follicle. The downstream half of that DNA segment permitted expression at both poles, but especially at the anterior tip, while the upstream half only favored expression in the posterior pole; these results suggested the existence of multiple, spatially specific cis-regulatory elements. When the proximal 84 bp segment was placed 1.5 kb upstream of the basal promoter, beta-galactosidase activity was observed in an altered spatial pattern, indicating that the cis-regulatory element(s) that favor expression in the posterior half of the follicle are position independent, while the element(s) that favor expression elsewhere in the follicle are position sensitive. A distal regulatory segment containing redundant DNA element(s) specific for expression in the anterior pole was identified much further upstream of s36. Thus, the expression of this chorion gene throughout the follicular epithelium is actually composite, occurring in distinct spatial domains under the control of corresponding DNA elements.  相似文献   

10.
11.
《The Journal of cell biology》1996,134(5):1333-1344
We have identified three DNase I-hypersensitive sites in chromatin between 15 and 17 kb upstream of the mouse pro alpha 2 (I) collagen gene. These sites were detected in cells that produce type I collagen but not in cells that do not express these genes. A construction containing the sequences from -17 kb to +54 bp of the mouse pro alpha 2 (I) collagen gene, cloned upstream of either the Escherichia coli beta- galactosidase or the firefly luciferase reporter gene, showed strong enhancer activity in transgenic mice when compared with the levels seen previously in animals harboring shorter promoter fragments. Especially high levels of expression of the reporter gene were seen in dermis, fascia, and the fibrous layers of many internal organs. High levels of expression could also be detected in some osteoblastic cells. When various fragments of the 5' flanking sequences were cloned upstream of the 350-bp proximal pro alpha 2(I) collagen promoter linked to the lacZ gene, the cis-acting elements responsible for enhancement were localized in the region between -13.5 and -19.5 kb, the same region that contains the three DNase I-hypersensitive sites. Moreover, the DNA segment from -13.5 to -19.5 kb was also able to drive the cell-specific expression of a 220-bp mouse pro alpha 1(I) collagen promoter, which is silent in transgenic mice. Hence, our data suggest that a far-upstream enhancer element plays a role in regulating high levels of expression of the mouse pro alpha 2(I) collagen gene.  相似文献   

12.
13.
14.
Pax6 is a developmental control gene with an essential role in development of the eye, brain and pancreas. Pax6, as many other developmental regulators, depends on a substantial number of cis-regulatory elements in addition to its promoters for correct spatiotemporal and quantitative expression. Here we report on our analysis of a set of mice transgenic for a modified yeast artificial chromosome carrying the human PAX6 locus. In this 420 kb YAC a tauGFP-IRES-Neomycin reporter cassette has been inserted into the PAX6 translational start site in exon 4. The YAC has been further engineered to insert LoxP sites flanking a 35 kb long, distant downstream regulatory region (DRR) containing previously described DNaseI hypersensitive sites, to allow direct comparison between the presence or absence of this region in the same genomic context. Five independent transgenic lines were obtained that vary in the extent of downstream PAX6 locus that has integrated. Analysis of transgenic embryos carrying full-length and truncated versions of the YAC indicates the location and putative function of several novel tissue-specific enhancers. Absence of these distal regulatory elements abolishes expression in specific tissues despite the presence of more proximal enhancers with overlapping specificity, strongly suggesting interaction between these control elements. Using plasmid-based reporter transgenic analysis we provide detailed characterization of one of these enhancers in isolation. Furthermore, we show that overexpression of a short PAX6 isoform derived from an internal promoter in a multicopy YAC transgenic line results in a microphthalmia phenotype. Finally, direct comparison of a single-copy line with the floxed DRR before and after Cre-mediated deletion demonstrates unequivocally the essential role of these long-range control elements for PAX6 expression.  相似文献   

15.
The Kit receptor tyrosine kinase functions in hematopoiesis, melanogenesis, and gametogenesis and in interstitial cells of Cajal. We previously identified two upstream hypersensitive site (HS) clusters in mast cells and melanocytes. Here we investigated the roles of these 5' HS sequences in Kit expression using transgenic mice carrying Kit-GFP reporter constructs. In these mice there is close correspondence between Kit-GFP reporter and endogenous Kit gene expression in most tissues analyzed. Deletion analysis defined the 5' upstream HS cluster region as critical for Kit expression in mast cells. Furthermore, chromatin immunoprecipitation analysis in mast cells showed that H3 and H4 histone hyperacetylation and RNA polymerase II recruitment within the Kit promoter and in the 5' HS region were associated with Kit expression. Therefore, the 5' upstream hypersensitivity sites appear to be critical components of locus control region-mediated Kit gene activation in mast cells.  相似文献   

16.
17.
S Knotts  H Rindt    J Robbins 《Nucleic acids research》1995,23(16):3301-3309
Transgenic mice generated with constructs containing 5.6 kb of the beta myosin heavy chain (MyHC) gene's 5' flanking region linked to the cat reporter gene express the transgene at high levels. In all 47 lines analyzed, tissue-specific accumulation of chloramphenicol acetyltransferase was found at levels proportional to the number of integrated transgene copies. Deletion constructs containing only 0.6 kb of 5' upstream region showed position effects in transgenic mice and did not demonstrate copy number dependence although transgene expression remained muscle-specific. The 5.6 kb 5' upstream region conferred appropriate developmental control of the transgene to the cardiac compartment and directs copy number dependent and position independent expression. Lines generated with a construct in which three proximal cis-acting elements were mutated showed reduced levels of transgene expression, but all maintained their position independence and copy number dependence, suggesting the presence of distinct regulatory mechanisms.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号