首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Diversity-generating retroelements (DGRs) provide organisms with a unique means for adaptation to a dynamic environment through massive protein sequence variation. The potential scope of this variation exceeds that of the vertebrate adaptive immune system. DGRs were known to exist only in viruses and bacteria until their recent discovery in archaea belonging to the ‘microbial dark matter’, specifically in organisms closely related to Nanoarchaeota. However, Nanoarchaeota DGR variable proteins were unassignable to known protein folds and apparently unrelated to characterized DGR variable proteins.

Results

To address the issue of how Nanoarchaeota DGR variable proteins accommodate massive sequence variation, we determined the 2.52 Å resolution limit crystal structure of one such protein, AvpA, which revealed a C-type lectin (CLec)-fold that organizes a putative ligand-binding site that is capable of accommodating 1013 sequences. This fold is surprisingly reminiscent of the CLec-folds of viral and bacterial DGR variable protein, but differs sufficiently to define a new CLec-fold subclass, which is consistent with early divergence between bacterial and archaeal DGRs. The structure also enabled identification of a group of AvpA-like proteins in multiple putative DGRs from uncultivated archaea. These variable proteins may aid Nanoarchaeota and these uncultivated archaea in symbiotic relationships.

Conclusions

Our results have uncovered the widespread conservation of the CLec-fold in viruses, bacteria, and archaea for accommodating massive sequence variation. In addition, to our knowledge, this is the first report of an archaeal CLec-fold protein.
  相似文献   

2.
Heat shock proteins (Hsps) are a class of highly conserved proteins produced in virtually all living organisms from bacteria to humans. Hsp60 and Hsp10, the most important mitochondrial chaperones, participate in environmental stress responses. In this study, the full-length complementary DNAs (cDNAs) of Hsp60 (PmHsp60) and Hsp10 (PmHsp10) were cloned from Penaeus monodon. Sequence analysis showed that PmHsp60 and PmHsp10 encoded polypeptides of 578 and 102 amino acids, respectively. The expression profiles of PmHsp60 and PmHsp10 were detected in the gills and hepatopancreas of the shrimps under pH challenge, osmotic stress, and heavy metal exposure, and results suggested that PmHsp60 and PmHsp10 were involved in the responses to these stimuli. ATPase and chaperone activity assay indicated that PmHsp60 could slow down protein denaturation and that Hsp60/Hsp10 may be combined to produce a chaperone complex with effective chaperone and ATPase activities. Overall, this study provides useful information to help further understand the functional mechanisms of the environmental stress responses of Hsp60 and Hsp10 in shrimp.  相似文献   

3.
Porcine pleuropneumonia caused by Actinobacillus pleuropneumoniae has led to severe economic losses in the pig industry worldwide. A. pleuropneumoniae displays various levels of antimicrobial resistance, leading to the dire need to identify new drug targets. Protein–protein interaction (PPI) network can aid the identification of drug targets by discovering essential proteins during the life of bacteria. The aim of this study is to identify drug target candidates of A. pleuropneumoniae from essential proteins in PPI network. The homologous protein mapping method (HPM) was utilized to construct A. pleuropneumoniae PPI network. Afterwards, the subnetwork centered with H-NS was selected to verify the PPI network using bacterial two-hybrid assays. Drug target candidates were identified from the hub proteins by analyzing the topology of the network using interaction degree and homologous comparison with the pig proteome. An A. pleuropneumoniae PPI network containing 2737 non-redundant interaction pairs among 533 proteins was constructed. These proteins were distributed in 21 COG functional categories and 28 KEGG metabolic pathways. The A. pleuropneumoniae PPI network was scale free and the similar topological tendencies were found when compared with other bacteria PPI network. Furthermore, 56.3% of the H-NS subnetwork interactions were validated. 57 highly connected proteins (hub proteins) were identified from the A. pleuropneumoniae PPI network. Finally, 9 potential drug targets were identified from the hub proteins, with no homologs in swine. This study provides drug target candidates, which are promising for further investigations to explore lead compounds against A. pleuropneumoniae.  相似文献   

4.
Hsp70s are chaperone proteins that are conserved in evolution and present in all prokaryotic and eukaryotic organisms. In the archaea, which form a distinct kingdom, the Hsp70 chaperones have been found in some species only, including Methanosarcina mazei. Both the bacterial and archaeal Hsp70(DnaK) chaperones cooperate with a GrpE co-chaperone which stimulates the ATPase activity of the DnaK protein. It is currently believed that the archaeal Hsp70 system was obtained by the lateral transfer of chaperone genes from bacteria. Our previous finding that the DnaK and GrpE proteins of M. mazei can functionally cooperate with the Escherichia coli GrpE and DnaK supported this hypothesis. However, the cooperation was surprising, considering the very low identity of the GrpE proteins (26%) and the relatively low identity of the DnaK proteins (56%). The aim of this work was to investigate the molecular basis of the observed interspecies chaperone interaction. Infrared resolution-enhanced spectra of the M. mazei and E. coli DnaK proteins were almost identical, indicating high similarity of their secondary structures, however, some small differences in band position and in the intensity of amide I' band components were observed and discussed. Profiles of thermal denaturation of both proteins were similar, although they indicated a higher thermostability of the M. mazei DnaK compared to the E. coli DnaK. Electrophoresis under non-denaturing conditions demonstrated that purified DnaK and GrpE of E. coli and M. mazei formed mixed complexes. Protein modeling revealed high similarity of the 3-dimensional structures of the archaeal and bacterial DnaK and GrpE proteins.  相似文献   

5.
6.
The extracellular α-amylase from the hyperthermophilic archaeum Pyrococcus furiosus (PFA) is extremely thermostable and of an industrial importance and interest. PFA aggregates and accumulates as insoluble inclusion bodies when expressed as a heterologous protein at a high level in Escherichia coli. In the present study, we investigated the roles of chaperones from P. furiosus in the soluble expression of recombinant PFA in E. coli. The results indicate that co-expression of PFA with the molecular chaperone prefoldin alone significantly increased the soluble expression of PFA. Although, co-expression of other main chaperone components from P. furiosus, such as the small heat shock protein (sHSP) or chaperonin (HSP60), was also able to improve the soluble expression of PFA to a certain extent. Co-expression of chaperonin or sHSP in addition to prefoldin did not further increase the soluble expression of PFA. This finding emphasizes the biotechnological potentials of the molecular chaperone prefoldin from P. furiosus, which may facilitate the production of recombinant PFA.  相似文献   

7.
8.
The archaeal molecular chaperone machine: peculiarities and paradoxes.   总被引:4,自引:0,他引:4  
A J Macario  E C de Macario 《Genetics》1999,152(4):1277-1283
A major finding within the field of archaea and molecular chaperones has been the demonstration that, while some species have the stress (heat-shock) gene hsp70(dnaK), others do not. This gene encodes Hsp70(DnaK), an essential molecular chaperone in bacteria and eukaryotes. Due to the physiological importance and the high degree of conservation of this protein, its absence in archaeal organisms has raised intriguing questions pertaining to the evolution of the chaperone machine as a whole and that of its components in particular, namely, Hsp70(DnaK), Hsp40(DnaJ), and GrpE. Another archaeal paradox is that the proteins coded by these genes are very similar to bacterial homologs, as if the genes had been received via lateral transfer from bacteria, whereas the upstream flanking regions have no bacterial markers, but instead have typical archaeal promoters, which are like those of eukaryotes. Furthermore, the chaperonin system in all archaea studied to the present, including those that possess a bacterial-like chaperone machine, is similar to that of the eukaryotic-cell cytosol. Thus, two chaperoning systems that are designed to interact with a compatible partner, e.g., the bacterial chaperone machine physiologically interacts with the bacterial but not with the eucaryal chaperonins, coexist in archaeal cells in spite of their apparent functional incompatibility. It is difficult to understand how these hybrid characteristics of the archaeal chaperoning system became established and work, if one bears in mind the classical ideas learned from studying bacteria and eukaryotes. No doubt, archaea are intriguing organisms that offer an opportunity to find novel molecules and mechanisms that will, most likely, enhance our understanding of the stress response and the protein folding and refolding processes in the three phylogenetic domains.  相似文献   

9.
So far, the contribution of ammonia-oxidizing archaea (AOA) to ammonia oxidation in wastewater treatment processes has not been well understood. In this study, two soil aquifer treatment (SATs) systems were built up to treat synthetic domestic wastewater (column 1) and secondary effluent (column 4), accomplishing an average of 95 % ammonia removal during over 550 days of operation. Except at day 322, archaeal amoA genes always outnumbered bacterial amoA genes in both SATs as determined by using quantitative polymerase chain reaction (q-PCR). The ratios of archaeal amoA to 16S rRNA gene averaged at 0.70?±?0.56 and 0.82?±?0.62 in column 1 and column 4, respectively, indicating that all the archaea could be AOA carrying amoA gene in the SATs. The results of MiSeq-pyrosequencing targeting on archaeal and bacterial 16S rRNA genes with the primer pair of modified 515R/806R indicated that Nitrososphaera cluster affiliated with thaumarchaeal group I.1b was the dominant AOA species, while Nitrosospira cluster was the dominant ammonia-oxidizing bacteria (AOB). The statistical analysis showed significant relationship between AOA abundance (compared to AOB abundance) and inorganic and total nitrogen concentrations. Based on the mathematical model calculation for microbial growth, AOA had much greater capacity of ammonia oxidation as compared to the specific influent ammonia loading for AOA in the SATs, implying that a small fraction of the total AOA would actively work to oxidize ammonia chemoautotrophically whereas most of AOA would exhibit some level of functional redundancy. These results all pointed that AOA involved in microbial ammonia oxidation in the SATs.  相似文献   

10.
The brine shrimp, Artemia is the dominant macrozooplankton present in many hypersaline environments. Artemia urmiana is the only macroscopic organism in Urmia Salt Lake (Iran), and the high salinity of the lake makes it a suitable environment for halophilic archaea too. Because of common environment for Artemia and extreme halophiles; this investigation is concentrated on studying the relationship between Artemia and halophilic archaea in Urmia Lake. In this study first the procedure of arhaea isolation was done. Then, isolated strains were sub-cultured and DNA was extracted and amplified by PCR using specific primers for amplifying archaeal 16S rRNA. The amplified archeal DNA fragments were purified, and sequenced. 16S rRNA sequences were compared to known sequences using the NCBI BLAST program. Sequences relating to Halorubrum, Haloarcula and Halobacterium species were identified in Urmia Salt Lake water and Artemia adults and the phylogenetic tree of different species was constructed. Only Halorubrum species were present in association with Artemia. They belong to Halobacteriaceae family of archeae which are isolated from different salt lakes in different parts of world and we could show their existence in adult Artemia, another organism living in hypersaline enviroments.  相似文献   

11.
The rate and level of DnaK-dependent refolding of heat-inactivated Vibrio fischeri luciferase in the clp A mutant (clp A:: kan) were considerably lower then in wild-type cells. The decline in refolding level progressed with increasing heat inactivation time. A mutation of clp P had no influence on the kinetics and level of luciferase refolding. Approximately equal amounts of the DnaKJE chaperone were synthesized upon heat shock induction in E. coli clp A + and E. coli clpA::kan cells. It was assumed that, like homologous chaperone ClpB, ClpA is involved in disaggregation of denatured proteins, increasing the refolding efficiency. This in vivo phenomenon occurred only upon a prolonged incubation of cells at a higher temperature, which led to the formation of large protein aggregates that were poorly refoldable by the DnaKJE system.  相似文献   

12.
The patterns of macrobiota in lotic ecosystems have been extensively explored, however, the dynamics of microbiota remain poorly investigated, especially in the high-elevation region. To address this deficit, we collected eight samples to unveil the bacterial and archaeal community in the Kaidu river, located at the arid region of northwestern China (an average of 2,500 m a.s.l.). For the bacterial community, phylogenetically Betaproteobacteria prevailed, followed by Alphaproteobacteria and Actinobacteria; at the finer genus level, Limnohabitans and Variovorax were prominent. Along the river, the bacterial community showed a continuous succession. Specifically, their α- and β-diversity gradually increased, suggesting a distance-decay pattern. Additionally, there was an ecological transition between the dominant and the rare sub-community along the river: the relative abundance of the dominant members gradually decreased as the rare members increased. We report that temperature and spatial distance were significantly related to the variation of bacterial community. Variance partitioning analysis showed that the environmental factors contributed more to the bacterial community than did the spatial distance. In the case of the archaeal community, the methanogenic groups, mainly Methanosaeta and Methanosarcina, were prominent within the Kaidu river. Unlike the continuous change in the patterns of the bacterial community, the archaeal community showed a constant pattern along the river. Our results showed that the archaeal community was independent of the environmental and spatial factors. We propose that the inoculation of soil-derived archaea is responsible for the archaeal community in the Kaidu river. Together, our study demonstrated that the bacterial community in the high-elevation Kaidu river is a continuum, whereas the archaeal community is not.  相似文献   

13.
Pseudomonas sp. HK-6 is able to utilize RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) as its sole nitrogen source. The role of the xenB gene, encoding xenobiotic reductase B, was investigated using HK-6 xenB knockout mutants. The xenB mutant degraded RDX to a level that was 10-fold less than that obtained with the wild-type HK-6 strain. After 60 days of culture with 25 or 50 μM RDX, no residual RDX was detected in the supernatants of the wild-type aerobically grown cultures, whereas approximately 90 % of the RDX remained in the xenB mutant cultures. The xenB mutant bacteria exhibited a 102–104-fold decrease in survival rate compared to the wild-type. The expression of DnaK and GroEL proteins, two typical stress shock proteins (SSPs), in the xenB mutant increased after immediate exposure to RDX, yet dramatically decreased after 4 h of exposure. In addition, DnaK and GroEL were more highly expressed in the cultures with 25 μM RDX in the medium but showed low expression in the cultures with 50 or 75 μM RDX. The expression levels of the dnaK and groEL genes measured by RT-qPCR were also much lower in the xenB genetic background. Analyses of the proteomes of the HK-6 and xenB mutant cells grown under conditions of RDX stress showed increased induction of several proteins, such as Alg8, alginate biosynthesis sensor histidine kinase, and OprH in the xenB mutants when compared to wild-type. However, many proteins, including two SSPs (DnaK and GroEL) and proteins involved in metabolism, exhibited lower expression levels in the xenB mutant than in the wild-type HK-6 strain. The xenB knockout mutation leads to reduced RDX degradation ability, which renders the mutant more sensitive to RDX stress and results in a lower survival rate and an altered proteomic profile under RDX stress.  相似文献   

14.
15.
Three proteins from extremophilic bacteria—hypothetical monooxygenase from Deinococcus radiodurans, hypothetical nucleotidyl transferase from Thermotoga maritime, and hypothetical oxidoreductase from Exiguobacterium sibiricum—and the DJ-1 chaperone protein from Homo sapiens have been produced in Escherichia coli. The isolation and purification procedures developed for the recombinant proteins allowed us to achieve yields higher than 96%. Crystallization conditions enabling stable growth of crystals have been determined. X-ray experiments have been performed to test the quality of the crystals and the resolution achieved ranged from 1.2 to 1.8 Å.  相似文献   

16.
Desulfurococcus amylolyticus DSM 16532 is an anaerobic and hyperthermophilic crenarchaeon known to grow on a variety of different carbon sources, including monosaccharides and polysaccharides. Furthermore, D. amylolyticus is one of the few archaea that are known to be able to grow on cellulose. Here, we present the metabolic reconstruction of D. amylolyticus’ central carbon metabolism. Based on the published genome, the metabolic reconstruction was completed by integrating complementary information available from the KEGG, BRENDA, UniProt, NCBI, and PFAM databases, as well as from available literature. The genomic analysis of D. amylolyticus revealed genes for both the classical and the archaeal version of the Embden-Meyerhof pathway. The metabolic reconstruction highlighted gaps in carbon dioxide-fixation pathways. No complete carbon dioxide-fixation pathway such as the reductive citrate cycle or the dicarboxylate-4-hydroxybutyrate cycle could be identified. However, the metabolic reconstruction indicated that D. amylolyticus harbors all genes necessary for glucose metabolization. Closed batch experimental verification of glucose utilization by D. amylolyticus was performed in chemically defined medium. The findings from in silico analyses and from growth experiments are discussed with respect to physiological features of hyperthermophilic organisms.  相似文献   

17.
18.
The goal of the work was to reveal the differences in the structure of microbial communities of Transbaikalia alkaline lakes stemming from the differences in their salinity and hydrochemical parameters. The lakes studied were Verkhnee Beloe (Buryat Republic, Russia), as well as Khilganta, Gorbunka, and Borzinskoe (Transbaikal krai, Russia) with salinity from 12.3 to 430 g/L, which differed in the mineral composition of the sediments and hydrochemical parameters. Lake sediments were found to contain 47 prokaryotic phyla (42 bacterial and 5 archaeal ones). The phyla Proteobacteria, Euryarchaeota, Bacteroides, Chloroflexi, Actinobacteria, and Firmicutes were predominant, comprising over 95% of the classified sequences. Comparative abundance of archaea increased with salinity from below 1% in Lake Verkhnee Beloe to 35% in Lake Borzinskoe. The most numerous bacterial OTUs belonged to gammaproteobacteria of the genus Halomonas (up to 15% of the number of classified sequences). The most numerous archaeal OTUs were identified at the genus level as members of the genera Halorubrum and Halohasta belonging to the family Halorubraceae, which comprises extremely halophilic Euryarchaeota.  相似文献   

19.
Both Bacteria and Archaea might be involved in various biogeochemical processes in lacustrine sediment ecosystems. However, the factors governing the intra-lake distribution of sediment bacterial and archaeal communities in various freshwater lakes remain unclear. The present study investigated the sediment bacterial and archaeal communities in 13 freshwater lakes on the Yunnan Plateau. Quantitative PCR assay showed a large variation in bacterial and archaeal abundances. Illumina MiSeq sequencing illustrated high bacterial and archaeal diversities. Bacterial abundance was regulated by sediment total organic carbon and total nitrogen, and water depth, while nitrate nitrogen was an important determinant of bacterial diversity. Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, and Verrucomicrobia were the major components of sediment bacterial communities. Proteobacteria was the largest phylum, but its major classes and their proportions varied greatly among different lakes, affected by sediment nitrate nitrogen. In addition, both Euryarchaeota and Crenarchaeota were important members in sediment archaeal communities, while unclassified Archaea usually showed the dominance.  相似文献   

20.
Macro domains are conserved protein domains found in eukaryotic organisms, bacteria, and archaea as well as in certain viruses. They consist of 130–190 amino acids and can bind ADP-ribose. Although the exact role of these domains is not fully understood, the conserved binding affinity for ADP-ribose indicates that this ligand is important for the function of the domain. Such a macro domain is also present in the non-structural protein 3 (nsP3) of Chikungunya Alphavirus (CHIKV) and consists of 160 amino acids. In this study we describe the high yield expression of the macro domain from CHIKV and its preliminary structural analysis via solution NMR spectroscopy. The macro domain seems to be folded in solution and an almost complete backbone assignment was achieved. In addition, the α/β/α sandwich topology with 4 α-helices and 6 β-strands was predicted by TALOS+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号