首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resistance to chloroquine in Plasmodium falciparum bears a striking similarity to the multi-drug resistance (MDR) phenotype of mammalian tumor cells which is mediated by overexpression of P-glycoprotein. We show here that the P. falciparum homologue of the P-glycoprotein (Pgh1) is a 160,000-D protein that is expressed throughout the asexual erythrocytic life cycle of the parasite. Quantitative immunoblotting analysis has shown that the protein is expressed at approximately equal levels in chloroquine resistant and sensitive isolates suggesting that overexpression of Pgh1 is not essential for chloroquine resistance. The chloroquine-resistant cloned line FAC8 however, does express approximately threefold more Pgh1 protein than other isolates which is most likely because of the increased pfmdr1 gene copy number present in this isolate. Immunofluorescence and immunoelectron microscopy has demonstrated that Pgh1 is localized on the membrane of the digestive vacuole of mature parasites. This subcellular localization suggests that Pgh1 may modulate intracellular chloroquine concentrations and has important implications for the normal physiological function of this protein.  相似文献   

2.
3.
Sanchez CP  McLean JE  Stein W  Lanzer M 《Biochemistry》2004,43(51):16365-16373
The mechanism underpinning chloroquine drug resistance in the human malarial parasite Plasmodium falciparum remains controversial. By investigating the kinetics of chloroquine accumulation under varying-trans conditions, we recently presented evidence for a saturable and energy-dependent chloroquine efflux system present in chloroquine resistant P. falciparum strains. Here, we further characterize the putative chloroquine efflux system by investigating its substrate specificity using a broad range of different antimalarial drugs. Our data show that preloading cells with amodiaquine, primaquine, quinacrine, quinine, and quinidine stimulates labeled chloroquine accumulation under varying-trans conditions, while mefloquine, halofantrine, artemisinin, and pyrimethamine do not induce this effect. In the reverse of the varying-trans procedure, we show that preloaded cold chloroquine can stimulate quinine accumulation. On the basis of these findings, we propose that the putative chloroquine efflux system is capable of transporting, in addition to chloroquine, structurally related quinoline and methoxyacridine antimalarial drugs. Verapamil and the calcium/calmodulin antagonist W7 abrogate stimulated chloroquine accumulation and energy-dependent chloroquine extrusion. Our data are consistent with a substrate specific and inhibitible drug efflux system being present in chloroquine resistant P. falciparum strains.  相似文献   

4.
A chloroquine resistant cloned isolate of Plasmodium falciparum, FAC8, which carries an amplification in the pfmdr1 gene was selected for high-level chloroquine resistance, resulting in a cell line resistant to a 10-fold higher concentration of chloroquine. These cells were found to have lost the amplification in pfmdr1 and to no longer over-produce the protein product termed P-glycoprotein homologue 1 (Pgh1). The pfmdr1 gene from this highly resistant cell line was not found to encode any amino acid changes that would account for increased resistance. Verapamil, which reverses chloroquine resistance in FAC8, also reversed high-level chloroquine resistance. Furthermore, verapamil caused a biphasic reversal of chloroquine resistance as the high-level resistance was very sensitive to low amounts of verapamil. These data suggest that over-expression of the P-glycoprotein homologue is incompatible with high levels of chloroquine resistance. In order to show that these results were applicable to other chloroquine selected lines, two additional mutants were selected for resistance to high levels of chloroquine. In both cases they were found to deamplify pfmdr1. Interestingly, while the level of chloroquine resistance of these mutants increased, they became more sensitive to mefloquine. This suggests a linkage between the copy number of the pfmdr1 gene and the level of chloroquine and mefloquine resistance.  相似文献   

5.
Multidrug resistance (MDR) in mammalian tumour cells is mediated by P-glycoproteins. The apparent similarities between MDR and the chloroquine-resistance phenotype (CQR) in Plasmodium falciparum suggests that homologous proteins may be involved. In mammals, P-glycoproteins are encoded by mdr genes that are a subset of a super-family characterized by ATP-binding cassettes (ABC). Three genes, pfmdr1, pfmdr2 and pfef3-rl, have been identified in P. falciparum that have homology to the ABC transporter gene family. Each protein encoded by these genes has a distinct structure, suggesting functional differences between the three. Justin Rubio and Alan Cowman here discuss the structure and possible function of the ABC proteins from P. falciparum and evidence that the protein encoded by the pfmdr1 gene can influence quinoline-containing antimalarial drug-resistance phenotypes.  相似文献   

6.
7.
Resistance to dihydro folate reductase inhibitors and resistance to chloroquine have been mapped to single genetic loci in Plasmodium falciparum. Specific point mutations in the dihydro folate reductase gene confer different degrees of resistance to two dihydro folate inhibitors, cycloguanil and pyrimethamine, depending on the positions of the mutations and the residues involved. The chloroquine resistance locus has been mapped to a 400 kilobase (kb) segment of chromosome 7 in a P. falciparum cross. Identification and characterization of genes within this segment should lead to an understanding of the rapid drug efflux mechanism responsible for chloroquine resistance.  相似文献   

8.
ABSTRACT: BACKGROUND: Malaria is still a public health problem in Malaysia with chloroquine (CQ) being the first-line drug in the treatment policy of uncomplicated malaria. There is a scarcity in information about the magnitude of Plasmodium falciparum CQ resistance. This study aims to investigate the presence of single point mutations in the P. falciparum chloroquine-resistance transporter gene (pfcrt) at codons 76, 271, 326, 356 and 371 and in P. falciparum multi-drug resistance-1 gene (pfmdr1) at codons 86 and 1246, as molecular markers of CQ resistance. METHODS: A total of 75 P. falciparum blood samples were collected from different districts of Pahang state, Malaysia. Single nucleotide polymorphisms in pfcrt gene (codons 76, 271, 326, 356 and 371) and pfmdr1 gene (codons 86 and 1246) were analysed by using mutation-specific nested PCR and restriction fragment length polymorphism (PCR-RFLP) methods. RESULTS: Mutations of pfcrt K76T and pfcrt R371I were the most prevalent among pfcrt gene mutations reported by this study; 52% and 77%, respectively. Other codons of the pfcrt gene and the positions 86 and 1246 of the pfmdr1 gene were found mostly of wild type. Significant associations of pfcrt K76T, pfcrt N326S and pfcrt I356T mutations with parasitaemia were also reported. CONCLUSION: The high existence of mutant pfcrt T76 may indicate the low susceptibility of P. falciparum isolates to CQ in Peninsular Malaysia. The findings of this study establish baseline data on the molecular markers of P. falciparum CQ resistance, which may help in the surveillance of drug resistance in Peninsular Malaysia.  相似文献   

9.
We report the outcome of chloroquine treatment and the prevalence of mutations at codon 86 of the pfmdr1 gene, at codon 76 of the pfcrt gene, and at codon 108 of the pfdhfr gene in clinical isolates of Plasmodium falciparum collected from 30 children under 10 years of age living in the Comoros Union. This in vivo study was carried out in February and March 2001 in Moroni. Chloroquine treatment failed in 23 children (76.6%; 95% confidence interval: 57.7 to 90.1%). Subsequent genotyping showed that all P. falciparum isolates (100%) harboured a tyrosine residue at position 86 in pfMDR1. 83.3% (25/30) of these isolates harboured a mutation at position 76 in pfCRT and half (15/30) of these isolates also harboured a mutation at position 108 in pfDHFR. Chloroquine resistance is a real concern in the Comoros Union. The prevalence of pfDHFR mutant parasites is alarming. The alternative drugs proposed as a replacement for chloroquine as first-line treatment in Comoros, and the strategy to monitor the drug susceptibility of Plasmodium sp in this part of the Indian Ocean sub-region are discussed.  相似文献   

10.
The resistance of the malarial parasite Plasmodium falciparum to chloroquine represents an emerging problem since neither mode of drug action nor mechanisms of resistance are fully elucidated. We describe a protein expression profiling approach by SELDI-TOF-MS as a useful tool for studying the proteome of malarial parasites. Reproducible and complex protein profiles of the P. falciparum strains K1, Dd2, HB3 and 3D7 were measured on four array types. Hierarchical clustering led to a clear separation of the two major subgroups "resistant" and "sensitive" as well as of the four parasite strains. Our study delivers sets of regulated proteins derived from extensive comparative analyses of 64 P. falciparum protein profiles. A group of 12 peaks reflecting proteome changes under chloroquine treatment and a set of 10 potential chloroquine resistance markers were defined. Three of these regulated peaks were preparatively enriched, purified and identified. They were shown to represent the plasmodial EXP-1 protein, also called circumsporozoite-related antigen, as well as the alpha- and beta- (delta-) chains of human hemoglobin.  相似文献   

11.
The basal activity of Ca2+-ATPase in two isolates (NL56, UNC) and two clones (D6, W2) of P.falciparum was assessed. The effects of various concentrations of chloroquine phosphate and toxic concentrations of lead acetate were also evaluated in the clones and strains of P.falciparum. The Ca2+-ATPase activity was measured by monitoring the rate of release of inorganic phosphate from the gamma-position of ATP on spectrophotometer at 820nm wavelength. The various concentrations of chloroquine (3, 6, 9, 12, 18μg/ml) and lead acetate (5, 10, 20, 30, 40μg/ml) on Ca2+-ATPase activity were measured respectively. Chloroquine phosphate inhibited Ca2+-ATPase activity in both the isolates and the cloned strains of P.falciparum in concentration dependent manner. Median Inhibitory concentration of chloroquine (MIC50) estimated from the plot of activity against chloroquine concentration was found to be 2.6mg/ml at pH 7.4 for both the isolates and cloned strains examined. Lead acetate at concentrations 5-20μg/ml inhibited Ca2+-ATPase activity in concentration dependent manner in clone W2 (Chloroquine resistant strain) while the same range of concentrations of lead acetate stimulated the activity of the enzyme in clone D6 (Chloroquine sensitive strain).The inhibitory effect of lead acetate on the enzyme in clone D6 was observed at concentrations above 20μg/ml. The result also suggests that lead ions could modulate and moderate calcium ion homeostasis in P. falciparum via its effect on Ca2+-ATPase activity. Also sufficient influx of lead ions into P. falciparum may transform the biochemical or bioenergetics nature of chloroquine sensitive strain of P. falciparum (D6) to that similar to chloroquine resistant strain (W2). In conclusion, inhibition of Ca2+-ATPase activity of P.falciparum may be part of the mechanism of action of chloroquine in its use as chemotherapy for malaria. The study implies that populations simultaneously exposed to lead pollution and malaria infection may experience failure in chloroquine therapy.  相似文献   

12.
The present communication deals with drug-resistant Plasmodium falciparum malaria complicating hematologic malignancies (leukemias, n = 24, and lymphomas, n = 7) in children. Of 50 cases of hematologic malignancies, 31 patients were microscopically diagnosed as having P. falciparum infection (MP +). Initially, all the patients were treated with chloroquine. The results of primary treatment showed chloroquine resistance in 16 (51. 62%) cases. Of these 16 chloroquine-resistant cases, 13 were secondarily treated with a combination of pyrimethamine plus sulfamethopyrazine. The results of secondary treatment also revealed resistance to pyrimethamine plus sulfamethopyrazine in 6 of 13 (46. 10%) cases. The 6 pyrimethamine plus sulfamethopyrazine-resistant P. falciparum cases were finally cured by quinine therapy, against which no resistance was encountered. Conversely, in the control group comprising 38 cases of P. falciparum without malignancy, the incidence of chloroquine resistance was found in only 9 cases, which is rather low (23.70%). Of these 7 chloroquine-resistant cases, 5 were found to be sensitive to pyrimethamine plus sulfamethopyrazine treatment, while the 2 nonresponders were finally cured with quinine. The overall results of this study show a high prevalence of chloroquine resistance among clinical cases of falciparum malaria (25/69; 30.6%). Among the nonresponders (n = 20) 40% of cases were also resistant to the pyrimethamine plus sulfamethopyrazine combination. There was no resistance to quinine.  相似文献   

13.
The multidrug resistance (MDR) phenotype in mammalian tumor cells can involve amplification of mdr genes that results in overexpression of the protein product termed P-glycoprotein. Chloroquine resistance (CQR) in Plasmodium falciparum has similarities with the MDR phenotype in tumor cells, and some isolates of P. falciparum have amplified levels of the pfmdr1 gene. To investigate the nature and origin of pfmdr1 amplicons, we have cloned large regions of a 110-kb amplicon from the CQR cloned isolate B8 by using the yeast artificial chromosome system. We have identified and sequenced the breakpoints of the amplicon by a novel method employing inverted polymerase chain reaction that is applicable to analysis of any large-scale repeat. We show that the five copies of the amplicon in this isolate are in a head to tail configuration. A string of 30 A's flank the breakpoints on each side of the amplified segment, suggesting a mechanism for the origin of the tandem amplification. Polymerase chain reaction analysis with oligonucleotides that cross the B8 breakpoint has shown in 26 independent CQR isolates, 16 of which contain amplified copies of pfmdr1, that amplification of the pfmdr1 gene in P. falciparum has arisen as multiple independent events. These results suggest that this region of the genome is under strong selective pressure.  相似文献   

14.
Malaria is one of the major parasitic diseases. Current treatment of malaria is seriously hampered by the emergence of drug resistant cases. A once-effective drug chloroquine (CQ) has been rendered almost useless. The mechanism of CQ resistance is complicated and largely unknown. Recently, a novel transmembrane protein, Plasmodium falciparum chloroquine resistance transporter (PfCRT), has fulfilled all the requirements of being the CQ resistance gene. In order to elucidate the mechanism how PfCRT mediates CQ resistance, we have cloned the cDNA from a CQ sensitive parasite (3D7) and tried to express it in Pichia pastoris (P. pastoris) but with unsuccessful results due to AT-rich sequences in the malaria genome. We have therefore, based on the codon usage in P. pastoris, chemically synthesized a codon-modified pfcrt with an overall 55% AT content. This codon-modified pfcrt has now been successfully expressed in P. pastoris. The expressed PfCRT has been purified with immuno metal affinity chromatography (IMAC) and then reconstituted into proteoliposome. It was found that proteoliposomes have a saturable, concentration and time-dependent CQ transport activity. In addition, we found that proteoliposomes with resistant PfCRT(r) (K76T or K76I) showed an increased CQ transport activity compared to liposomes with lipid alone, or proteoliposomes reconstituted with sensitive PfCRT(s) (K76) protein. This activity could be inhibited by nigericin and decreased with the removal of Cl(-). This work suggests that PfCRT is mediating CQR in P. falciparum by virtue of its changes in CQ transport activity depending on pH gradient and chloride ion in the food vacuole.  相似文献   

15.
The dissemination of mutant and resistant strains of Plasmodium falciparum makes a considerable contribution to the spread of drug-resistant malaria. Populations around harbours and airports could be particularly exposed to Plasmodium isolates introduced with imported cases of malaria. The use of chloroquine as well as the use of and sulfadoxine/pyrimethamine is currently an effective method for treating uncomplicated cases of malaria in Madagascar. As part of a monitoring programme, in vitro methods were used to assess the sensitivity of P. falciparum isolates in two coastal towns in Madagascar: Mahajanga on the west coast and Toamasina on the east coast. All of the isolates from both sites were sensitive to amodiaquine, quinine, pyrimethamine and cycloguanil. All of the isolates from Mahajanga were sensitive to chloroquine (n = 25; mean IC50 = 22.6 nM, 95% confidence interval: 16.8-28.7 nM), whereas three of the isolates from Toamasina were resistant to chloroquine (n = 18; mean IC50 = 66.3 nM; 95% confidence interval: 42.6-90 nM). The frequency of the Pfcrt Thr-76 and the dhfr Asn-108 mutations was estimated by PCR/RFLP. The 43 P. falciparum isolates examined, including the three in vitro chloroquine-resistant isolates from Toamasina were all wild-type (Lys-76). Phenotyping and genotyping studies suggested that the prevalence of chloroquine- and pyrimethamine-resistant isolates and of mutant strains of P. falciparum is very low. These results showed that in vitro test and genotyping of resistance markers approaches could be successfully used to monitor the emergence of drug-resistant malaria and to try to alleviate the lack of medical teams able to carry out in vivo test. The possible hazard/risk associated with imported cases of malaria is discussed.  相似文献   

16.
Chloroquine has been the mainstay of antimalarial chemotherapy but the rapid spread of resistance to this important drug has now compromised its efficacy. The mechanism of chloroquine resistance has not been known but recent evidence from Plasmodium falciparum, the causative agent of the most severe form of human malaria, suggested similarities to the multidrug resistance phenotype (MDR) of mammalian tumour cells which is mediated by a protein molecule termed P-glycoprotein. Two mdr genes (pfmdr1 and pfmdr2) encoding P-glycoprotein homologues have been identified in P. falciparum and one of these (pfmdr1) has several alleles that have been linked to the chloroquine resistance phenotype. In contrast analysis of a genetic cross between chloroquine-resistant and -sensitive P. falciparum has suggested that the genes encoding the known P-glycoprotein homologues are not linked. This review outlines the similarities of the chloroquine resistance phenotype with the MDR phenotype of mammalian tumour cells and explores the possible role of the pfmdr genes.  相似文献   

17.
Drug pressure in the field is believed to be responsible for the emergence of drug-resistant Plasmodium falciparum, the parasite that causes malaria. Variants of the P. falciparum chloroquine resistance transporter (pfcrt) gene have been shown to be responsible for conferring resistance to the commonly used drug chloroquine. In particular, an amino acid mutation, K76T, was shown to have a strong positive correlation with the chloroquine-resistant varieties of malaria parasites. Global studies have reported highly reduced genetic diversity surrounding K76T in the pfcrt gene, which indicates that the mutation has been a target of positive Darwinian natural selection. However, two recent studies of P. falciparum in India found high genetic diversity in the pfcrt gene, which, at first sight, do not support the role of natural selection in the evolution of chloroquine resistance in India.  相似文献   

18.
Resistance to the antimalarial drug chloroquine has been linked with polymorphisms within a gene termed pfcrt in the human malarial parasite Plasmodium falciparum, yet the mechanism by which this gene confers the reduced drug accumulation phenotype associated with resistance is largely unknown. To investigate the role of pfcrt in mediating chloroquine resistance, we challenged P. falciparum clones differing only in their pfcrt allelic form with the "varying-trans" procedure. In this procedure, movement of labeled substrate across a membrane is measured when unlabeled substrate is present on the trans side of the membrane. If a transporter is mediating the substrate flow, a stimulation of cis-to-trans movement may be observed with increasing concentrations of trans substrate. We present evidence for an association of those pfcrt alleles found in chloroquine-resistant P. falciparum strains with the phenomenon of stimulated chloroquine accumulation under varying-trans conditions. Such an association is not seen with polymorphisms within pfmdr1, which encodes a homologue of the human multidrug resistance efflux pump. Our data are interpreted in terms of a model in which pfcrt is directly or indirectly involved in carrier-mediated chloroquine efflux from resistant cells.  相似文献   

19.
A study on chloroquine resistance of falciparum malaria was conducted in the Solomon Islands. Both in vitro and clinical tests were performed. In our regular studies of in vitro chloroquine susceptibility tests on Plasmodium falciparum from non-immuners in Japan, the threshold point to differentiate resistant and susceptible isolates was set at a 0. 114 microM chloroquine in the semi-micro culture system, and this point was also applicable in the study of the malaria parasite taken in the highly endemic malarious area with good coincidence with clinical observation. Variation in the incubation time (24-63) to reach the schizont stage of the isolated parasites were noted. It appeared that chloroquine resistant P. falciparum showed traits to reach the schizont stage within a shorter incubation period.  相似文献   

20.
The global emergence and spread of malaria parasites resistant to antimalarial drugs is the major problem in malaria control. The genetic basis of the parasite's resistance to the antimalarial drug chloroquine (CQ) is well-documented, allowing for the analysis of field isolates of malaria parasites to address evolutionary questions concerning the origin and spread of CQ-resistance. Here, we present DNA sequence analyses of both the second exon of the Plasmodium falciparum CQ-resistance transporter (pfcrt) gene and the 5' end of the P. falciparum multidrug-resistance 1 (pfmdr-1) gene in 40 P. falciparum field isolates collected from eight different localities of Odisha, India. First, we genotyped the samples for the pfcrt K76T and pfmdr-1 N86Y mutations in these two genes, which are the mutations primarily implicated in CQ-resistance. We further analyzed amino acid changes in codons 72-76 of the pfcrt haplotypes. Interestingly, both the K76T and N86Y mutations were found to co-exist in 32 out of the total 40 isolates, which were of either the CVIET or SVMNT haplotype, while the remaining eight isolates were of the CVMNK haplotype. In total, eight nonsynonymous single nucleotide polymorphisms (SNPs) were observed, six in the pfcrt gene and two in the pfmdr-1 gene. One poorly studied SNP in the pfcrt gene (A97T) was found at a high frequency in many P. falciparum samples. Using population genetics to analyze these two gene fragments, we revealed comparatively higher nucleotide diversity in the pfcrt gene than in the pfmdr-1 gene. Furthermore, linkage disequilibrium was found to be tight between closely spaced SNPs of the pfcrt gene. Finally, both the pfcrt and the pfmdr-1 genes were found to evolve under the standard neutral model of molecular evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号