首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Studies on intact cells, membrane vesicles, and reconstituted proteoliposomes have demonstrated in higher plants the existence of an ATP-driven electrogenic proton pump operating at the plasmalemma. There is also evidence of a second ATP-driven H+ pump localized at the tonoplast. The characteristics of both these ATP-driven pumps closely correspond to those of the plasmalemma and tonoplast proton pumps ofNeurospora and yeasts.  相似文献   

3.
Large-scale preparation of highly purified tonoplast from cucumber (Cucumis sativus L.) roots was obtained after centrifugation of microsome pellet (10,000 – 80,000 g) on discontinuous sucrose density gradient (20, 28, 32 and 42 %). Lack of PEP carboxylase (cytosol marker) and cytochrome c oxidase (mitochondrial marker) together with a slight activity of VO4-ATPase (plasma membrane marker) and NADH-cytochrome c reductase (ER marker) in tonoplast preparation confirmed its high purity. Using latency of nitrate-inhibited ATPase and H+ pumping as criteria it was established that the majority of tonoplast vesicles were sealed and oriented right(cytoplasmic)-side-out. Strong acidification of the interior of vesicles observed at the presence of both, ATP and PPi, confirmed that obtained tonoplast contains two classes of proton pumps: V-ATPase and H+PPiase. To examine and characterise of proton-transport systems in tonoplast, the effect of various inhibitors on H+ pumping and hydrolytic activities of ATPase and PPiase were measured. ATP-dependent activities (H+ flux and ATP hydrolysis) were specifically decreased by nitrate and bafilomycin A1, whereas the PPiase activities were reduced in the presence of fluoride and Na+ ions. Both enzymes showed a similar sensitivity to DCCD and DES. The results of experiments with KCl and NaCl suggested that the vacuolar ATPase was stimulated by Cl, whereas the vacuolar Ppiase requires K+ ions for its activity.  相似文献   

4.
Hans Peter Getz 《Planta》1991,185(2):261-268
Sucrose uptake into tonoplast vesicles, which were prepared from red beet (Beta vulgaris L.) vacuoles isolated by two different methods, was stimulated by MgATP. Using the same medium as for osmotic disruption of vacuoles, membrane vesicles were prepared from tissue homogenates of dormant red beet roots and separated by high-speed centrifugation through a discontinuous dextran gradient. A low-density microsomal fraction highly enriched in tonoplast vesicles could be further purified from contaminating ER vesicles by inclusion of 5 mM MgCl2 in the homogenization medium. These vesicles were able to transport sucrose in an ATP-dependent manner against a concentration gradient, whereas vesicles from regions of other densities lacked this feature, indicating that ATP stimulation of sucrose uptake took place only at the tonoplast membrane. Sucrose uptake was optimal at pH 7 in the presence of MgATP and could be stimulated by superimposed pH gradients (vesicle interior acidic) in the absence of MgATP, which is consistent with the operation of a sucrose/H+-antiporter at the tonoplast. Tonoplast vesicles, obtained in high yield from tissue homogenates of red beet roots, exhibited sugar-uptake characteristics comparable to those of intact vacuoles; these characteristics included similarities in K m (1.7 mM), sensitivity to inhibitors and specificity for sucrose.Many experiments were carried out at the Experiment Station of the HSPA, Aiea, Hawaii and financed by an NSF grant to Dr. Maretzki and Mrs. M. Thom.  相似文献   

5.
6.
7.
C. Niemietz  J. Willenbrink 《Planta》1985,166(4):545-549
The pH gradient and the electric potential across the tonoplast in mechanically isolated beetroot vacuoles has been studied by following the uptake of [14C]methylamine and [14C]triphenyl-methylphosphoniumchloride. In response to Mg-ATP, the vacuolar interior is acidified by 0.8 units. This strong acidification is accompanied by a slight hyperpolarization of the membrane potential, which is probably caused by a proton diffusion potential. In preparations where only a small acidification (0.4 units) occurred, the membrane potential was depolarized by the addition of Mg-ATP. Different monovalent cations and anions were tested concerning their effect on the pH gradient and ATPase activity in proton-conducting tonoplasts. Chloride stimulation and NO 3 - inhibition were clearly present. The observed decline of the pH gradient upon the addition of Na+ salts is probably caused by an Na+/H+ antiport system.Abbreviations and symbol CCCP carbonylcyanide-m-chlorophenylhydrazone - Mes 2(N-morpholino)ethanesulfonic acid - TPMP+ triphenylmethylphosphoniumchloride - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol - membrane potential Dedicated to Professor A. Betz on the occasion of his 65th birthday  相似文献   

8.
The relationship between the physiological characteristics and changes in the activities of H+ pumps of the plasma membrane and tonoplast of characean cells is discussed. The large size of the characean internodal cells allows us to perform various experimental operations. The intracellular perfusion technique developed by Tazawaet al. (1976) is a powerful tool for analyzing the characteristics and control mechanisms of the H+ pumps (Tazawa and Shimmen 1987, Tazawaet al. 1987, Shimmenet al. 1994) Respiration-dependent changes in the activity of the plasma membrane H+ pump are explained by changes in the supply of energy substrate. Photosynthesis-dependent changes in activities of both the plasma membrane and the tonoplast H+ pumps are explained in terms of changes in the level of inorganic phosphate in the cytoplasm. Cytoplasmic and vacuolar pHs are suggested to be controlling factors forin vivo activities of the H+ pumps. Furthermore, the membrane potential and various ions are considered to bein vivo factors that regulate the activities of the H+ pumps. Recipient of the Botanical Society Award of Young Scientists, 1993.  相似文献   

9.
14-3-3 protein regulation of proton pumps and ion channels   总被引:6,自引:0,他引:6  
In addition to their regulation of cytoplasmic enzymes, the 14-3-3 proteins are important regulators of membrane localised proteins. In particular, many of the cells' ion pumps and channels are either directly or indirectly modulated by 14-3-3 proteins. Binding of 14-3-3 can lead to the activation of pump activity as in the case of the plasma membrane H+-ATPase or inhibition as in the case of the F-type ATP synthase complexes. 14-3-3 binding can also lead to surprising results such as the recruitment of `sleepy' outward rectifiying K+ channels in tomato cells. Our present knowledge extends to an initial understanding of isoform-specific binding of 14-3-3 to certain membrane proteins and a perception of the protein kinases and phosphatases that maintain the regulatory process in a state of flux.  相似文献   

10.
Plasma membranes were prepared from red beet (Beta vulgaris L.) storage tissue by partition in an aqueous two-phase system. A highly active proton-translocating ATPase was purified from these membranes by lysophosphatidylcholine extraction and glycerol density gradient centrifugation. The ATPase activity was inhibited by vanadate or dicyclohexyl carbodiimide, but was insensitive to azide, nitrate and molybdate at concentrations which inhibit the F1ATPase, the tonoplast ATPase, and acid phosphatase. Inhibition by vanadate was consistent with a non-competitive mechanism, with Ki = 10 microM. The Km for Mg-ATP was about 1 mM, magnesium ions were required, and the activity was stimulated by KCl and by lysophosphatidylcholine. The optimal pH was 6.5. The molecular mass by gel filtration in the presence of 2 g/liter octyl glucoside was 600 kDa, while dodecyl sulfate gel electrophoresis gave a polypeptide molecular mass of 100 kDa. After blotting onto nitrocellulose, the purified enzyme did not bind concanavalin A, although a concanavalin A-binding peptide of the plasma membrane runs to nearly the same position on the gel and showed some tendency to co-purify with the ATPase. Phospholipid vesicles into which the purified ATPase had been incorporated by the freeze-thaw technique showed vanadate-sensitive, ATP-dependent proton uptake. When the ATPase was reconstituted into lipid membranes at high protein to lipid ratios and incubated with ATP, two-dimensionally crystalline arrays of protein molecules were formed.  相似文献   

11.
12.
B G Malstrom 《FEBS letters》1988,231(1):268-269
In a Review-Hypothesis, Mitchell [(1987) FEBS Lett. 222,235-245] has recently suggested possible molecular mechanisms for proton translocation by cytochrome oxidase. In describing these mechanisms, he extended his own concept of a redox loop in a manner expected to lead to confusion. He also stated that the term redox-linked proton pump implies an indirect coupling between electron transfer and proton translocation, and that this type of coupling is very difficult to test experimentally. Here it is argued that the original meaning of a redox loop should be maintained, and proper definitions of the terms redox-linked proton pump and direct or indirect coupling are formulated. In addition, it is reasoned that both types of coupling are amenable to experimental tests.  相似文献   

13.
R. D. Allen 《Protoplasma》1995,189(1-2):1-8
Summary A model is presented for one type of membrane tubulation. In this model large transmembrane protein complexes link together to form helical bands. To form the helical bands the individual complexes within the band would need to form a slight bend and twist with adjacent complexes as they link together. Such linkages would lead to the band and lipid bilayer extending out from the plane of the membrane to form a tube of a diameter equal to or smaller than the radial diameter of the helix. This model is supported by two examples of membrane tubulation found inParamecium, in which proton pumps are the transmembrane complexes that are associated together to form the helically coiled bands. These include the helically linked F0F1 complexes of the mitochondrial inner membrane and the V0V1 complexes of the decorated tubules of the contractile vacuole complex. Such tubules result in very high surface-to-volume ratios and may be important in efficient ATP production or in forming proton gradients for transporting ions across membranes.  相似文献   

14.
15.
Tonoplast-localised proton-coupled Ca2+ transporters encoded by cation/H+ exchanger (CAX) genes play a critical role in sequestering Ca2+ into the vacuole. These transporters may function in coordination with Ca2+ release channels, to shape stimulus-induced cytosolic Ca2+ elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant''s stress response. A common feature of these mutants was the perturbation of H+-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca2+/H+ exchangers and H+ pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca2+ flux. These results suggest cautious interpretation of mutant Ca2+/H+ exchanger phenotypes that may be due to either perturbed Ca2+ or H+ transport.Key words: abiotic stress, Ca2+ transport, Ca2+/H+ exchanger, H+-ATPase, Na+ transport, pH, salt stress, vacuoleCa2+ plays a fundamental role in the plant cell, functioning as a highly versatile second messenger controlling a multitude of cellular reactions and adaptive responses.1,2 Ca2+ dynamics are maintained by precise interplay among transporters involved in its release from or uptake into Ca2+ stores. The vacuole, as the largest internal Ca2+ pool, is assumed to play a major role in Ca2+ signalling, and has been shown to be the source of Ca2+ release following various abiotic stresses such as cold and osmotic stress.3,4 Rapid, stimulus-induced release of Ca2+ from the vacuole is attributable to selectively permeable Ca2+ channels, however, the identity of candidate genes encoding this mechanism remains contested.5,6 Better understood, are the two major vacuolar uptake mechanisms; P-type Ca2+ pumps, including ACA4 and ACA11, which mediate high-affinity Ca2+ uptake, and a family of cation/H+ exchangers (CAX), responsible for lower-affinity but high-capacity Ca2+ uptake.7,8 While Ca2+ pumps rely directly on the hydrolysis of ATP to drive Ca2+ uptake, Ca2+/H+ exchangers are energized indirectly by the pH gradient generated by electrogenic H+ pumps located on the tonoplast, including the vacuolar-type H+-ATPase (V-ATPase).9With the aim of further understanding the role of specific CAX isoforms in Arabidopsis, we and others have recently characterized CAX mutants and overexpression lines and observed a variety of phenotypes, including altered response to abiotic stresses.1014 While some phenotypes are identical among different CAX mutants, others are specific to individual lines.14 Moreover, these analyses have highlighted the interplay of these transporters with H+ pumps at both the tonoplast and the plasma membrane. Overexpression of CAX1 in Arabidopsis results in increased activity of the V-ATPase, whereas mutations in CAX1 cause a concomitant decrease in measured V-ATPase activity (Fig. 1).11 Similar reductions in V-ATPase activity are also observed in cax2 and cax3 mutant plants but to a lesser extent,12,13 and a significant reduction is observed in a cax1 cax3 double knockout line.13 At the plasma membrane, P-type H+-ATPase (P-ATPase) activity is increased in cax1 but decreased in cax3 (Fig. 1).14 Indeed cax3 lines appeared more sensitive to changes in the pH of the growth media.14 This implies that unlike cax1, cax3 is less efficient at cytoplasmic pH adjustment. Another intriguing observation is that activity of the H+-pyrophosphatase (H+-PPase) at the tonoplast is largely unaltered following CAX gene deletion. While overexpression of the Arabidopsis H+-PPase AVP1 leads to increased Ca2+/H+ exchange activity,15,16 there is little alteration in H+-PPase activity following perturbed expression of CAX1 or CAX2.11,12 Thus, this feedback interplay appears to exist only between exchangers and H+-ATPases.Open in a separate windowFigure 1Tonoplast H+-ATPase (V-ATPase) activity and plasma membrane H+-ATPase (P-ATPase) activity in wild type Arabidopsis (ecotype Col-0) and Arabidopsis lines with manipulated tonoplast Ca2+/H+ exchange activity. 35S::CAX1 and 35S::CAX2 denote lines that overexpress a constitutively active N-terminally truncated CAX1 or CAX2 construct driven by the CaMV 35S promoter in the cax1-1 or cax2-1 mutant background, respectively. V-ATPase H+-transport activity was measured by the ATP-dependent quenching of quinacrine fluorescence, and rates of bafilomycin-sensitive, vanadate-resistant hydrolytic activity of the V-ATPase were determined in isolated tonoplast membranes, as described in refs. 11 and 13. Rates of vanadate-sensitive, bafilomycin- and azide-resistant hydrolytic activity of the P-ATPase were determined in isolated plasma membranes, as described in ref. 14. Results are shown as % of wild type (Col-0) ATPase activity and are means ± SE of 3–4 independent experiments. Data taken and modified from refs. 1114.The V-ATPase is important not only for maintenance of a pH gradient across the tonoplast, but also in maintenance of Golgi structure, endocytosis and secretory trafficking.17,18 The V-ATPase is localised at the Golgi, endoplasmic reticulum and endosomes, in addition to the tonoplast.9 The det3 mutant, with a mutation in subunit C (VHA-C), has a 40–60% reduction in V-ATPase activity, but numerous severe developmental phenotypes.19 In contrast, the cax1 and cax1 cax3 mutants have a reduction in V-ATPase activity equivalent to det3 (Fig. 1), but the morphological phenotypes are not as pronounced.13 It is therefore likely that reduction of tonoplast Ca2+/H+ exchange primarily affects tonoplast V-ATPase activity, while V-ATPase activity in the secretory pathway is unperturbed. The V-ATPase is a multi-subunit protein and some of these subunit gene products appear to be either tonoplast-specific or tonoplast-enriched. Mutations in tonoplast subunits may cause defective V-ATPase activity only at the tonoplast.9 It will be of interest to see whether such tonoplast-specific V-ATPase mutants phenocopy the cax mutants, and possess perturbed Ca2+/H+ exchange activity and altered abiotic stress responses.CAX-mediated transport may alter both cytoplasmic and lumenal pH, as well as intracellular Ca2+ gradients. In the case of the V-ATPase, evidence is emerging for a role not only in the generation of a pH gradient across membranes, but also in the direct sensing of pH within the compartment,20,21 creating a feedback mechanism which regulates pump activity. Thus, in cax1 lines, abnormal acidification of the lumen is detected by the V-ATPase resulting in a dampening of its activity. This would conserve ATP, which we postulate could be utilized to drive the tonoplast Ca2+ pump which itself is upregulated in cax1 as a compensatory mechanism to correct perturbations in the Ca2+ gradient.11 In the case of cax1, this in turn may signal the P-ATPase to remove surplus H+ from the cytoplasm, triggering its upregulation (Fig. 1). However, not all CAX mutants show this complex H+ feedback mechanism.Co-ordinate downregulation of the V-ATPase in the cax1 mutant lines may also be a result of activity of the SOS2 kinase. This Ser/Thr kinase, which specifically interacts with the N-terminus of CAX1 resulting in Ca2+/H+ exchange activation,22 upregulates V-ATPase activity through interactions with the VHA-B regulatory subunit.23 Loss of CAX1 may be signalling to the V-ATPase through changes in SOS2 activity resulting in a compensatory downregulation of the pump. It is tempting to speculate that SOS2 may signal the alteration in P-ATPase activity, as it is known to regulate other plasma membrane proteins, notably the Na+/H+ exchanger SOS1.24 It will be interesting to determine if SOS2 and the P-ATPase interact directly. It is notable, however, that SOS2 does not appear to interact with CAX3,22 while P-ATPase activity is reduced in cax3 plants.14Our recent results indicate there are at least two modes by which Ca2+/H+ exchangers can mediate adaptive responses to stress: direct manipulation of cytosolic Ca2+ and indirect feedback of H+ flux (Fig. 2). For example, salt stress responses are likely controlled via the generation of a specific cytosolic Ca2+ signature, which mediates a downstream signalling pathway. CAX3 appears to be the principle isoform providing tonoplast Ca2+/H+ exchange in response to salt stress.14 Disruption of CAX3-mediated tonoplast Ca2+ transport and the alteration of cytosolic Ca2+ dynamics may therefore alter the plant''s normal response to salt stress (Fig. 2). Maintenance of H+ gradients at both the vacuole and plasma membrane are also critical for salt tolerance, such that salt treatment upregulates V-ATPase and P-ATPase activity.25 This energizes Na+ efflux from the cytosol mediated by Na+/H+ exchangers at the plasma membrane and the tonoplast.24,26 Therefore downregulation of H+ pumps at both membranes in the cax3 mutant is likely to perturb the ability of the cell to remove Na+ (Fig. 2). Further analysis of cax mutants, P-ATPase mutants, and tonoplast-specific V-ATPase mutants will be required to determine whether many of the phenotypes resulting from lack of Ca2+/H+ exchange activity are due to altered Ca2+ transport or H+ transport.Open in a separate windowFigure 2Model of tonoplast Ca2+/H+ exchanger interaction with H+ pumps in response to salt stress. (A) In response to NaCl treatment, an elevation in cytosolic Ca2+ will occur, possibly due to vacuolar Ca2+ release.3 Increased CAX3-mediated Ca2+/H+ exchange activity14 will sequester excess Ca2+ into the vacuole. CAX3 may be involved in the generation of a specific Ca2+ signature that is recognised by the cell to mediate downstream stress responses. In addition, salt stress will lead to upregulation of H+ pumps at both the plasma membrane and the tonoplast (P-ATPase and V-ATPase)25 which will in turn energize Na+/H+ exchange activity encoded by SOS1 and NHX1, promoting Na+ efflux from the cell. Increased V-ATPase activity may also upregulate Ca2+/H+ exchange. Activity of SOS1 requires activation by the kinase SOS224 which may also regulate tonoplast Na+/H+ exchange and V-ATPase activity.23,24 (B) In a cax3 knockout mutant experiencing salt stress, the cytosolic Ca2+ elevation may be sustained due to reduced vacuolar Ca2+ sequestration and normal salinity-induced Ca2+ signalling pathways may be perturbed. Lack of CAX3 downregulates both P-ATPase and V-ATPase activity14 thereby reducing energization of the plasma membrane and tonoplast Na+/H+ exchangers and reducing Na+ efflux from the cell. Some energization of H+-coupled processes at the vacuole may be maintained by residual H+-pyrophosphatase (V-PPase) activity.The phenomenon observed between tonoplast Ca2+/H+ exchangers and H+ pumps at both the tonoplast and plasma membranes, suggesting a co-ordinate regulation between several transporters, is not solely restricted to this family of transporters. It is a common observation emerging from recent research on the manipulation of tonoplast transporters. Several labs have reported unpredictable phenotypes associated with ectopic expression of tonoplast proteins.2628 Until we understand the significance of these types of unexpected interactions, it is naïve to believe that engineering plants will provide predictable results.  相似文献   

16.
The effect of inhibitors of proton pumps, of uncouplers and of permeant ions on the relationship between input force, delta mu H+, and output flows of the ATPase, redox and transhydrogenase H(+)-pumps in submitochondrial particles was investigated. It is concluded that: (1) The decrease of output flow of the transhydrogenase proton pump, defined as the rate of reduction of NADP+ by NADH, is linearily correlated with the decrease of input force, delta mu H+, in an extended range of delta mu H+, independently of whether the H(+)-generating pump is the ATPase or a redox pump, or whether delta mu H+ is depressed by inhibitors of the H(+)-generating pump such as oligomycin or malonate, or by uncouplers. (2) The output flows of the ATPase and of the site I redox H(+)-pumps exhibit a steep dependence on delta mu H+. The flow-force relationships differ depending on whether the depression of delta mu H+ is induced by inhibitors of the H(+)-generating pump, by uncouplers or by lipophilic anions. (3) With the ATPase as H(+)-consuming pump, at equivalent delta mu H+ values, the output flow is more markedly inhibited by malonate than by uncouplers; the latter, however, are more inhibitory than lipophilic anions such as ClO4-. With redox site I as proton-consuming pump, at equivalent delta mu H+ values, the output flow is more markedly inhibited by oligomycin than by uncouplers; again, uncouplers are more inhibitory than ClO4-. (4) The results provide further support for a delocalized interaction of transhydrogenase with other H(+)-pumps.  相似文献   

17.
Variations of the redox status is shown to inhibit the transport activity of tonoplast proton pumps at different stages of ontogenesis and under the conditions of hyperosmotic stress. However, the activity of H+-ATPase increased by 60% under hypoosmotic stress in the presence of GSH. The influence of nitric oxide on the transport activity of tonoplast proton pumps also depended on the redox status. In the case of change of the redox status, stimulating effect of nitric oxide turned inhibitory, except for simultaneous application of hypoosmotic stress and nitric oxide. In this case, stimulation of both proton pumps was observed and the activity of H+-ATPase increased in the presence of GSH, though the activity of H+-PPase increased in the presence of GSSG. This may explain the necessity of the presence in the vacuolar membrane of two proton pumps having similar functions.  相似文献   

18.
Diclofop-methyl (methyl ester of 2-[4-(2′,4′-dichlorophenoxy)phenoxy]propionate; 100 micromolar) and diclofop (100 micromolar) inhibited both ATP- and PPi-dependent formation of H+ gradients by tonoplast vesicles isolated from oat (Avena sativa L., cv Dal) roots. Diclofop-methyl (1 micromolar) significantly reduced the steady-state H+ gradient generated in the presence of ATP. The ester (diclofop-methyl) was more inhibitory than the free acid (diclofop) at pH 7.4, but this relative activity was reversed at pH 5.7. Neither compound affected the rate of ATP or PPi hydrolysis by the proton-pumping enzymes. Diclofop-methyl (50, 100 micromolar), but not diclofop (100 micromolar), accelerated the decay of nonmetabolic H+ gradients established across vesicle membranes. Diclofop-methyl (100 micromolar) did not collapse K+ gradients across vesicle membranes. Both the (+)- and (−)-enantiomers of diclofop-methyl dissipated nonmetabolic H+ gradients established across vesicle membranes. Diclofop-methyl, but not diclofop (each 100 micromolar), accelerated the decay of H+ gradients imposed across liposomal membranes. These results show that diclofop-methyl causes a specific increase in the H+ permeability of tonoplast.  相似文献   

19.
Ionic coupling was found in all investigated fibroblastoid cells of 7 permanent cell lines in culture, whereas in 7 epithelioid cell lines no coupling could be detected. These established lines consisted of cells of normal or malignant origin as well as cells that were able to, or failed to, produce tumors, but the only relation with ionic coupling appeared to be morphology. The ionic coupling between fibroblastoid cells was unaffected by the presence of fetal calf serum instead of calf serum; culturing in media conditioned by non-coupled cells; variation of the potential difference and phase of the cell cycle. Coupled cells could be depolarized by decreasing the bicarbonate concentration in the media; non-coupled cells were unaffected.  相似文献   

20.
Grabe M  Wang H  Oster G 《Biophysical journal》2000,78(6):2798-2813
The vacuolar H(+)-ATPases (V-ATPases) are a universal class of proton pumps that are structurally similar to the F-ATPases. Both protein families are characterized by a membrane-bound segment (V(o), F(o)) responsible for the translocation of protons, and a soluble portion, (V(1), F(1)), which supplies the energy for translocation by hydrolyzing ATP. Here we present a mechanochemical model for the functioning of the V(o) ion pump that is consistent with the known structural features and biochemistry. The model reproduces a variety of experimental measurements of performance and provides a unified view of the many mechanisms of intracellular pH regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号