首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
Scavenger receptor, class B, type I (SR-BI) mediates the selective uptake of high density lipoprotein (HDL) cholesteryl ester without the uptake and degradation of the particle. In transfected cells SR-BI recognizes HDL, low density lipoprotein (LDL) and modified LDL, protein-free lipid vesicles containing anionic phospholipids, and recombinant lipoproteins containing apolipoprotein (apo) A-I, apoA-II, apoE, or apoCIII. The molecular basis for the recognition of such diverse ligands by SR-BI is unknown. We have used direct binding analysis and chemical cross-linking to examine the interaction of murine (m) SR-BI with apoA-I, the major protein of HDL. The results show that apoA-I in apoA-I/palmitoyl-oleoylphosphatidylcholine discs, HDL(3), or in a lipid-free state binds to mSR-BI with high affinity (K(d) congruent with 5-8 microgram/ml). ApoA-I in each of these forms was efficiently cross-linked to cell surface mSR-BI, indicating that direct protein-protein contacts are the predominant feature that drives the interaction between HDL and mSR-BI. When complexed with dimyristoylphosphatidylcholine, the N-terminal and C-terminal CNBr fragments of apoA-I each bound to SR-BI in a saturable, high affinity manner, and each cross-linked efficiently to mSR-BI. Thus, mSR-BI recognizes multiple sites in apoA-I. A model class A amphipathic alpha-helix, 37pA, also showed high affinity binding and cross-linking to mSR-BI. These studies identify the amphipathic alpha-helix as a recognition motif for SR-BI and lead to the hypothesis that mSR-BI interacts with HDL via the amphipathic alpha-helical repeat units of apoA-I. This hypothesis explains the interaction of SR-BI with a wide variety of apolipoproteins via a specific secondary structure, the class A amphipathic alpha-helix, that is a common structural motif in the apolipoproteins of HDL, as well as LDL.  相似文献   

2.
The severe depletion of cholesteryl ester (CE) in steroidogenic cells of apoA-I(-/-) mice suggests that apolipoprotein (apo) A-I plays a specific role in the high density lipoprotein (HDL) CE-selective uptake process mediated by scavenger receptor BI (SR-BI) in vivo. The nature of this role, however, is unclear because a variety of apolipoproteins bind to SR-BI expressed in transfected cells. In this study the role of apoA-I in SR-BI-mediated HDL CE-selective uptake was tested via analyses of the biochemical properties of apoA-I(-/-) HDL and its interaction with SR-BI on adrenocortical cells, hepatoma cells, and cells expressing a transfected SR-BI. apoA-I(-/-) HDL are large heterogeneous particles with a core consisting predominantly of CE and a surface enriched in phospholipid, free cholesterol, apoA-II, and apoE. Functional analysis showed apoA-I(-/-) HDL to bind to SR-BI with the same or higher affinity as compared with apoA-I(+/+) HDL, but apoA-I(-/-) HDL showed a 2-3-fold decrease in the V(max) for CE transfer from the HDL particle to adrenal cells. These results indicate that the absence of apoA-I results in HDL particles with a reduced capacity for SR-BI-mediated CE-selective uptake. The reduced V(max) illustrates that HDL properties necessary for binding to SR-BI are distinct from those properties necessary for the transfer of HDL CE from the core of the HDL particle to the plasma membrane. The reduced V(max) for HDL CE-selective uptake likely contributes to the severe reduction in CE accumulation in steroidogenic cells of apoA-I(-/-) mice.  相似文献   

3.
Apolipoprotein A-I (apoA-I) is an important ligand for the high density lipoprotein (HDL) scavenger receptor class B type I (SR-BI). SR-BI binds both free and lipoprotein-associated apoA-I, but the effects of particle size, composition, and apolipoprotein conformation on HDL binding to SR-BI are not understood. We have studied the effect of apoA-I conformation on particle binding using native HDL and reconstituted HDL particles of defined composition and size. SR-BI expressed in transfected Chinese hamster ovary cells was shown to bind human HDL(2) with greater affinity than HDL(3), suggesting that HDL size, composition, and possibly apolipoprotein conformation influence HDL binding to SR-BI. To discriminate between these factors, SR-BI binding was studied further using reconstituted l-alpha-palmitoyloleoyl-phosphatidylcholine-containing HDL particles having identical components and equal amounts of apoA-I, but differing in size (7.8 vs. 9.6 nm in diameter) and apoA-I conformation. The affinity of binding to SR-BI was significantly greater (50-fold) for the larger (9.6-nm) particle than for the 7.8-nm particle. We conclude that differences in apoA-I conformation in different-sized particles markedly influence apoA-I recognition by SR-BI. Preferential binding of larger HDL particles to SR-BI would promote productive selective cholesteryl ester uptake from larger cholesteryl ester-rich HDL over lipid-poor HDL.  相似文献   

4.
Exchangeable serum apolipoproteins and amphipathic alpha-helical peptides are effective inhibitors of sterol (free and esterified cholesterol) uptake at the small-intestinal brush border membrane. The minimal structural requirement of an inhibitor is an amphipathic alpha-helix of 18 amino acids. The inhibition is competitive, indicating that the inhibitor binds to scavenger receptor class B type I (SR-BI) present in the brush border membrane and responsible for sterol uptake. Binding of apolipoprotein A-I to SR-BI of rabbit brush border membrane is cooperative, characterized by a dissociation constant K(d) = 0.45 microM and a Hill coefficient of n = 2.8. The cooperativity of the interaction is due to binding of the inhibitor molecule to a dimeric or oligomeric form of SR-BI held together by disulfide bridges. Consistent with the competitive nature of the inhibition, the K(d) value agrees within experimental error with the IC(50) value of inhibition and with the inhibition constant K(I). After proteinase K treatment of brush border membrane vesicles, the affinity of the interaction of apolipoprotein A-I expressed as K(d) is reduced by a factor of 20, and the cooperativity is lost. The interaction of proteinase K-treated brush border membrane vesicles with apolipoprotein A-I is nonspecific partitioning of the apolipoprotein into the lipid bilayer of brush border membrane vesicles.  相似文献   

5.
Scavenger receptor class B type I (SR-BI) and ABCA1 are structurally dissimilar cell surface proteins that play key roles in HDL metabolism. SR-BI is a receptor that binds HDL with high affinity and mediates both the selective lipid uptake of cholesteryl esters from lipid-rich HDL to cells and the efflux of unesterified cholesterol from cells to HDL. ABCA1 mediates the efflux of unesterified cholesterol and phospholipids from cells to lipid-poor apolipoprotein A-I (apoA-I). The activities of ABCA1 and other ATP binding cassette superfamily members are inhibited by the drug glyburide, and SR-BI-mediated lipid transport is blocked by small molecule inhibitors called BLTs. Here, we show that one BLT, [1-(2-methoxy-phenyl)-3-naphthalen-2-yl-urea] (BLT-4), blocked ABCA1-mediated cholesterol efflux to lipid-poor apoA-I at a potency similar to that for its inhibition of SR-BI (IC(50) approximately 55-60 microM). Reciprocally, glyburide blocked SR-BI-mediated selective lipid uptake and efflux at a potency similar to that for its inhibition of ABCA1 (IC(50) approximately 275-300 microM). As is the case with BLTs, glyburide increased the apparent affinity of HDL binding to SR-BI. The reciprocal inhibition of SR-BI and ABCA1 by BLT-4 and glyburide raises the possibility that these proteins may share similar or common steps in their mechanisms of lipid transport.  相似文献   

6.
The severe depletion of cholesteryl ester (CE) in adrenocortical cells of apoA-I(-/-) mice suggests that apolipoprotein (apo) A-I plays an important role in the high density lipoprotein (HDL) CE selective uptake process mediated by scavenger receptor BI (SR-BI) in vivo. A recent study showed that apoA-I(-/-) HDL binds to SR-BI with the same affinity as apoA-I(+/+) HDL, but apoA-I(-/-) HDL has a decreased V(max) for CE transfer from the HDL particle to adrenal cells. The present study was designed to determine the basis for the reduced selective uptake of CE from apoA-I(-/-) HDL. Variations in apoA-I(-/-) HDL particle diameter, free cholesterol or phospholipid content, or the apoE or apoA-II content of apoA-I(-/-) HDL had little effect on HDL CE selective uptake into Y1-BS1 adrenal cells. Lecithin cholesterol acyltransferase treatment alone or addition of apoA-I to apoA-I(-/-) HDL alone also had little effect. However, addition of apoA-I to apoA-I(-/-) HDL in the presence of lecithin cholesterol acyltransferase reorganized the large heterogeneous apoA-I(-/-) HDL to a more discrete particle with enhanced CE selective uptake activity. These results show a unique role for apoA-I in HDL CE selective uptake that is distinct from its role as a ligand for HDL binding to SR-BI. These data suggest that the conformation of apoA-I at the HDL surface is important for the efficient transfer of CE to the cell.  相似文献   

7.
Serum amyloid A is an acute phase protein that is carried in the plasma largely as an apolipoprotein of high density lipoprotein (HDL). In this study we investigated whether SAA is a ligand for the HDL receptor, scavenger receptor class B type I (SR-BI), and how SAA may influence SR-BI-mediated HDL binding and selective cholesteryl ester uptake. Studies using Chinese hamster ovary cells expressing SR-BI showed that (125)I-labeled SAA, both in lipid-free form and in reconstituted HDL particles, functions as a high affinity ligand for SR-BI. SAA also bound with high affinity to the hepatocyte cell line, HepG2. Alexa-labeled SAA was shown by fluorescence confocal microscopy to be internalized by cells in a SR-BI-dependent manner. To assess how SAA association with HDL influences HDL interaction with SR-BI, SAA-containing HDL was isolated from mice overexpressing SAA through adenoviral gene transfer. SAA presence on HDL had little effect on HDL binding to SR-BI but decreased (30-50%) selective cholesteryl ester uptake. Lipid-free SAA, unlike lipid-free apoA-I, was an effective inhibitor of both SR-BI-dependent binding and selective cholesteryl ester uptake of HDL. We have concluded that SR-BI plays a key role in SAA metabolism through its ability to interact with and internalize SAA and, further, that SAA influences HDL cholesterol metabolism through its inhibitory effects on SR-BI-mediated selective lipid uptake.  相似文献   

8.
Scavenger receptor (SR)-BI is the first molecularly defined receptor for high density lipoprotein (HDL) and it can mediate the selective uptake of cholesteryl ester into cells. To elucidate the molecular mechanisms by which SR-BI facilitates lipid uptake, we examined the connection between lipid donor particle binding and lipid uptake using kidney COS-7 cells transiently transfected with SR-BI. We systematically compared the uptake of [(3)H]cholesteryl oleoyl ether (CE) and [(14)C]sphingomyelin (SM) from apolipoprotein (apo) A-I-containing reconstituted HDL (rHDL) particles and apo-free lipid donor particles. Although both types of lipid donor could bind to SR-BI, only apo-containing lipid donors exhibited preferential delivery of CE over SM (i.e. nonstoichiometric lipid uptake). In contrast, apo-free lipid donor particles (phospholipid unilamellar vesicles, lipid emulsion particles) gave rise to stoichiometric lipid uptake due to interaction with SR-BI. This apparent whole particle uptake was not due to endocytosis, but rather fusion of the lipid components of the lipid donor with the cell plasma membrane; this process is perhaps mediated by a fusogenic motif in the extracellular domain of SR-BI. The interaction of apoA-I with SR-BI not only prevents fusion of the lipid donor with the plasma membrane but also allows the optimal selective lipid uptake. A comparison of rHDL particles containing apoA-I and apoE-3 showed that while both particles bound equally well to SR-BI, the apoA-I particle gave approximately 2-fold greater CE selective uptake. Catabolism of all major HDL lipids can occur via SR-BI with the relative selective uptake rate constants for CE, free cholesterol, triglycerides (triolein), and phosphatidylcholine being 1, 1.6, 0.7, and 0.2, respectively. It follows that a putative nonpolar channel created by SR-BI between the bound HDL particle and the cell plasma membrane is better able to accommodate the uptake of neutral lipids (e.g. cholesterol) relative to polar phospholipids.  相似文献   

9.
Apolipoprotein specificity for lipid efflux by the human ABCAI transporter   总被引:15,自引:0,他引:15  
ABCAI, a member of the ATP binding cassette family, mediates the efflux of excess cellular lipid to HDL and is defective in Tangier disease. The apolipoprotein acceptor specificity for lipid efflux by ABCAI was examined in stably transfected Hela cells, expressing a human ABCAI-GFP fusion protein. ApoA-I and all of the other exchangeable apolipoproteins tested (apoA-II, apoA-IV, apoC-I, apoC-II, apoC-III, apoE) showed greater than a threefold increase in cholesterol and phospholipid efflux from ABCAI-GFP transfected cells compared to control cells. Expression of ABCAI in Hela cells also resulted in a marked increase in specific binding of both apoA-I (Kd = 0.60 microg/mL) and apoA-II (Kd = 0.58 microg/mL) to a common binding site. In summary, ABCAI-mediated cellular binding of apolipoproteins and lipid efflux is not specific for only apoA-I but can also occur with other apolipoproteins that contain multiple amphipathic helical domains.  相似文献   

10.
Mice deficient in scavenger receptor class B type I (SR-BI) and apolipoprotein E (apoE) [double knockout (DKO) mice] develop dyslipidemia, accelerated atherosclerosis, and myocardial infarction, and die prematurely. We examined effects of apoE and SR-BI deficiency on macrophage cholesterol homeostasis. DKO macrophages had increased total cholesterol (TC) stores (220-380 microg/mg protein) compared with apoE-/- cells (40 microg/mg), showed significant lysosomal lipid engorgement, and increased their TC by 34% after exposure to HDL. DKO macrophages from apoE-/- mice reconstituted with DKO bone marrow showed less cholesterol accumulation (89 microg/mg), suggesting that the dyslipidemia of DKO mice explains part of the cellular cholesterol defect. However, analyses of DKO and apoE-/- macrophages from transplanted apoE-/- mice revealed a role for macrophage SR-BI, inasmuch as the TC in DKO macrophages increased by 10% in the presence of HDL, whereas apoE-/- macrophage TC decreased by 33%. After incubation with HDL, the free cholesterol (FC) increased by 29% in DKO macrophages, and decreased by 8% in apoE-/- cells, and only DKO cells had FC in large peri-nuclear pools. Similar trends were observed with apoA-I as an acceptor. Thus, the abnormal cholesterol homeostasis of DKO macrophages is due to the plasma lipid environment of DKO mice and to altered trafficking of macrophage cholesterol. Both factors are likely to contribute to the accelerated atherosclerosis in DKO mice.  相似文献   

11.
We have used a preparation of rat liver plasma membranes to study the binding of rat apolipoprotein E-deficient HDL to rat liver. The membranes were found to bind HDL by a saturable process that was competed for by excess unlabeled HDL. The binding was temperature-dependent and was 85% receptor-mediated when incubated at 4, 22 and 37 degrees C. The affinity of the binding site for the HDL was consistent at all temperatures, while the maximum binding capacity increased at higher temperatures. The specific binding of HDL to the membranes did not require calcium and was independent of the concentration of NaCl in the media. The effect of varying the pH of the media on HDL binding was small, being 30% higher at pH 6.5 than at pH 9.0. Both rat HDL and human HDL3 were found to compete for the binding of rat HDL to the membranes, whereas rat VLDL remnants and human LDL did not compete. At 4 degrees C, complexes of dimyristoylphosphatidylcholine (DMPC) and apolipoproteins A-I, A-IV and the C apolipoproteins, but not apolipoprotein E, competed for HDL binding to the membranes. At 22 and 37 degrees C, all DMPC-apolipoprotein complexes competed to a similar extent, DMPC vesicles that contained no protein did not compete for the binding of HDL. These results suggest that the rat liver possesses a specific receptor for apolipoprotein E-deficient HDL that recognizes apolipoproteins A-I, A-IV and the C apolipoproteins as ligands.  相似文献   

12.
The ATP-binding cassette transporters ABCA1 and ABCG1 as well as scavenger receptor BI (SR-BI) mediate the efflux of lipids from macrophages to apolipoprotein A-I (apoA-I) and high density lipoproteins (HDL). We used RNA interference in RAW264.7 macrophages to study the interactions of ABCA1, ABCG1, and SR-BI with lipid-free apoA-I, native and reconstituted HDL with apoA-I:phosphatidylcholine ratios of either 1:40 (rHDL(1:40)) or 1:100 (rHDL(1:100)). Knock-down of ABCA1 inhibits the cellular binding at 4 degrees C of lipid-free apoA-I but not of HDL whereas suppression of ABCG1 or SR-BI reduces the binding of HDL but not lipid-free apoA-I. The degree of lipidation influences the interactions of rHDL with ABCG1 and SR-BI. Knock-down of ABCG1 inhibits more effectively the binding and cholesterol efflux capacities of lipid-poorer rHDL(1:40) whereas knock-down of SR-BI has a more profound effect on the binding and cholesterol efflux capacities of lipid-richer rHDL(1:100). Moreover, knock-down of ABCG1 but not SR-BI interferes with the association of lipid-free apoA-I during prolonged incubation at 37 degrees C. Finally, knock-down of ABCG1 inhibits the binding of initially lipid-free apoA-I which has been preconditioned by cells with high ABCA1 activity. The gained ability of initially lipid-free apoA-I to interact with ABCG1 is accompanied by its shift from electrophoretic pre-beta- to alpha-mobility. Taken together, these data suggest that the interaction of lipid-free apoA-I with ABCA1 generates a particle that immediately interacts with ABCG1 but not with SR-BI. Furthermore, the degree of lipidation influences the interaction of HDL with ABCG1 or SR-BI.  相似文献   

13.
The high density lipoprotein receptor, scavenger receptor class B type I (SR-BI), recognizes lipid-bound apolipoprotein A-I (apoA-I) and other apolipoproteins. Here, we have used large scale cultures of apoE-expressing cells to purify apoE and prepare apoE containing reconstituted discoidal 1-palmitoyl-2-oleoyl-l-phosphatidylcholine (POPC)-apoE particles. These particles have been used to examine their binding to wild-type and mutant forms of SR-BI expressed in transfected ldlA-7 cells. Specific binding to SR-BI was determined by subtracting from the total binding, nonspecific values measured using either control untransfected ldlA-7 cells or by inhibiting SR-BI-mediated binding with a high titer antireceptor-blocking antibody. POPC-apoE particles generated using apoE2, apoE3, apoE4, or the carboxyl-terminally truncated forms apoE165, apoE202, apoE229, and apoE259 all bound tightly to wild-type SR-BI with similar affinities (K(d) = 35-45 microg/ml). Binding was nearly abolished in a cell line expressing the ldlA (Q402R/Q418R) double mutant form of SR-BI that is unable to bind native high density lipoprotein but binds low density lipoprotein normally. The findings establish that apoE is a ligand for SR-BI and that the receptor binding domain is located in the amino-terminal 1-165-region of the protein. SR-BI-apoE interactions may contribute to cholesterol homeostasis in tissues and cells expressing SR-BI that are accessible to apoE-containing lipoproteins.  相似文献   

14.
The effects of in vivo modulation of HDL phospholipid (PL) on scavenger receptor class BI (SR-BI)- and ATP binding cassette transporter 1 (ABCA1)-mediated efflux were examined by overexpressing either endothelial lipase (EL) or phosphatidylserine phospholipase (PS-PLA1) in human apolipoprotein A-I (apoA-I) transgenic mice. Overexpression of EL led to large reductions in the serum PL/apoA-I ratio (-60%), total cholesterol (TC; -89%), and HDL cholesterol (-91%). Relative to the serum before overexpression of EL, the efflux potential of the serum via SR-BI decreased by 90% and ABCA1-mediated efflux increased by 63%. In contrast to overexpression of EL, overexpression of PS-PLA1 led to increases in the PL/apoA-I ratio (88%), TC (78%), HDL cholesterol (57%), and HDL size. The efflux potential of the serum increased by 60% via SR-BI and decreased by 57% via ABCA1. There were significant positive correlations between SR-BI-mediated efflux and a number of serum parameters, including PL/apoA-I ratio, PL, TC, free cholesterol (FC), and HDL cholesterol. In striking contrast, the same correlations were seen with ABCA1-mediated efflux, but the relationships were inverse. In summary, in vivo modulation of HDL PL content affects ABCA1- and SR-BI-mediated efflux in a reciprocal manner. These findings indicate that the type of lipase acting on HDL in vivo will determine which FC efflux pathway the HDL serves. Additionally, the extent of lipolysis will determine the efficiency of FC removal via this pathway.  相似文献   

15.
Recent studies have indicated that the scavenger receptor class B type I (SR-BI) may play an important role in the uptake of high density lipoprotein (HDL) cholesteryl ester in liver and steroidogenic tissues. To investigate the in vivo effects of liver-specific SR-BI overexpression on lipid metabolism, we created several lines of SR-BI transgenic mice with an SR-BI genomic construct where the SR-BI promoter region had been replaced by the apolipoprotein (apo)A-I promoter. The effect of constitutively increased SR-BI expression on plasma HDL and non-HDL lipoproteins and apolipoproteins was characterized. There was an inverse correlation between SR-BI expression and apoA-I and HDL cholesterol levels in transgenic mice fed either mouse chow or a diet high in fat and cholesterol. An unexpected finding in the SR-BI transgenic mice was the dramatic impact of the SR-BI transgene on non-HDL cholesterol and apoB whose levels were also inversely correlated with SR-BI expression. Consistent with the decrease in plasma HDL and non-HDL cholesterol was an accelerated clearance of HDL, non-HDL, and their major associated apolipoproteins in the transgenics compared with control animals. These in vivo studies of the effect of SR-BI overexpression on plasma lipoproteins support the previously proposed hypothesis that SR-BI accelerates the metabolism of HDL and also highlight the capacity of this receptor to participate in the metabolism of non-HDL lipoproteins.  相似文献   

16.
The binding of human high-density lipoprotein (HDL3), apolipoprotein A-I (apoA-I) and recombinants of apoA-I with cholesterol and/or dimyristoylphosphatidylcholine (DMPC) to the HDL receptor on isolated human small intestine epithelial cells was studied. ApoA-I competed for 125I-labelled HDL3 binding sites less effectively than HDL3, and a lower amount of 125I-labelled apoA-I than 125I-HDL3 was bound to cells. The apoA-I/DMPC recombinant competed for 125I-HDL3 binding sites nearly as well as HDL3, and 125I-apoA-I/DMPC recombinant bound to cells with at least the same efficiency as 125I-HDL3. The apoA-I/DMPC/cholesterol recombinant failed to compete for 125I-HDL3 binding sites, and the 125I-apoA-I/DMPC/cholesterol complex binding to cells was several-fold lower than that of other particles. All particles bound to cells with similar dissociation constants. Tetranitromethane-modified HDL3 failed to bind to high-affinity specific binding sites and compete with 125I-HDL3 for binding. The results obtained make it possible to assume that, while apoA-I may be a determinant of the HDL receptor, the lipid composition of the lipoprotein may affect its interaction with the receptor.  相似文献   

17.
Fourier transform infrared spectra of apolipoprotein E-depleted human HDL3 have been obtained in H2O and 2H2O buffers. The absorption bands in the protein amide I and amide II regions (1700-1500 cm-1) were assigned to alpha-helical, disordered and beta-strand/beta-turn structures of apolipoproteins A-I and A-II (apoA-I and apoA-II), the apolipoprotein constituents of HDL3. Modification of HDL3 by tetranitromethane (TNM) treatment, acetylation, reduction plus alkylation and 1,2-cyclohexanedione treatment derivatised tyrosine, lysine, cysteine and arginine residues, respectively, and caused alteration of the secondary structure of the HDL3 apolipoproteins to different extents. Each of the chemical modifications caused changes in the frequency of bands associated with beta-strands/beta-turns, but only TNM treatment of HDL3, as judged by the second- and fourth-derivative spectra, resulted in a shift of the band assigned to the alpha-helical structure of the proteins. In agreement with other workers, only TNM treatment of HDL3 particles was found to inhibit their binding by high-affinity cell membrane receptors. It is proposed, therefore, that receptor recognition of HDL3 particles is dependent on conservation of the alpha-helix structures within apoA-I and apoA-II, and that beta-strand/beta-turn structures are not involved. This conclusion is consistent with the predominance of amphipathic alpha-helical structures in both apolipoproteins and with the relaxed specificity of the receptors which are thought to recognise both apoA-I and apoA-II.  相似文献   

18.
Helical apolipoproteins of high density lipoprotein (HDL) remove phospholipid and cholesterol from cells and generate HDL particles being mediated by ATP binding cassette transporter A1 (ABCA1). In murine macrophage cell line RAW264 cells, cAMP induced expression of ABCA1, release of cellular phospholipid and cholesterol by apolipoprotein A-I (apoA-I), and reversible binding of apoA-I to the cell. The apoA-I-dependent lipid release was directly proportional to the cAMP-induced binding of apoA-I, and was inhibited 70% by a monoclonal antibody selective to lipid-free apoA-I, 725-1E2. In contrast, apparent cellular cholesterol release to HDL was substantial even without ABCA1 induction, and it was increased only by 27% after the cAMP treatment. The antibody inhibited this increment by 70%. Lipid-free apoA-II liberated apoA-I from HDL by displacement and thereby markedly expanded the cAMP-induced part of the cholesterol release to the HDL-containing medium, and the antibody inhibited this part also by 70%. Binding experiments of the double-labeled reconstituted HDL showed that cAMP induced reversible binding of apoA-I but not the association of cholesteryl ester with the cells. The effect of the antibody on the cellular cholesterol release to the reconstituted HDL was similar to that of the HDL-mediated release. The data implicated that the ABCA1-dependent cholesterol release to HDL is mediated by apoA-I dissociated from HDL.  相似文献   

19.
The binding of apoA-I-containing ligands to the HDL receptor scavenger receptor class B type I (SR-BI) was characterized using two different assays. The first employed conventional binding or competition assays with (125)I-labeled ligands. The second is a new nonradioactive ligand binding assay, in which the receptor-associated ligand is detected by quantitative immunoblotting ("immunoreceptor assay"). Using both methods, we observed that the K(d) value for spherical HDL (density = 1.1-1.13 g/ml) was approximately 16 microgram of protein/ml, while the values for discoidal reconstituted HDL (rHDL) containing proapoA-I or plasma apoA-I were substantially lower (approximately 0.4-5 microgram of protein/ml). We also observed reduced affinity and/or competition for spherical (125)I-HDL cell association by higher relative to lower density HDL and very poor competition by lipid-free apoA-I and pre-beta-1 HDL. Deletion of either 58 carboxyl-terminal or 59 amino-terminal residues from apoA-I, relative to full-length control apoA-I, resulted in little or no change in the affinity of corresponding rHDL particles. However, rHDL particles containing a double mutant lacking both terminal domains competed poorly with spherical (125)I-HDL for binding to SR-BI. These findings suggest an important role for apoA-I and its conformation/organization within particles in mediating HDL binding to SR-BI and indicate that the NH(2) and COOH termini of apoA-I directly or indirectly contribute independently to binding to SR-BI.  相似文献   

20.
The HDL receptor scavenger receptor class B type I (SR-BI) binds HDL and mediates the selective uptake of cholesteryl ester. We previously showed that remnants, produced when human HDL(2) is catabolized in mice overexpressing SR-BI, become incrementally smaller, ultimately consisting of small alpha-migrating particles, distinct from pre-beta HDL. When mixed with mouse plasma, some remnant particles rapidly increase in size by associating with HDL without the mediation of cholesteryl ester transfer protein, LCAT, or phospholipid transfer protein. Here, we show that processing of HDL(2) by SR-BI-overexpressing mice resulted in the preferential loss of apolipoprotein A-II (apoA-II). Short-term processing generated two distinct, small alpha-migrating particles. One particle (8.0 nm diameter) contained apoA-I and apoA-II; the other particle (7.7 nm diameter) contained only apoA-I. With extensive SR-BI processing, only the 7.7 nm particle remained. Only the 8.0 nm remnants were able to associate with HDL. Compared with HDL(2), this remnant was more readily taken up by the liver than by the kidney. We conclude that SR-BI-generated HDL remnants consist of particles with or without apoA-II and that only those containing apoA-II associate with HDL in an enzyme-independent manner. Extensive SR-BI processing generates small apoA-II-depleted particles unable to reassociate with HDL and readily taken up by the liver. This represents a pathway by which apoA-I and apoA-II catabolism are segregated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号