首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on atomic force microscopy nanoindentation measurements of phage λ, we previously proposed a minimal model describing the effect of water hydrating DNA that strengthens viral capsids against external deformation at wild-type DNA packing density. Here, we report proof of this model by testing the prediction that DNA hydration forces can be dramatically decreased by addition of multivalent ions (Mg2+ and Sp4+). These results are explained using a DNA hydration model without adjustable parameters. The model also predicts the stiffness of other DNA-filled capsids, which we confirm using bacteriophage ?29 and herpes simplex virus type 1 particles.  相似文献   

2.
UL25 and UL17 are two essential minor capsid proteins of HSV-1, implicated in DNA packaging and capsid maturation. We used cryo-electron microscopy to examine their binding to capsids, whose architecture observes T = 16 icosahedral geometry. C-capsids (mature DNA-filled capsids) have an elongated two-domain molecule present at a unique, vertex-adjacent site that is not seen at other quasiequivalent sites or on unfilled capsids. Using SDS-PAGE and mass spectrometry to analyze wild-type capsids, UL25 null capsids, and denaturant-extracted capsids, we conclude that (1) the C-capsid-specific component is a heterodimer of UL25 and UL17, and (2) capsids have additional populations of UL25 and UL17 that are invisible in reconstructions because of sparsity and/or disorder. We infer that binding of the ordered population reflects structural changes induced on the outer surface as pressure builds up inside the capsid during DNA packaging. Its binding may signal that the C-capsid is ready to exit the nucleus.  相似文献   

3.
DNA-filled capsids (C capsids) of herpes simplex virus type 1 were treated in vitro with guanidine-HCl (GuHCl) and analyzed for DNA loss by sucrose density gradient ultracentrifugation and electron microscopy. DNA was found to be lost quantitatively from virtually all capsids treated with GuHCl at concentrations of 0.5 M or higher, while 0.1 M GuHCl had little or no effect. DNA removal from 0.5 M GuHCl-treated capsids was effected without significant change in the capsid protein composition, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, or in its structure, as judged by electron microscopy. Electron microscopic examination of capsids in the process of emptying showed that DNA was extruded from multiple, discrete sites which appeared to coincide with capsid vertices. DNA exited the capsid in the form of thick strands or fibers that varied in diameter from approximately 4 to 13 nm with preferred diameters of 7 and 11 nm. The fibers most probably correspond to multiple, laterally aligned DNA segments, as their diameters are nearly all greater than that of a single DNA double helix. The results suggest that GuHCl treatment promotes an alteration in the capsid pentons which allows DNA to escape locally. Hexons must be more resistant to this change, since DNA loss appears to be restricted to the pentons. The ability of GuHCl to cause loss of DNA from C capsids with no accompanying change in capsid morphology or protein composition suggests that penton sites may open transiently to permit DNA exist and then return to their original state.  相似文献   

4.
M Yu  J Summers 《Journal of virology》1991,65(5):2511-2517
Mutations introduced into the capsid gene of duck hepatitis B virus (DHBV) were tested for their effects on viral DNA synthesis and assembly of enveloped viruses. Four classes of mutant phenotypes were observed among a series of deletions of covering the 3' end of the capsid open reading frame. Class I mutant capsids were able to support normal single-stranded and relaxed circular viral DNA synthesis; class II mutant capsids supported normal single-stranded DNA synthesis but not relaxed circular DNA synthesis; class III mutant capsids resembled class II capsids, but viral DNA synthesis was inhibited 5- to 10-fold; and class IV capsids were severely restricted in their ability to support viral DNA synthesis. Class I capsids were assembled into enveloped virions, but class II, III, and IV capsids were not. Viral DNA synthesized inside class II capsids was normal with respect to minus-strand DNA initiation, plus-strand DNA initiation, and circularization of the DNA, but plus strands failed to be elongated to mature 3-kb DNA. The results suggest that a function of the capsid protein specifically required for viral DNA maturation is also required for assembly of nucleocapsids into envelopes. Thus, class II mutants appear to be defective in the appearance of the "packaging signal" for virus assembly (J. Summers and W. Mason, Cell 29:403-415, 1982).  相似文献   

5.
《Biophysical journal》2021,120(16):3292-3302
Bacteriophages densely pack their long double-stranded DNA genome inside a protein capsid. The conformation of the viral genome inside the capsid is consistent with a hexagonal liquid crystalline structure. Experiments have confirmed that the details of the hexagonal packing depend on the electrochemistry of the capsid and its environment. In this work, we propose a biophysical model that quantifies the relationship between DNA configurations inside bacteriophage capsids and the types and concentrations of ions present in a biological system. We introduce an expression for the free energy that combines the electrostatic energy with contributions from bending of individual segments of DNA and Lennard-Jones-type interactions between these segments. The equilibrium points of this energy solve a partial differential equation that defines the distributions of DNA and the ions inside the capsid. We develop a computational approach that allows us to simulate much larger systems than what is possible using the existing molecular-level methods. In particular, we are able to estimate bending and repulsion between the DNA segments as well as the full electrochemistry of the solution, both inside and outside of the capsid. The numerical results show good agreement with existing experiments and with molecular dynamics simulations for small capsids.  相似文献   

6.
Most bacteriophages are known to inject their double-stranded DNA into bacteria upon receptor binding in an essentially spontaneous way. This downhill thermodynamic process from the intact virion to the empty viral capsid plus released DNA is made possible by the energy stored during active packaging of the genome into the capsid. Only indirect measurements of this energy have been available until now, using either single-molecule or osmotic suppression techniques. In this work, we describe for the first time the use of isothermal titration calorimetry to directly measure the heat released (or, equivalently, the enthalpy) during DNA ejection from phage λ, triggered in solution by a solubilized receptor. Quantitative analyses of the results lead to the identification of thermodynamic determinants associated with DNA ejection. The values obtained were found to be consistent with those previously predicted by analytical models and numerical simulations. Moreover, the results confirm the role of DNA hydration in the energetics of genome confinement in viral capsids.  相似文献   

7.
The herpes simplex virus type 1 UL25 protein is one of seven viral proteins that are required for DNA cleavage and packaging. Together with UL17, UL25 forms part of an elongated molecule referred to as the C-capsid-specific component (CCSC). Five copies of the CCSC are located at each of the capsid vertices on DNA-containing capsids. To study the conformation of UL25 as it is folded on the capsid surface, we identified the sequence recognized by a UL25-specific monoclonal antibody and localized the epitope on the capsid surface by immunogold electron microscopy. The epitope mapped to amino acids 99-111 adjacent to the region of the protein (amino acids 1-50) that is required for capsid binding. In addition, cryo-EM reconstructions of C-capsids in which the green fluorescent protein (GFP) was fused within the N-terminus of UL25 localized the point of contact between UL25 and GFP. The result confirmed the modeled location of the UL25 protein in the CCSC density as the region that is distal to the penton with the N-terminus of UL25 making contact with the triplex one removed from the penton. Immunofluorescence experiments at early times during infection demonstrated that UL25-GFP was present on capsids located within the cytoplasm and adjacent to the nucleus. These results support the view that UL25 is present on incoming capsids with the capsid-binding domain of UL25 located on the surface of the mature DNA-containing capsid.  相似文献   

8.
Encapsidation of duplex DNA by bacteriophages represents an extreme case of genome condensation, reaching near-crystalline concentrations of DNA. The HK97 system is well suited to study this phenomenon in view of the detailed knowledge of its capsid structure. To characterize the interactions involved, we combined calorimetry with cryo-electron microscopy and native gel electrophoresis. We found that, as in other phages, HK97 DNA is organized in coaxially wound nested shells. When DNA-filled capsids (heads) are scanned in buffer containing 1 mM Mg2+, DNA melting and capsid denaturation both contribute to the complex thermal profile between 82 °C and 96 °C. In other conditions (absence of Mg2+ and lower ionic strength), DNA melting shifts to lower temperatures and the two events are resolved. Heads release their DNA at temperatures well below the onset of DNA melting or capsid denaturation. We suggest that, on heating, the internal pressure increases, causing the DNA to exit—probably via the portal vertex-while the capsid, although largely intact, sustains local damage that leads to an earlier onset of thermal denaturation. Heads differ structurally from empty capsids in the curvature of their protein shell, a change attributable to outwards pressure exerted by the DNA. We propose that this transition is sensed by the portal that is embedded in the capsid wall, whereupon the structure of the portal and its interactions with terminase, the packaging enzyme, are altered, thus signaling that packaging is at or approaching completion.  相似文献   

9.
Atomic force microscopy has recently provided highly precise measurements of mechanical properties of various viruses. However, molecular details underlying viral mechanics remain unresolved. Here we report atomic force microscopy nanoindentation experiments on T=4 hepatitis B virus (HBV) capsids combined with coarse-grained molecular dynamics simulations, which permit interpretation of experimental results at the molecular level. The force response of the indented capsid recorded in simulations agrees with experimental observations. In both experiment and simulation, irreversible capsid deformation is observed for deep indentations. Simulations show the irreversibility to be due to local bending and shifting of capsid proteins, rather than their global rearrangement. These results emphasize the viability of large capsid deformations without significant changes of the mutual positions of HBV capsid proteins, in contrast to the stiffer capsids of other viruses, which exhibit more extensive contacts between their capsid proteins than seen in the case of HBV.  相似文献   

10.
A series of recent nanoindentation experiments on the protein shells (capsids) of viruses has established atomic force microscopy (AFM) as a useful framework for probing the mechanics of large protein assemblies. Specifically these experiments provide an opportunity to study the coupling of the global assembly response to local conformational changes. AFM experiments on cowpea chlorotic mottle virus, known to undergo a pH-controlled swelling conformational change, have revealed a pH-dependent mechanical response. Previous theoretical studies have shown that homogeneous changes in shell geometry can play a significant role in the mechanical response. This article develops a method for accurately capturing the heterogeneous geometry of a viral capsid and explores its effect on mechanical response with a nonlinear continuum elasticity model. Models of both native and swollen cowpea chlorotic mottle virus capsids are generated from x-ray crystal structures, and are used in finite element simulations of AFM indentation along two-, three-, and fivefold icosahedral symmetry orientations. The force response of the swollen capsid model is observed to be softer by roughly a factor of two, significantly more nonlinear, and more orientation-dependent than that of a native capsid with equivalent elastic moduli, demonstrating that capsid geometric heterogeneity can have significant effects on the global structural response.  相似文献   

11.
The packaging of double-stranded DNA into bacteriophages leads to the arrangement of the genetic material into highly-packed and ordered structures. Although modern experimental techniques reveal the most probable location of DNA inside viral capsids, the individual conformations of DNA are yet to be determined. In the current study we present the results of molecular dynamics simulations of the DNA packaging into several bacteriophages performed within the framework of a coarse-grained model. The final DNA conformations depend on the size and shape of the capsid, as well as the size of the protein portal, if any. In particular, isometric capsids with small or absent portals tend to form concentric spools, whereas the presence of a large portal favors coaxial spooling; slightly and highly elongated capsids result in folded and twisted toroidal conformations, respectively. The results of the simulations also suggest that the predominant factor in defining the global DNA arrangement inside bacteriophages is the minimization of the bending stress upon packaging.  相似文献   

12.
Viruses are extensively studied as vectors for vaccine applications and gene therapies. For these applications, understanding the material properties of viruses is crucial for creating optimal functionality. Using atomic force microscopy (AFM) nanoindentation, we studied the mechanical properties of human adenovirus type 5 with the fiber of type 35 (Ad5F35) and compared it to viral capsids with a single point mutation in the protein VI precursor protein (pVI-S28C). Surprisingly, the pVI-S28C mutant turned out to be twice as stiff as the Ad5F35 capsids. We suggest that this major increase in strength is the result of the DNA crosslinking activity of precursor protein VII, as this protein was detected in the pVI-S28C mutant capsids. The infectivity was similar for both capsids, indicating that mutation did not affect the ability of protein VI to lyse the endosomal membrane. This study highlights that it is possible to increase the mechanical stability of a capsid even with a single point mutation while not affecting the viral life cycle. Such insight can help enable the development of more stable vectors for therapeutic applications.  相似文献   

13.
Homologs of the UL25 gene product of herpes simplex virus (HSV) have been identified in all three subfamilies of the Herpesviridae. However, their exact function during viral replication is not yet known. Whereas earlier studies indicated that the UL25 protein of HSV-1 is not required for cleavage of newly replicated viral DNA but is necessary for stable encapsidation (A. R. McNab, P. Desai, S. Person, L. Roof, D. R. Thompson, W. W. Newcomb, J. C. Brown, and F. L. Homa, J. Virol. 72:1060-1070, 1998), viral DNA packaging has recently been demonstrated to occur in the absence of UL25, although at significantly decreased levels compared to wild-type HSV-1 (N. Stow, J. Virol. 75:10755-10765 2001). To clarify the functional role of UL25 we analyzed the homologous protein of the alphaherpesvirus pseudorabies virus (PrV). PrV UL25 was found to be essential for viral replication, as a mutant virus lacking the UL25 protein required UL25-expressing cells for productive propagation. In the absence of the UL25 protein, newly replicated PrV DNA was cleaved and DNA-containing C-type capsids were detected in infected cell nuclei. However, although capsids were frequently found in close association with the inner nuclear membrane, nuclear egress was not observed. Consequently, no capsids were found in the cytoplasm, resulting in an inhibition of virion morphogenesis. In contrast, the formation of capsidless enveloped tegument structures (L particles) in the cytoplasm was readily observed. Thus, our data demonstrate that the PrV UL25 protein is not essential for cleavage and encapsidation of viral genomes, although both processes occur more efficiently in the presence of the protein. However, the presence of the PrV UL25 protein is a prerequisite for nuclear egress. By immunoelectron microscopy, we detected UL25-specific label on DNA-containing C capsids but not on other intranuclear immature or defective capsid forms. Thus, the PrV UL25 protein may represent the hitherto missing trigger that allows primary envelopment preferably of DNA-filled C capsids.  相似文献   

14.
Electrostatic interactions play an important role in both packaging of DNA inside bacteriophages and its release into bacterial cells. While at physiological conditions DNA strands repel each other, the presence of polyvalent cations such as spermine and spermidine in solutions leads to the formation of DNA condensates. In this study, we discuss packaging of DNA into bacteriophages P4 and Lambda under repulsive and attractive conditions using a coarse-grained model of DNA and capsids. Packaging under repulsive conditions leads to the appearance of the coaxial spooling conformations; DNA occupies all available space inside the capsid. Under the attractive potential both packed systems reveal toroidal conformations, leaving the central part of the capsids empty. We also present a detailed thermodynamic analysis of packaging and show that the forces required to pack the genomes in the presence of polyamines are significantly lower than those observed under repulsive conditions. The analysis reveals that in both the repulsive and attractive regimes the entropic penalty of DNA confinement has a significant non-negligible contribution into the total energy of packaging. Additionally we report the results of simulations of DNA condensation inside partially packed Lambda. We found that at low densities DNA behaves as free unconfined polymer and condenses into the toroidal structures; at higher densities rearrangement of the genome into toroids becomes hindered, and condensation results in the formation of non-equilibrium structures. In all cases packaging in a specific conformation occurs as a result of interplay between bending stresses experienced by the confined polymer and interactions between the strands.  相似文献   

15.
During replication of herpes simplex virus type 1 (HSV-1), viral DNA is synthesized in the infected cell nucleus, where DNA-free capsids are also assembled. Genome-length DNA molecules are then cut out of a larger, multigenome concatemer and packaged into capsids. Here we report the results of experiments carried out to test the idea that the HSV-1 UL6 gene product (pUL6) forms the portal through which viral DNA passes as it enters the capsid. Since DNA must enter at a unique site, immunoelectron microscopy experiments were undertaken to determine the location of pUL6. After specific immunogold staining of HSV-1 B capsids, pUL6 was found, by its attached gold label, at one of the 12 capsid vertices. Label was not observed at multiple vertices, at nonvertex sites, or in capsids lacking pUL6. In immunoblot experiments, the pUL6 copy number in purified B capsids was found to be 14.8 +/- 2.6. Biochemical experiments to isolate pUL6 were carried out, beginning with insect cells infected with a recombinant baculovirus expressing the UL6 gene. After purification, pUL6 was found in the form of rings, which were observed in electron micrographs to have outside and inside diameters of 16.4 +/- 1.1 and 5.0 +/- 0.7 nm, respectively, and a height of 19.5 +/- 1.9 nm. The particle weights of individual rings as determined by scanning transmission electron microscopy showed a majority population with a mass corresponding to an oligomeric state of 12. The results are interpreted to support the view that pUL6 forms the DNA entry portal, since it exists at a unique site in the capsid and forms a channel through which DNA can pass. The HSV-1 portal is the first identified in a virus infecting a eukaryote. In its dimensions and oligomeric state, the pUL6 portal resembles the connector or portal complexes employed for DNA encapsidation in double-stranded DNA bacteriophages such as phi29, T4, and P22. This similarity supports the proposed evolutionary relationship between herpesviruses and double-stranded DNA phages and suggests the basic mechanism of DNA packaging is conserved.  相似文献   

16.
17.
Role of the UL25 protein in herpes simplex virus DNA encapsidation   总被引:1,自引:0,他引:1       下载免费PDF全文
The herpes simplex virus protein UL25 attaches to the external vertices of herpes simplex virus type 1 capsids and is required for the stable packaging of viral DNA. To define regions of the protein important for viral replication and capsid attachment, the 580-amino-acid UL25 open reading frame was disrupted by transposon mutagenesis. The UL25 mutants were assayed for complementation of a UL25 deletion virus, and in vitro-synthesized protein was tested for binding to UL25-deficient capsids. Of the 11 mutants analyzed, 4 did not complement growth of the UL25 deletion mutant, and analysis of these and additional mutants in the capsid-binding assay demonstrated that UL25 amino acids 1 to 50 were sufficient for capsid binding. Several UL25 mutations were transferred into recombinant viruses to analyze the effect of the mutations on UL25 capsid binding and on DNA cleavage and packaging. Studies of these mutants demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids and that the C terminus is essential for DNA packaging and the production of infectious virus through its interactions with other viral packaging or tegument proteins. Analysis of viral DNA cleavage demonstrated that in the absence of a functional UL25 protein, aberrant cleavage takes place at the unique short end of the viral genome, resulting in truncated viral genomes that are not retained in capsids. Based on these observations, we propose a model where UL25 is required for the formation of DNA-containing capsids by acting to stabilize capsids that contain full-length viral genomes.  相似文献   

18.
Double-stranded DNA in many bacterial viruses (phage) is strongly confined, which results in internal genome pressures of tens of atmospheres. This pressure is strongly dependent on local ion concentration and distribution within the viral capsid. Here, we have used electron energy loss spectroscopy (EELS), energy-filtered TEM (EFTEM) and X-ray energy dispersive spectroscopy to provide such chemical information from the capsid and the phage tail through which DNA is injected into the cell. To achieve this, we have developed a method to prepare thin monolayers of self-supporting virus/buffer films, suitable for EELS and EFTEM analysis. The method is based on entrapment of virus particles at air–liquid interfaces; thus, the commonly used method of staining by heavy metal salts can be avoided, eliminating the risk for chemical artifacts. We found that Mg2 +  concentration was approximately 2–4 times higher in the DNA-filled capsid than in the surrounding TM buffer (containing 10 mM Mg2 + ). Furthermore, we also analyzed the DNA content inside the phage tail by mapping phosphorus and magnesium.  相似文献   

19.
Tailed bacteriophage particles carry DNA highly pressurized inside the capsid. Challenge with their receptor promotes release of viral DNA. We show that addition of the osmolyte polyethylene glycol (PEG) has two distinct effects in bacteriophage SPP1 DNA ejection. One effect is to inhibit the trigger for DNA ejection. The other effect is to exert an osmotic pressure that controls the extent of DNA released in phages that initiate ejection. We carried out independent measurements of each effect, which is an essential requirement for their quantitative study. The fraction of phages that do not eject increased linearly with the external osmotic pressure. In the remaining phage particles ejection stopped after a defined amount of DNA was reached inside the capsid. Direct measurement of the size of non-ejected DNA by gel electrophoresis at different PEG concentrations in the latter sub-population allowed determination of the external osmotic pressure that balances the force powering DNA exit (47 atm for SPP1 wild-type). DNA exit stops when the ejection force mainly due to repulsion between DNA strands inside the SPP1 capsid equalizes the force resisting DNA insertion into the PEG solution. Considering the turgor pressure in the Bacillus subtilis cytoplasm the energy stored in the tight phage DNA packing is only sufficient to power entry of the first 17% of the SPP1 chromosome into the cell, the remaining 83% requiring application of additional force for internalization.  相似文献   

20.
Double-stranded DNA bacteriophage genomes are densely packaged into capsids until the ejection is triggered upon interaction of the tail with the bacterial receptor. Using cryo-electron microscopy, we describe the organization of the genome in the full capsid of T5 and show how it undergoes a series of phase transitions upon progressive ejection when the encapsidated DNA length decreases. Monodomains of hexagonally crystallized DNA segments initially form a three-dimensional lattice of defects. The structure turns liquid crystalline (two-dimensional hexagonal and then cholesteric) and finally isotropic. These structures suggest a mechanism in which defects of the full capsid would initiate the ejection and introduce the necessary fluidity to relax the constrained mosaic crystal to let the genome start flowing out of the capsid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号