共查询到11条相似文献,搜索用时 93 毫秒
1.
Structural basis of interaction between protein tyrosine phosphatase PCP-2 and β-catenin 总被引:1,自引:0,他引:1
HE Yaqin YAN Hexin DONG Hui ZHANG Peng TANG Liang QIU Xiuhua WU Mengchao & WANG Hongyang International Co-operation Laboratory on Signal Transduction Eastern Hepatobiliary Surgery Hospital Second Military Medical University Shanghai China 《中国科学:生命科学英文版》2005,(2)
2.
Turner RT Loy JA Nguyen C Devasamudram T Ghosh AK Koelsch G Tang J 《Biochemistry》2002,41(27):8742-8746
Memapsin 1 is closely homologous to memapsin 2 (BACE), or beta-secretase, whose action on beta-amyloid precursor protein (APP) leads to the production of beta-amyloid (A beta) peptide and the progression of Alzheimer's disease. Memapsin 2 is a current target for the development of inhibitor drugs to treat Alzheimer's disease. Although memapsin 1 hydrolyzes the beta-secretase site of APP, it is not significantly present in the brain, and no direct evidence links it to Alzheimer's disease. We report here the residue specificity of eight memapsin 1 subsites. In substrate positions P(4), P(3), P(2), P(1), P(1)', P(2)', P(3)', and P(4)', the most preferred residues are Glu, Leu, Asn, Phe, Met, Ile, Phe, and Trp, respectively, while the second preferred residues are Gln, Ile, Asp, Leu, Leu, Val, Trp, and Phe, respectively. Other less preferred residues can also be accommodated in these subsites of memapsin 1. Despite the broad specificity, these residue preferences are strikingly similar to those of human memapsin 2 [Turner et al. (2001) Biochemistry 40, 10001-10006] and thus pose a serious problem to the design of differentially selective inhibitors capable of inhibiting memapsin 2. This difficulty was confirmed by the finding that several potent memapsin 2 inhibitors effectively inhibited memapsin 1 as well. Several possible approaches to overcome this problem are discussed. 相似文献
3.
Subsite specificity of memapsin 2 (beta-secretase): implications for inhibitor design 总被引:4,自引:0,他引:4
Turner RT Koelsch G Hong L Castanheira P Ermolieff J Ghosh AK Tang J Castenheira P Ghosh A 《Biochemistry》2001,40(34):10001-10006
Memapsin 2 is the protease known as beta-secretase whose action on beta-amyloid precursor protein leads to the production of the beta-amyloid (Abeta) peptide. Since the accumulation of Abeta in the brain is a key event in the pathogenesis of Alzheimer's disease, memapsin 2 is an important target for the design of inhibitory drugs. Here we describe the residue preference for the subsites of memapsin 2. The relative k(cat)/K(M) values of residues in each of the eight subsites were determined by the relative initial cleavage rates of substrate mixtures as quantified by MALDI-TOF mass spectrometry. We found that each subsite can accommodate multiple residues. The S(1) subsite is the most stringent, preferring residues in the order of Leu > Phe > Met > Tyr. The preferences of other subsites are the following: S(2), Asp > Asn > Met; S(3), Ile > Val > Leu; S(4), Glu > Gln > Asp; S(1)', Met > Glu > Gln > Ala; S(2)', Val > Ile > Ala; S(3)', Leu > Trp > Ala; S(4)', Asp > Glu > Trp. In general, S subsites are more specific than the S' subsites. A peptide comprising the eight most favored residues (Glu-Ile-Asp-Leu-Met-Val-Leu-Asp) was found to be hydrolyzed with the highest k(cat)/K(M) value so far observed for memapsin 2. Residue preferences at four subsites were also studied by binding of memapsin 2 to a combinatorial inhibitor library. From 10 tight binding inhibitors, the consensus preferences were as follows: S(2), Asp and Glu; S(3), Leu and Ile; S(2)', Val; and S(3)', Glu and Gln. An inhibitor, OM00-3, Glu-Leu-Asp-LeuAla-Val-Glu-Phe (where the asterisk represents the hydroxyethylene tansition-state isostere), designed from the consensus residues, was found to be the most potent inhibitor of memapsin 2 so far reported (K(i) of 3.1 x 10(-10) M). A molecular model of OM00-3 binding to memapsin 2 revealed critical improvement of the interactions between inhibitor side chains with enzyme over a previous inhibitor, OM99-2 [Ghosh, A. K., et al. (2000) J. Am. Chem. Soc. 14, 3522-3523]. 相似文献
4.
Ghosh AK Devasamudram T Hong L DeZutter C Xu X Weerasena V Koelsch G Bilcer G Tang J 《Bioorganic & medicinal chemistry letters》2005,15(1):15-20
A series of novel macrocyclic amide-urethanes was designed and synthesized based upon the X-ray crystal structure of our lead inhibitor (1, OM99-2 with eight residues) bound to memapsin 2. Ring size and substituent effects have been investigated. Cycloamide-urethanes containing 14- to 16-membered rings exhibited low nanomolar inhibitory potencies against human brain memapsin 2 (beta-secretase). 相似文献
5.
Chang WP Koelsch G Wong S Downs D Da H Weerasena V Gordon B Devasamudram T Bilcer G Ghosh AK Tang J 《Journal of neurochemistry》2004,89(6):1409-1416
We have previously reported structure-based design of memapsin 2 (beta-secretase) inhibitors with high potency. Here we show that two such inhibitors covalently linked to a "carrier peptide" penetrated the plasma membrane in cultured cells and inhibited the production of beta-amyloid (Abeta). Intraperitoneal injection of the conjugated inhibitors in transgenic Alzheimer's mice (Tg2576) resulted in a significant decrease of Abeta level in the plasma and brain. These observations verified that memapsin 2 is a therapeutic target for Abeta reduction and also establish that transgenic mice are suitable in vivo models for the study of memapsin 2 inhibition. 相似文献
6.
Memapsin 2 (beta-secretase) is the membrane-anchored aspartic protease that initiates the cleavage of beta-amyloid precursor protein (APP), leading to the production of amyloid-beta (Abeta), a major factor in the pathogenesis of Alzheimer's disease. The active site of memapsin 2 has been shown, with kinetic data and crystal structures, to bind to eight substrate residues (P(4)-P(4)'). We describe here that the addition of three substrate residues from P(7) to P(5) strongly influences the hydrolytic activity by memapsin 2 and these subsites prefer hydrophobic residues, especially tryptophan. A crystal structure of memapsin 2 complexed with a statine-based inhibitor spanning P(10)-P(4)' revealed the binding positions of P(5)-P(7) residues. Kinetic studies revealed that the addition of these substrate residues contributes to the decrease in K(m) and increase in k(cat) values, suggesting that these residues contribute to both substrate recognition and transition-state binding. The crystal structure of a new inhibitor, OM03-4 (K(i) = 0.03 nM), bound to memapsin 2 revealed the interaction of a tryptophan with the S(6) subsite of the protease. 相似文献
7.
Memapsin 2, or beta-secretase, is a membrane-anchored aspartic protease that initiates the cleavage of beta-amyloid precursor protein (APP) leading to the production of beta-amyloid peptide in the brain and the onset of Alzheimer's disease. Memapsin 2 and APP are both endocytosed into endosomes for cleavage. Here we show that the cytosolic domain of memapsin 2, but not that of memapsin 1, binds the VHS domains of GGA1 and GGA2. Gel-immobilized VHS domains of GGA1 and GGA2 also bound to full-length memapsin 2 from cell mammalian lysates. Mutagenesis studies established that Asp(496), Leu(499) and Leu(500) were essential for the binding. The spacing of these three residues in memapsin 2 is identical to those in the cytosolic domains of mannose-6-phosphate receptors, sortilin and low density lipoprotein receptor-related protein 3. These observations suggest that the endocytosis and intracellular transport of memapsin 2, mediated by its cytosolic domain, may involve the binding of GGA1 and GGA2. 相似文献
8.
Crystal structure of memapsin 2 (beta-secretase) in complex with an inhibitor OM00-3 总被引:3,自引:0,他引:3
The structure of the catalytic domain of human memapsin 2 bound to an inhibitor OM00-3 (Glu-Leu-Asp-LeuAla-Val-Glu-Phe, K(i) = 0.3 nM, the asterisk denotes the hydroxyethylene transition-state isostere) has been determined at 2.1 A resolution. Uniquely defined in the structure are the locations of S(3)' and S(4)' subsites, which were not identified in the previous structure of memapsin 2 in complex with the inhibitor OM99-2 (Glu-Val-Asn-LeuAla-Ala-Glu-Phe, K(i) = 1 nM). Different binding modes for the P(2) and P(4) side chains are also observed. These new structural elements are useful for the design of new inhibitors. The structural and kinetic data indicate that the replacement of the P(2)' alanine in OM99-2 with a valine in OM00-3 stabilizes the binding of P(3)' and P(4)'. 相似文献
9.
Huang XP Chang WP Koelsch G Turner RT Lupu F Tang J 《The Journal of biological chemistry》2004,279(36):37886-37894
Memapsin 2 (beta-secretase) is the protease that initiates cleavage of amyloid precursor protein (APP) leading to the production of amyloid-beta (Abeta) peptide and the onset of Alzheimer's disease. Both APP and memapsin 2 are Type I transmembrane proteins and are endocytosed into endosomes where APP is cleaved by memapsin 2. Separate endocytic signals are located in the cytosolic domains of these proteins. We demonstrate here that the addition of the ectodomain of memapsin 2 (M2(ED)) to cells transfected with native APP or APP Swedish mutant (APPsw) resulted in the internalization of M2(ED) into endosomes with increased Abeta production. These effects were reduced by treatment with glycosylphosphatidylinositol-specific phospholipase C. The nontransfected parental cells had little internalization of M2(ED). The internalization of M2(ED) was dependent on the endocytosis signal in APP, because the expression of a mutant APP that lacks its endocytosis signal failed to support M2(ED) internalization. These results suggest that exogenously added M2(ED) interacts with the ectodomain of APP on the cell surface leading to the internalization of M2(ED), supported by fluorescence resonance energy transfer experiments. The interactions between the two proteins is not due to the binding of substrate APPsw to the active site of memapsin 2, because neither a potent active site binding inhibitor of memapsin 2 nor an antibody directed to the beta-secretase site of APPsw had an effect on the uptake of M2(ED). In addition, full-length memapsin 2 and APP, immunoprecipitated together from cell lysates, suggested that the interaction of these two proteins is part of the native cellular processes. 相似文献
10.
Ghosh AK Kumaragurubaran N Hong L Kulkarni S Xu X Miller HB Reddy DS Weerasena V Turner R Chang W Koelsch G Tang J 《Bioorganic & medicinal chemistry letters》2008,18(3):1031-1036
Structure-based design, synthesis, and biological evaluation of a series of peptidomimetic beta-secretase inhibitors incorporating hydroxyethylamine isosteres are described. We have identified inhibitor 24 which has shown exceedingly potent activity in memapsin 2 enzyme inhibitory (K(i) 1.8 nM) and cellular (IC(50)=1 nM in Chinese hamster ovary cells) assays. Inhibitor 24 has also shown very impressive in vivo properties (up to 65% reduction of plasma A beta) in transgenic mice. The X-ray structure of protein-ligand complex of memapsin 2 revealed critical interactions in the memapsin 2 active site. 相似文献
11.
The three-dimensional structure of unbound human memapsin 2 (beta-secretase) protease domain determined at 2.0-A resolution has revealed a new position of the flap region, which appears to be locked in an "open" position. While the structure outside of the flap is essentially the same as the structure of memapsin 2 bound to an inhibitor, the flap positions are 4.5 A different at the tips. The open position of the flap in the current structure is stabilized by two newly formed intraflap hydrogen bonds and anchored by a new hydrogen bond involving the side chain of Tyr 71 (Tyr 75 in pepsin numbering) in a novel orientation. In molecular modeling experiments, the opening of the flap, 6.5 A at the narrowest point, permits entrance of substrates into the cleft. The narrowest point of the opening may function to discriminate among substrates based on sequence and shape. The observed flap opening may also serve as a model for the flap movement in the catalytic mechanism of eukaryotic aspartic proteases and provide insight for the side-chain selection in the design of memapsin 2 inhibitors. 相似文献