首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of several trypanosome surface antigen genes proceeds by duplication of a basic copy (BC) of the gene and transposition of the expression-linked copy (ELC) into an expression site. This site, which seems to be the same for different genes of the same repertoire, is located near a chromosome end. In the AnTat 1.1 antigen gene expression site, the ELC is found associated with another sequence that we have called the “companion.” We found that this companion is the transposed copy of another sequence also located in an unstable DNA terminus, and that it is conserved in the expression site of AnTat 1.10 and AnTat 1.1B, two clones successively derived from AnTat 1.1. The companion sequence is not part of the surface antigen gene, but we may infer from extensive homologies with another ELC sequence (IoTat 1.3, J. E. Donelson, personal communication) that it represents a 5′ residual fragment of a former ELC. In three other AnTat 1.1-like clones, the companion sequence was not found associated with the ELC. It is concluded that the expression-linked duplicative transposition of variable antigen genes is a flexible mechanism, which can apply to variably sized stretches of the same BC.  相似文献   

2.
Gene conversion as a mechanism for antigenic variation in trypanosomes   总被引:27,自引:0,他引:27  
Expression of the gene coding for the trypanosome AnTat 1.1 surface antigen is linked to the duplicative transposition of a basic copy (BC) of this gene to an expression site. In two trypanosome clones successively derived from AnTat 1.1 (AnTat 1.10 and AnTat 1.1B) we found evidence that gene conversions are involved in the transformation of the AnTat 1.1 transposed element into the two new surface antigen coding sequences. Although the three resultant mRNAs--AnTat 1.1, 1.10, and 1.1B--are different, they still share large homologies. Two of them, AnTat 1.1 and 1.1B, code for surface coats that are indistinguishable by conventional serological techniques, whereas AnTat 1.10 has been found different by the same methods. The three genomic rearrangements involve two of the five members of the AnTat 1.1 gene family. These two members are both located in unstable telomeric regions similar to the expression site, each in a different orientation with respect to the DNA terminus. We have concluded that the duplicative transposition is achieved by a gene conversion that may affect variable lengths of the same silent genes, and that different members of the same surface antigen gene family can contribute to the diversification of the antigen repertoire.  相似文献   

3.
In Trypanosoma brucei, the activation of the variant-specific antigen gene AnTat 1.1 proceeds by the synthesis of an additional gene copy, the AnTat 1.1 ELC, which is transposed to a new location, the expression site, where it is transcribed. Using the AnTat 1.1 variant to infect flies, we investigated the fate of the AnTat 1.1 ELC during cyclic transmission of T. brucei. We show here that the AnTat 1.1 ELC is conserved in procyclic trypanosomes, obtained either from the midgut of infected Glossina or from cultures, and in metacyclic trypanosomes, although the AnTat 1.1 serotype is not detected among metacyclic antigen types. This same AnTat 1.1 ELC, which is thus silent as the parasite develops in the insect vector, can be reactivated without duplication during the first parasitemia wave following cyclical transmission. This re-expression of the conserved ELC accounts for the early appearance of the 'ingested' antigenic type after passage through the fly.  相似文献   

4.
Trypanosome variant surface glycoprotein genes expressed early in infection   总被引:11,自引:0,他引:11  
We have studied further the genes for trypanosomal variant surface glycoproteins expressed during a chronic infection of rabbits with Trypanosoma brucei, strain 427. We show that there are three closely related chromosomal-internal isogenes for VSG 121; expression of one of these genes is accompanied by the duplicate transposition of the gene to a telomeric expression site, also used by other chromosome-internal VSG genes. The 3' end of the 121 gene is replaced during transposition with another sequence, also found in the VSG mRNAs of two other variants. We infer that an incoming VSG gene duplicate recombines with the resident gene in the expression site and may exchange ends in this process. The extra expression-linked copy of the 121 gene is lost when another gene enters the expression site. However, when the telomeric VSG gene 221 is activated without duplication the extra 121 gene copy is inactivated without detectable alterations in or around the gene. We have also analysed the VSG genes expressed very early when trypanosomes are introduced into rats or tissue culture. The five genes identified in 24 independent switching events were all found to be telomeric genes and we calculate that the telomeric 1.8 gene has a 50% chance of being activated in this trypanosome strain when the trypanosome switches the VSG that is synthesized. We argue that the preferential expression of telomeric VSG genes is due to two factors: first, some telomeric genes reside in an inactive expression site, that can be reactivated; second, telomeric genes can enter an active expression site by a duplicative telomere conversion and this process occurs more frequently than the duplicative transposition of chromosome-internal genes to an expression site.  相似文献   

5.
Telomere conversion in trypanosomes.   总被引:18,自引:7,他引:11       下载免费PDF全文
Activation of the gene coding for variant surface glycoprotein (VSG) 118 in Trypanosoma brucei proceeds via a duplicative transposition to a telomeric expression site. The resulting active expression-linked extra copy (ELC) is usually flanked by DNA that lacks sites for most restriction enzymes and that is thought to interfere with the cloning of the ELC as recombinant DNA in Escherichia coli. We have circumvented this problem by cloning an aberrant 118 ELC gene, flanked at the 3'-side by at least 1 kb DNA, that contains restriction enzyme sites. Our analysis shows that this DNA and the 3'-end of the 118 ELC gene are derived from another VSG gene (1.1006) that is permanently located at a telomeric position. We propose that the 3'-end of the 1.1006 gene and (all of) its 3' flanking sequence moved to the expression site by a telomere conversion. Such a telomere conversion can also account for the appearance of an extra copy of the 1.1006 gene detected in a sub-population of our trypanosome strain.  相似文献   

6.
The AnTat 1.1 antigen type typically occurs late in a chronic infection by the EATRO 1125 stock of Trypanosoma brucei. The AnTat 1.1 gene, which is located 24 kb from a chromosome end, seems exclusively expressed by acting as a donor in gene conversion events targeted to the telomeric expression site. We report that this gene is sufficiently provided with the homology blocks required for recombination with the expression site, and is not interrupted by stop codons up to the 3' block of homology. A possible reason for its low probability of activation is an inverse orientation with respect to the proximal chromosome end, since, if correctly positioned, it is readily expressed at an early stage of infection, following gene conversion. This suggests that interactions between chromosome ends may precede and favour the rearrangements leading to antigenic variation.  相似文献   

7.
G A Buck  C Jacquemot  T Baltz  H Eisen 《Gene》1984,32(3):329-336
Variable surface glycoprotein (VSG) genes in African trypanosomes are often activated by the duplicative transposition of a silent basic copy (BC) gene into an unlinked telomerically located expression site, producing an active expression-linked copy (ELC) of that gene. However, some BC genes that are already linked to a telomere are activated without apparent duplication or transposition. We have recently shown that an active VSG ELC can be inactivated in situ, apparently without rearrangement. To explain these observations it has been suggested that VSG genes that are associated with chromosome telomeres are activated by chromosome end exchanges that occur at a considerable distance upstream from the genes themselves and place them cis to a unique VSG expression element. In an attempt to test this model we derived five VSG-1 expressing variants from BoTat-2, a VSG-2 expressing variant of Trypanosoma equiperdum which carries an inactive residual VSG-1 ELC (R-ELC) as well as the active VSG-2 ELC near unlinked chromosome telomeres. We examined the fates of the VSG-2 ELC and the VSG-1 R-ELC in these variants. All five had maintained the VSG-1 R-ELC; three in a reactivated form and two in an inactive state. The latter two variants carried new, active VSG-1 ELCs: one in the site that had previously contained the VSG-2 ELC and one in a previously unidentified site. The VSG-2 ELC was lost in all five of the variants. The results are not consistent with the simple chromosome end exchange model, which predicts that the VSG-2 ELC would be inactivated but not deleted when the VSG-1 R-ELC was reactivated.  相似文献   

8.
C W Roth  S Longacre  A Raibaud  T Baltz    H Eisen 《The EMBO journal》1986,5(5):1065-1070
The expression of Trypanosoma equiperdum variant surface protein (VSG) 78 is accomplished by the duplicative transposition of silent basic copy (BC) genes into a telomer-linked expression site to form an expression-linked copy (ELC). In two independent isolates expressing VSG 78, the ELC is a composite gene. The analysis of VSG 78 cDNA clones from these two Bo Tat 78 isolates and the respective BC genes revealed that both ELCs were constructed from the same three BC genes, a 3' BC which donated the last 255 bp of each ELC and two closely related 5' BCs. Although sequences of both 5' BC genes were found in each ELC, the junction with the 3' BC was provided by the same 5' BC in both cases. This 5' BC is an incomplete gene with insufficient open reading frame to code for a complete VSG and thus can only be used when joined to a competent 3' end. Furthermore, both 5' BC genes lack a conserved 14 nucleotide sequence found on all VSG mRNAs. These results support a model in which composite gene formation plays a role in the determination of the order of VSG expression. They also illustrate similarities between immunoglobulin gene and VSG gene construction.  相似文献   

9.
The boundaries of gene conversion in variant-specific antigen genes have been determined in six clones of Trypanosoma brucei. In each clone, antigenic switching involved interaction between two telomeric members of the AnTat 1.1 multigene family, which share extensive homology throughout their coding regions. All conversion events occurred by substitution of faithful copies of donor sequences. Conversion endpoints were nonrandomly distributed. In four clones, the 5' conversion limit was near the antigen translation initiation codon, while in three clones, the 3' conversion limit was located at the "hinge" between the two major antigen domains. In one case, two segmental conversions were involved in antigen switching. These observations reveal that antigen gene conversion can occur without generating point mutations, and suggest that postrecombinational selection may impose a limit on the number of possible rearrangements within antigen genes.  相似文献   

10.
Trypanosomes with a coat of variant surface glycoprotein (VSG) 118, consistently appear around day 20 when a rabbit is infected with Trypanosoma brucei strain 427. There is a single chromosome-internal gene for VSG 118 and this is activated by duplicative transposition to a telomeric expression site. We show here that the expression-linked extra copy of VSG gene 118 in a day 18 population of a chronic infection is heterogeneous, and we infer that the population is not monoclonal but is the result of multiple independent activations of the 118 gene. We show that the heterogeneity of expression-linked extra copies is also present in other trypanosome populations expressing chromosome-internal VSG genes. We present a model for the timing of VSG gene activation during chronic infection that emphasizes two features: the relative activation and inactivation frequencies of different expression sites, and the degree of homology of the sequences flanking VSG genes with expression sites.  相似文献   

11.
D F Cully  H S Ip  G A Cross 《Cell》1985,42(1):173-182
Trypanosoma brucei variant surface glycoprotein (VSG) genes are activated either by duplicative (DA) transposition of the gene to a pre-activated expression site or by nonduplicative (NDA) activation of a previously silent telomeric gene. We have obtained a recombinant clone spanning the 5' barren region of the expression linked copy of the duplicated VSG gene 117a. By DNA sequence and hybridization analyses we have identified a pleomorphic family of 14-25 non-VSG genes that lie upstream of both DA and NDA VSG expression sites. These expression site associated genes (ESAGs) encode 1.2 kb poly(A)+ mRNAs that are specifically transcribed from the active VSG expression telomere in mammalian bloodstream stages of T. brucei but, in common with VSG genes, are not transcribed in procyclic culture forms. cDNA and genomic sequences predict open reading frames that are conserved in the two ESAGs examined.  相似文献   

12.
African trypanosomes undergo antigenic variation of their variant surface glycoprotein (VSG) coat to avoid immune system-mediated killing by their mammalian host. An important mechanism for switching the expressed VSG gene is the duplicative transposition of a silent VSG gene into one of the telomeric VSG expression sites of the trypanosome, resulting in the replacement of the previously expressed VSG gene. This process appears to be a gene conversion reaction, and it has been postulated that sequences within the expression site may act to initiate and direct the reaction. All bloodstream form expression sites contain huge arrays (many kilobase pairs) of 70-bp repeat sequences that act as the 5' boundary of gene conversion reactions involving most silent VSG genes. For this reason, the 70-bp repeats seemed a likely candidate to be involved in the initiation of switching. Here, we show that deletion of the 70-bp repeats from the active expression site does not affect duplicative transposition of VSG genes from silent expression sites. We conclude that the 70-bp repeats do not appear to function as indispensable initiation sites for duplicative transposition and are unlikely to be the recognition sequence for a sequence-specific enzyme which initiates recombination-based VSG switching.  相似文献   

13.
14.
Intrachromosomal variant surface glycoprotein (VSG) genes in Trypanosoma brucei are expressed by a mechanism involving gene conversion. The 3'boundary of gene conversion is usually within the last 130 bp of the VSG gene, a region of partially conserved sequences. We report here the loss of the predominant telomeric A VSG gene in the cloned variant antigenic type (VAT) 5A3, leaving only an intrachromosomal A VSG gene (the A-B gene). The nucleotide sequence of the A-B VSG gene reveals that it lacks the normal VSG 3' sequence. Surprisingly, we find cells expressing this A-B VSG gene in relapse populations arising from VAT 5A3. Since the A VSG mRNAs from these cells have a normal 3' sequence, the incomplete A-B VSG gene must be expressed via a partial gene conversion that supplies the functional 3'end. Although the A-B VSG gene is no longer predominant like the telomeric A VSG gene, it is still expressed more frequently than other intrachromosomal VSG genes, suggesting that factors other than a telomeric location determine whether a VSG gene is expressed early in a serodeme.  相似文献   

15.
16.
We have previously shown that the gene for variant surface glycoprotein 118 of Trypanosoma brucei (strain 427) is activated by a duplicative transposition to a telomeric expression site. In chronically-infected animals, this expression-linked copy is lost when the 118 gene is replaced at the expression site by another variant surface glycoprotein gene. We show here that expression of the 118 gene can also be switched off without loss of the extra expression-linked copy. In two variants, called 1.8b and 1.8c, we find expression of the variant surface glycoprotein 1.8 gene, notwithstanding the continued presence of the 118 expression-linked copy. The 1.8 gene activated has a telomeric location, like the 118 expression-linked copy. In variant 1.8b, activation is accompanied by duplication of the 1.8 gene, resulting in an extra telomeric gene copy; in variant 1.8c it is not. Variants 1.8b and 1.8c both switch back preferentially to expression of the 118 gene. The 5'-flanking regions of the active, inactive and reactivated versions of the 118 expression-linked copy are indistinguishable by restriction mapping up to 28 kb. We conclude that there are at least two separate telomeric expression sites in our T. brucei strain. How these are switched on and off is unclear. The ability to retain expression-linked copies in inactive form may allow the trypanosome to re-programme the order in which variant surface glycoprotein genes are expressed.  相似文献   

17.
18.
19.
The genes and transcripts of an antigen gene expression site from T. brucei   总被引:47,自引:0,他引:47  
  相似文献   

20.
Trypanosoma brucei contains a repertoire of more than 100 different genes for Variant Surface Glycoproteins (VSGs). A small and strain-specific fraction of these genes is expressed in the salivary glands of the tsetse fly (M-genes), giving rise to metacyclic Variable Antigen Types (M-VATs). Antibodies produced in a chronic trypanosome infection initiated by syringe inoculation of bloodstream forms into mammals (i.e. against B-VATs), will react with most of the M-VATs suggesting that these B-VATs express VSG genes that are similar or identical to M-genes. We have cloned DNA complementary to the VSG mRNA of four of such B-VATs and used this to characterize the corresponding VSG genes. In three of the four VATs we find a single VSG gene hybridizing with the cDNA probe and we provide supporting evidence that this gene is expressed as an M-gene. In the bloodstream repertoire these genes appear to be activated by duplicative translocation to another telomere. In all four variants the putative M-genes are telomeric and in the three cases where the location of the genes on chromosome-sized DNA molecules could be determined, the genes were located in large DNA, whereas the majority of the telomeric VSG genes are in chromosomes less than 1000 kb. Our results are best explained by models for M-gene activation involving telomeric expression sites for these genes which are separate from those used by bloodstream forms. The implications of these results for vaccination are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号