首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic theory of the substrate reaction during irreversible change of enzyme activity previously described by Tsou (Tsou (1988),Adv. Enzymol. Relat. Areas Mol. Biol.61, 381–436] has been applied to a study of the kinetics of the course of reactivation during reconstitution of apo-aminoacylase using Mn2+ or Zn2+. The kinetic parameters for Mn2+-and Zn2+-reconstituted enzymes and the microscopic rate constants for reactivation during reconstitution were determined. The kinetic analysis suggests the presence of a second Mn2+ binding site in Mn2+-reconstituted aminoacylase.  相似文献   

2.
Thermostable dipeptidase from Bacillus stearothermophilus, a typical metalloenzyme containing 1.0g atom of Zn per mole of subunit of the dimeric enzyme was markedly activated by exogenous divalent metal ions such as Mn2+, Co2+, and Cd2+ . In contrast, several others including Ba2+, Hg2+, and Cu2+ considerably inhibited the enzyme, even the inherent metal, Zn2+, being slightly inhibitory. To study the metal-binding properties of this dipeptidase, the enzyme was completely resolved to the inactive, Zn-free apoenzyme by treatment with EDTA in the presence of guanidine hydrochloride in a weakly acidic buffer. The apoenzyme was readily reconstituted by incubation with either Zn2+, Mn2+, or Co2+, restoring the catalytic activity. The Mn-reconstituted enzyme had nearly twice the activity of the original Zn-enzyme. Combined with kinetic analyses of reconstitution of the apoenzyme with metal ions, these results show that the enzyme has two non-identical metal-binding sites, each with a different property. Furthermore, substitution of Mn2+ or Co2+ for Zn2+ considerably lowered the thermostability of the enzyme without affecting the overall conformation of the enzyme protein, suggesting that the prosthetic Zn is playing dual roles in conformational stability and catalysis of the thermostable dipeptidase.  相似文献   

3.
The inactivation and unfolding of aminoacyclase (EC 3.5.1.14) during denaturation by different concentrations of trifluoroethanol (TFE) have been studied. A marked decrease in enzyme activity was observed at low TFE concentrations. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity described previously by Tsou [Tsou (1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436] was applied to study the kinetics of the inactivation course of aminoacyclase during denaturation by TFE. The inactivation rate constants for the free enzyme and substrate-enzyme complex were determined by Tsou's method. The inactivation reaction was a monophasic first-order reaction. The kinetics of the unfolding course were a biphasic process consisting of two first-order reactions. At 2% TFE concentration, the inactivation rate of the enzyme was much faster than the unfolding rate. At a higher concentration of TFE (10%), the inactivation rate was too fast to be determined by conventional methods, whereas the unfolding course remained as a biphasic process with fast and slow reactions occurring at measurable rates. The results suggest that the aminoacyclase active site containing Zn2+ ions is situated in a limited and flexible region of the enzyme molecule that is more fragile to the denaturant than the protein as a whole.  相似文献   

4.
The relation that exist between the Pi-PPi exchange reaction and pyrophosphate hydrolysis by the membrane-bound pyrophosphatase of chromatophores ofRhodospirillum rubrum was studied. The two reactions have a markedly different requirement for pH. The optimal pH for hydrolysis was 6.5 while the Pi-PPi exchange reaction was at 7.5; the pH affects mainly theK m of Mg2+ or Pi for the enzyme; Mn2+ and Co2+ support the Pi-PPi exchange reaction partially (50%), but the reaction is slower than with Mg2+; other divalent cations like Zn2+ or Ca2+ do not support the exchange reaction. In the hydrolytic reaction, Zn2+, at low concentration, substitutes for Mg2+ as substrate, and Co2+ also substitutes in limited amount (50%). Other cations (Ca2+, Cu2+, Fe2+, etc.) do not act as substrates in complex with PPi. The Zn2+ at high concentrations inhibited the hydrolytic reaction, probably due to uncomplexed free Zn2+. In the presence of high concentration of substrate for the hydrolysis (Mg-PPi) the divalent cations are inhibitory in the following order: Zn2+>Mn2+>Ca2+Co2+>Fe2+>Cu2+>Mg2+. The data in this work suggest that H+ and divalent cations in their free form induced changes in the kinetic properties of the enzyme.  相似文献   

5.
Summary The toxicity of chromium and tin on growth, photosynthetic carbon-fixation, oxygen evolution, heterocyst differentiation and nitrogenase activity ofAnabaena doliolum and its interaction with bivalent cations has been studied. Some interacting cations, viz. Ca2+, Mg2+ and Mn2+, substantially antagonised the toxic effects of chromium and tin with reference to growth, heterocyst differentiation and nitrogenase activity in the following hierarchal sequence: Ca2+ > Mg2+ > Mn2+. However, the sequence of hierarchy was Mg2+ > Ca2+ > Mn2+ for carbon fixation and Mn2+ > Mg2+ > Ca2+ for photosynthetic oxygen evolution. Synergistically inhibitory patterns were noticed for all the parameters, viz. growth,14CO2 uptake, oxygen evolution, heterocyst differentiation and nitrogenase activity ofA. doliolum when Ni2+, Co2+ and Zn2+ were combined with the test metals in the growth medium. These cations followed the following sequence of synergistic inhibition: Ni2+ > Co2+ > Zn2+. Among all the interacting cations, Ca2+, Mg2+ and Mn2+ exhibited antagonistic effects which relieved the test cyanobacterium from metal toxicity. In contrast to this, Ni2+, CO2+ and Zn2+ showed synergistic inhibition which potentiating the toxicity of test metals in the N2-fixing cyanobacteriumA. doliolum. It is evident from the present study that bivalent cations, viz. Ca2+, Mg2+, Mn2+, Ni2+, Co2+ and Zn2+, may appreciably regulate the toxicity of heavy metals in N2-fixing cyanobacteria if present in aquatic media.  相似文献   

6.
Recombinant l-aminoacylase (PhoACY) from a hyperthermophilic archeon, Pyrococcus horikoshii, is a zinc-containing metalloenzyme. When the zinc was substituted by Mn2+ or Ni2+, its specific activity was significantly increased with acetyl-l-methionine as a substrate. The thermostability of PhoACY was improved when it was incubated with 1 mM Zn2+, Mn2+ or Ni2+. The enzyme with external Zn2+ addition had no significant loss of the activity when held at 90°C for up to 12 h and moreover had more than a 10-fold longer half-life even at 100°C, compared to the enzyme without Zn2+ addition. A thermostable structure of the enzyme associated with zinc binding is described based on differential scanning calorimetry.  相似文献   

7.
To assess the nutritional defects of some trace elements caused by an excess supplementation of calcium, an in vitro study was undertaken on brush border membrane vesicles (BBMV) isolated from the small intestinal mucosa of normal rats. The uptake of 65Zn2 + tended to be saturable with increasing concentration of Zn2 +, which was decreased by adding an excess concentration of IIa cations or of Mn2 +. The degree of inhibition was inversely proportional to the ionic radius of these divalent cations, except for manganese. All of these inhibition processes proceeded without change in the maximum velocity of Zn2 + uptake, indicating the intervention by a common carrier for these cations during the course of mucosal uptake.  相似文献   

8.
C Zimmer  G Luck  H Triebel 《Biopolymers》1974,13(3):425-453
The effects of metal ions of the first-row transition and of alkaline earth metals on the DNA helix conformation have been studied by uv difference spectra, circular dichroism, and sedimentation measurements. At low ionic strength (10?3 M NaClO4) DNA shows a maximum in the difference absorption spectra in the presence of Zn2+, Mn2+, Co2+, Cd2+, and Ni2+ but not with Mg2+ or Ca2+. The amplitude of this maximum is dependent on GC content as revealed by detailed studies of the DNA-Zn2+ complex of eight different DNA's. Pronounced changes also occur in the CD spectra of DNA transition metal complexes. A transition appears up to a total ratio of approximately 1 Zn2+ per DNA phosphate at 10?3 M NaClO4; then no further change was observed up to high concentrations. The characteristic CD changes are strongly dependent on the double-helical structure of DNA and on the GC content of DNA. Differences were also observed in hydrodynamic properties of DNA metal complexes as revealed by the greater increase of the sedimentation coefficient of native DNA in the presence of transition metal ions. Spectrophotometric acid titration experiments and CD measurements at acidic pH clearly indicate the suppression of protonation of GC base-pair regions on the addition of transition metal ions to DNA. Similar effects were not observed with DNA complexes with alkaline earth metal ions such as Mg2+ or Ca2+. The data are interpreted in terms of a preferential interaction of Zn2+ and of other transition metal ions with GC sites by chelation to the N-7 of guanine and to the phosphate residue. The binding of Zn2+ to DNA disappears between 0.5 M and 1 M NaClO4, but complex formation with DNA is observable again in the presence of highly concentrated solutions of NaClO4 (3?7.2 M NaClO4) or at 0.5 to 2 M Mn2+. At relatively high cation concentration Mg2+ is also effective in changing the DNA comformation. These structural alterations probably result from both the shielding of negatively charged phosphate groups and the breakdown of the water structure along the DNA helix. Differential effects in CD are also observed between Mn2+, Zn2+ on one hand and Mg2+ on the other hand under these conditions. The greater sensitivity of the double-helical conformation of DNA to the action of transition metal ions is due to the affinity of the latter to electron donating sites of the bases resulting from the d electronic configuration of the metal ions. An order of the relative phosphate binding ability to base-site binding ability in native DNA is obtained as follows: Mg2+, Ba2+, < Ca2+ < Fe2+, Ni2+, Co2+ < Mn2+, Zn2+ < Cd2+ < Cu2+. The metal-ion induced conformational changes of the DNA are explained by alternation of the winding angle between base pairs as occurs in the transition from B to C conformation. These findings are used for a tentative molecular interpretation of some effects of Zn2+ and Mn2+ in DNA synthesis reported in the literature.  相似文献   

9.
Mithramycin (MTR), an aureolic acid group of antitumor antibiotic is used for the treatment of several types of tumors. We have reported here the association of MTR with an essential micronutrient, manganese (Mn2+). Spectroscopic methods have been used to characterize and understand the kinetics and mechanism of complex formation between them. MTR forms a single type of complex with Mn2+ in the mole ratio of 2:1 [MTR: Mn2+] via a two step kinetic process. Circular dichroism (CD) spectroscopic study indicates that the complex [(MTR)2 Mn2+] has a right-handed twist conformation similar in structure with the complexes reported for Mg2+ and Zn2+. This conformation allows binding via minor groove of DNA with (G, C) base preference during the interaction with double-stranded B-DNA. Using absorbance, fluorescence, and CD spectroscopy we have shown that [(MTR)2 Mn2+] complex binds to double-stranded DNA with an apparent dissociation constant of 32?μM and binding site size of 0.2 (drug/nucleotide). It binds to chicken liver chromatin with apparent dissociation constant value 298?μM. Presence of histone proteins in chromatin inhibits the accessibility of the complex for chromosomal DNA. We have also shown that MTR binds to Mn2+ containing metalloenzyme manganese superoxide dismutase from Escherichia coli.  相似文献   

10.
The activation of muscle pyruvate kinase by divalent cations was studied by steady-state kinetics. Under experimental conditions the enzyme exhibits activation by Mg2+, Co2+, Mn2+, Ni2+, and Zn2+ in descending order of maximal velocity. Combinations of cations were also studied. A synergistic activation was observed with a fixed concentration of Mg2+ and varying concentrations of Mn2+ or of Co2+. This synergism indicates at least two roles for the cations for enzymatic activation and a differential specificity among the cations for the separate functions. Synergistic activation was also observed with fixed Co2+ and varying Mn2+. These results are consistent with a cation specifically required to activate the enzyme and a cation which serves as a cation-nucleotide complex which is a substrate for the reaction. The response observed suggests that Mn2+ is a better activator of the enzyme than is Mg2+, however, MgADP is a better substrate than is MnADP. The lack of a synergistic effect by Ni2+ or Zn2+ with Mg2+ suggests that Ni2+ and Zn2+ are poor activators either because they serve one catalytic function poorly but bind to that site tightly or they serve both catalytic functions poorly in contrast to Mg2+. These studies yield the first simple kinetic evidence that muscle pyruvate kinase, under catalytic conditions of the overall reaction, has a dual divalent cation requirement for activity.  相似文献   

11.
Xu X  Liu X  Zhang L  Chen J  Liu W  Liu Q 《The protein journal》2006,25(6):423-430
Acutolysin D, isolated from the venom of Agkistrodon acutus, possesses marked haemorrhagic and proteolytic activities. The molecular weight and the absorption coefficients (A 1% 280) of acutolyisn D have been determined to be 47,850 ± 8 amu and 9.3 by mass spectrometer and UV spectrum, respectively. The effects of metal ions on the conformation and activity of acutolysin D have been studied by following fluorescence, circular dichroism and biological activity measurements. Acutolysin D contains two Ca2+-binding sites and two Zn2+-binding sites determined by atomic absorption spectrophotometer. Zn2+ is essential for the enzyme activities of acutolysin D, however, the presence of 1 mM Zn2+ significantly decreases its caseinolytic activity and intrinsic fluorescence intensity at pH 9.0 due to Zn(OH)2 precipitate formation. Ca2+ is important for the structural integrity of acutolysin D, and the presence of 1 mM Ca2+ markedly enhances its caseinolytic activity. Interestingly, the caseinolytic activity which is inhibited partly by Cu2+, Co2+, Mn2+ or Tb3+ and inhibited completely by Cd2+, is enhanced by Mg2+. The fluorescence intensity of the protein decreases in the presence of Cu2+, Co2+, Cd2+ or Mn2+, but neither for Ca2+, Mg2+ nor for Tb3+. Zn2+, Ca2+, Mg2+, Cu2+, Mn2+, Co2+ and Tb3+ have slight effects on its secondary structure contents. In addition, Cd2+ causes a marked increase of antiparallel β-sheet content from 45.5% to 60.2%.  相似文献   

12.
The nature of the interaction between polyacrylalc ion and several divalent cations, such as Cu2+, Mn2+, Zn2+, Ba2+ and Mg2+, was investigated using Raman spectroscopy. A specific Raman band characteristic of a carboxyl group is shifted upon addition of Cu2+. Zn2+ and Mn2+ to partially neutralized poly(acrylic acid). On the other hand. no frequency shift of the specific Raman band is observed on addition of Mg2+ and Ba2+*, though the intensity of the specific Raman band decreases with concentration of MgCl2. It is concluded from these Raman data that the interaction between polyacrylatc ion and Cu2+. Zn2+ or Mn2+ includes a specific interaction with bond formation, whereas in the case of Mg2+ and Ba2+, the electrostatic interaction is dominant.  相似文献   

13.
In a search for components involved in Mn2+ homeostasis in the budding yeast Saccharomyces cerevisiae, we isolated a mutant with modifications in Mn2+ transport. The mutation was found to be located in HIP1, a gene known to encode a high-affinity permease for histidine. The mutation, designated hip1–272, caused a frameshift that resulted in a stop codon at position 816 of the 1812-bp ORF. This mutation led to Mn2+ resistance, whereas the corresponding null mutation did not. Both hip1–272 cells and the null mutant exhibited low tolerance to divalent cations such as Co2+, Ni2+, Zn2+, and Cu2+. The Mn2+ phenotype was not influenced by supplementary histidine in either mutant, whereas the sensitivity to other divalent cations was alleviated by the addition of histidine. The cellular Mn2+ content of the hip1–272 mutant was lower than that of wild type or null mutant, due to increased rates of Mn2+ efflux. We propose that Hip1p is involved in Mn2+ transport, carrying out a function related to Mn2+ export. Received: 9 January 1998 / Accepted: 4 May 1998  相似文献   

14.
Ion chromatography followed by microwave-induced acid digestion was used to evaluate the serum levels of Fe3+, Cu2+, Ni2+, Zn2+, and Mn2+ in patients with diagnosed type 2 diabetes and in healthy controls. Recoveries ranged from 98.0% to 102% for Fe3+, from 89.9% to 100% for Cu2+, from 87.9% to 102% for Zn2+, and from 89.6% to 102% for Mn2+ were determined by examining samples spiked with various amounts of all the studied ions. The time of mineralization longer than 28 min did not affect the assay values. Precision was assessed at four unique concentrations in replicates of six, on four separate occasions. RSD was determined to be 1.16% for Fe3+, 5.20% for Cu2+, 2.8% for Zn2+, and 3.75% for Mn2+. The accuracy results (values of RSD) were as follows: 5.16% for Fe3+, 6.35% for Cu2+, 4.9% for Zn2+, and 7.23% for Mn2+.The statistical analysis confirmed that mean concentrations of Fe3+ and Zn2+ did not differ significantly from analogous values in the control group. Patients who additionally suffered from hypertension had higher copper concentrations compared with diabetic patients. For diabetics the presence of Mn2+ was not stated (LOD values amounting to 0.006 μg/mL). Ni2+ was not detectable for either the studied group or the control group (LOD=0.006 μg/mL).  相似文献   

15.
Tripositive-pyrophosphate [M(III)-PPi] complexes were used to investigate the role of free divalent cations on the membrane-bound pyrophosphatase. Divalent cations remain free and the M(III)-PPi complexes were employed as substrates. Formation of a La-PPi complex was studied by fluorescence, and the fact that Zn2+ and Mg2+ remain free in the solution was validated. Hydrolysis of La-PPi is stimulated by the presence of fixed concentrations of free Mg2+ or Zn2+ and this stimulation depends on the concentration of the cations when the La-PPi complex is fixed. The divalent cation stimulation order is Zn2+ > Co2+ > Mg2+ > Mn2+ > Ca2+ (at 0.5 mm of free cation). With different M(III)-PPi complexes, Zn2+ produces the same K m, for all the complexes and Mg2+ stimulates with a different K m. The results suggest that both Mg2+ and Zn2+ activate the membrane-bound pyrophosphatase but through different mechanisms.  相似文献   

16.
Hu Y  Yang JP  Liu JS 《Luminescence》2012,27(5):437-440
Mn‐doped willemite (Zn2SiO4:Mn) green phosphor were synthesized by sol–gel technology. The effect of the addition of sodium, as in the composition Zn(1.92 – X) NaXMn0.08SiO4, on the emission behavior was studied. FT–IR and EPR results revealed that sodium ion is incorporated into the lattice and results in the formation of isolated Mn2+ and Mn–Mn pairs. The maximum emission intensity of the sample under ultraviolet (UV) excitation occurred at the sodium concentration of x = ~0.03. The green emission at about 525 nm is assigned to Mn2+–Mn2+ pair centres on nearest neighbour Zn sites. The highest intensity of the green emission for x = ~0.03 is well close to the highest concentration of the Mn2+–Mn2+ pair. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Pistia stratiotes is used for the epuration of domestic sewage in the Biyem Assi phytopurification station. During the process, Fe2+, Mn2+, Zn2+ and Pb2+ are absorbed in substantial amounts by the plant. These metals modify the H+/K+ exchange system at the root level. H+ efflux is inhibited by Fe2+ and by Zn2+ and enhanced by Mn2+ and Pb2+. K+ influx is inhibited by Fe2+, by Zn2+ and by Pb2+ and enhanced by Mn2+. It is shown that the purification capacity ofPistia stratiotes can vary with the composition of the heavy metals in the surrounding medium.  相似文献   

19.
Arginase is a binuclear Mn2+-metalloenzyme of urea cycle that hydrolyses arginine to ornithine and urea. Unlike other arginases, the Helicobacter pylori enzyme is selective for Co2+. Previous study reported that DTT strongly inhibits the H. pylori enzyme activity suggesting that a disulphide bond is critical for the catalysis. In this study, we have undertaken steady-state kinetics, circular dichroism and mutational analysis to examine the role of a disulphide bond in this protein. By mutational analysis, we show that the disulphide bond is not important for catalytic activity; rather it plays an important role for the stability of the protein as observed from thermal denaturation studies. The loss of catalytic activity in the wild-type protein with DTT is due to the interaction with Co2+. This is verified with the Mn2+-reconstituted proteins which showed a marginal loss in the activity with DTT.  相似文献   

20.
The biochemical rationale for the inhibition of citric acid fermentation by Aspergillus niger in the presence of Mn2+ ions has been investigated using high citric acid-yielding, Mn2+ ion-sensitive as well as Mn2+ ion-tolerant mutant strains of A. niger. In the presence of Mn2+ (1.5 mg/l), citric acid production by the Mn2+ ion-sensitive strain (KCU 520) was reduced by about 75% with no apparent effect on citric acid yield by the Mn2+ ion-tolerant mutant strain (GS-III) of A. niger. The significantly increased level of the Mn2+ ion-requiring NADP+-isocitrate dehydrogenase activity in KCU 520 cells and the lack of effect on the activity level of the enzyme in GS-III mutant cells by Mn2+ ions during fermentation seem to be responsible for the Mn2+ ion inhibition of citric acid production by the KCU 520 strain and the high citric acid yield by the mutant strain GS-III of A. niger even in the presence of Mn2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号