首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The maltose transport system of Escherichia coli, a member of the ABC transport superfamily of proteins, consists of a periplasmic maltose binding protein and a membrane-associated translocation complex that contains two copies of the ATP-binding protein MalK. To examine the need for two nucleotide-binding domains in this transport complex, one of the two MalK subunits was inactivated by site-directed mutagenesis. Complexes with mutations in a single subunit were obtained by attaching a polyhistidine tag to the mutagenized version of MalK and by coexpressing both wild-type MalK and mutant (His)6MalK in the same cell. Hybrid complexes containing one mutant (His)6MalK subunit and one wild-type MalK subunit were separated from those containing two mutant (His)6MalK proteins based on differential affinities for a metal chelate column. Purified transport complexes were reconstituted into proteoliposome vesicles and assayed for maltose transport and ATPase activities. When a conserved lysine residue at position 42 that is involved in ATP binding was replaced with asparagine in both MalK subunits, maltose transport and ATPase activities were reduced to 1% of those of the wild type. When the mutation was present in only one of the two subunits, the complex had 6% of the wild-type activities. Replacement of a conserved histidine residue at position 192 in MalK with arginine generated similar results. It is clear from these results that two functional MalK proteins are required for transport activity and that the two nucleotide-binding domains do not function independently to catalyze transport.  相似文献   

2.
We have studied cofactor-induced conformational changes of the maltose ATP-binding cassette transporter by employing limited proteolysis in detergent solution. The transport complex consists of one copy each of the transmembrane subunits, MalF and MalG, and of two copies of the nucleotide-binding subunit, MalK. Transport activity further requires the periplasmic maltose-binding protein, MalE. Binding of ATP to the MalK subunits increased the susceptibility of two tryptic cleavage sites in the periplasmic loops P2 of MalF and P1 of MalG, respectively. Lys(262) of MalF and Arg(73) of MalG were identified as probable cleavage sites, resulting in two N-terminal peptide fragments of 29 and 8 kDa, respectively. Trapping the complex in the transition state by vanadate further stabilized the fragments. In contrast, the tryptic cleavage profile of MalK remained largely unchanged. ATP-induced conformational changes of MalF-P2 and MalG-P1 were supported by fluorescence spectroscopy of complex variants labeled with 2-(4'-maleimidoanilino)naphthalene-6-sulfonic acid. Limited proteolysis was subsequently used as a tool to study the consequences of mutations on the transport cycle. The results suggest that complex variants exhibiting a binding protein-independent phenotype (MalF500) or containing a mutation that affects the "catalytic carboxylate" (MalKE159Q) reside in a transition state-like conformation. A similar conclusion was drawn for a complex containing a replacement of MalKQ140 in the signature sequence by leucine, whereas substitution of lysine for Gln(140) appears to lock the transport complex in the ground state. Together, our data provide the first evidence for conformational changes of the transmembrane subunits of an ATP-binding cassette import system upon binding of ATP.  相似文献   

3.
The maltose/maltodextrin transport system of Escherichia coli/Salmonella, composed of periplasmic maltose‐binding protein, MalE, the pore‐forming subunits MalF and MalG, and a homodimer of the nucleotide‐binding subunit, MalK, serves as a model for canonical ATP‐binding cassette importers in general. The wealth of knowledge accumulated on the maltose transporter in more than three decades by genetic, molecular genetic and biochemical means was complemented more recently by crystal structures of the isolated MalK dimer and of two conformational states of the full transporter. Here, we summarize insights into the transport mechanism provided by these structures and draw the reader's attention to experimental tools by which the dynamics of the transporter can be studied during substrate translocation. A transport model is presented that integrates currently available biochemical, biophysical and structural data. We also present the state of knowledge on regulatory functions of the maltose transporter associated with the C‐terminal domain of MalK. Finally, we will address the application of coarse‐grained modelling to visualize the progression of the conformational changes of an ABC transporter with special emphasis on the maltose system, which can provide a model platform for testing and validating the bioinformatic tools.  相似文献   

4.
MalFGK2 is an ATP‐binding cassette (ABC) transporter that mediates the uptake of maltose/maltodextrins into Escherichia coli. A periplasmic maltose‐binding protein (MBP) delivers maltose to the transmembrane subunits (MalFG) and stimulates the ATPase activity of the cytoplasmic nucleotide‐binding subunits (MalK dimer). This MBP‐stimulated ATPase activity is independent of maltose for purified transporter in detergent micelles. However, when the transporter is reconstituted in membrane bilayers, only the liganded form of MBP efficiently stimulates its activity. To investigate the mechanism of maltose stimulation, electron paramagnetic resonance spectroscopy was used to study the interactions between the transporter and MBP in nanodiscs and in detergent. We found that full engagement of both lobes of maltose‐bound MBP unto MalFGK2 is facilitated by nucleotides and stabilizes a semi‐open MalK dimer. Maltose‐bound MBP promotes the transition to the semi‐open state of MalK when the transporter is in the membrane, whereas such regulation does not require maltose in detergent. We suggest that stabilization of the semi‐open MalK2 conformation by maltose‐bound MBP is key to the coupling of maltose transport to ATP hydrolysis in vivo, because it facilitates the progression of the MalK dimer from the open to the semi‐open conformation, from which it can proceed to hydrolyze ATP.  相似文献   

5.
We have investigated conformational changes of the purified maltose ATP-binding cassette transporter (MalFGK(2)) upon binding of ATP. The transport complex is composed of a heterodimer of the hydrophobic subunits MalF and MalG constituting the translocation pore and of a homodimer of MalK, representing the ATP-hydrolyzing subunit. Substrate is delivered to the transporter in complex with periplasmic maltose-binding protein (MalE). Cross-linking experiments with a variant containing an A85C mutation within the Q-loop of each MalK monomer indicated an ATP-induced shortening of the distance between both monomers. Cross-linking caused a substantial inhibition of MalE-maltose-stimulated ATPase activity. We further demonstrated that a mutation affecting the "catalytic carboxylate" (E159Q) locks the MalK dimer in the closed state, whereas a transporter containing the "ABC signature" mutation Q140K permanently resides in the resting state. Cross-linking experiments with variants containing the A85C mutation combined with cysteine substitutions in the conserved EAA motifs of MalF and MalG, respectively, revealed close proximity of these residues in the resting state. The formation of a MalK-MalG heterodimer remained unchanged upon the addition of ATP, indicating that MalG-EAA moves along with MalK during dimer closure. In contrast, the yield of MalK-MalF dimers was substantially reduced. This might be taken as further evidence for asymmetric functions of both EAA motifs. Cross-linking also caused inhibition of ATPase activity, suggesting that transporter function requires conformational changes of both EAA motifs. Together, our data support ATP-driven MalK dimer closure and reopening as crucial steps in the translocation cycle of the intact maltose transporter and are discussed with respect to a current model.  相似文献   

6.
The maltose transport complex of Escherichia coli, a member of the ATP-binding cassette superfamily, mediates the high affinity uptake of maltose at the expense of ATP. The membrane-associated transporter consists of two transmembrane subunits, MalF and MalG, and two copies of the cytoplasmic ATP-binding cassette subunit, MalK. Maltose-binding protein (MBP), a soluble periplasmic protein, delivers maltose to the MalFGK(2) transporter and stimulates hydrolysis by the transporter. Site-directed spin labeling electron paramagnetic resonance spectroscopy is used to monitor binding of MBP to MalFGK(2) and conformational changes in MBP as it interacts with MalFGK(2). Cysteine residues and spin labels have been introduced into the two lobes of MBP so that spin-spin interaction will report on ligand-induced closure of the protein (Hall, J. A., Thorgeirsson, T. E., Liu, J., Shin, Y. K., and Nikaido, H. (1997) J. Biol. Chem. 272, 17610-17614). At least two different modes of interaction between MBP and MalFGK(2) were detected. Binding of MBP to MalFGK(2) in the absence of ATP resulted in a decrease in motion of spin label at position 41 in the C-terminal domain of MBP. In a vanadate-trapped transition state intermediate, all free MBP became tightly bound to MalFGK(2), spin label in both lobes became completely immobilized, and spin-spin interactions were lost, suggesting that MBP was in an open conformation. Binding of non-hydrolyzable MgATP analogs or ATP in the absence of Mg is sufficient to stabilize a complex of open MBP and MalFGK(2). Taken together, these data suggest that closure of the MalK dimer interface coincides with opening of MBP and maltose release to the transporter.  相似文献   

7.
Interactions between domains of ATP-binding cassette (ABC) transporters are of great functional importance and yet are poorly understood. To gain further knowledge of these protein–protein interactions, we studied the inner membrane complex of the maltose transporter of Escherichia coli . We focused on interactions between the nucleotide-binding protein, MalK, and the transmembrane proteins, MalF and MalG. We incubated purified MalK with inverted membrane vesicles containing MalF and MalG. MalK bound specifically to MalF and MalG and reconstituted a functional complex. We used this approach and limited proteolysis with trypsin to show that binding and hydrolysis of ATP, inducing conformational changes in MalK, modulate its interaction with MalF and MalG. MalK in the reconstituted complex was less sensitive to protease added from the cytoplasmic side of the membrane, and one proteolytic cleavage site located in the middle of a putative helical domain of MalK was protected. These results suggest that the putative helical domain of the nucleotide-binding domains is involved, through its conformational changes, in the coupling between the transmembrane domains and ATP binding/hydrolysis at the nucleotide-binding domains.  相似文献   

8.
We present a quantitative analysis of conformational changes of the nucleotide-binding subunits, MalK2, of the maltose ATP-binding cassette importer MalFGK2 during the transport cycle. Distance changes occurring between selected residues were monitored in the full transporter by site-directed spin-labeling electron paramagnetic resonance spectroscopy and site-directed chemical cross-linking. We considered S83C and A85C from the conserved Q-loop and V117C located on the outer surface of MalK. Additionally, two native cysteines (C350, C360) were included in the study. On ATP binding, small rearrangements between the native sites, and no distance changes between positions 117 were detected. In contrast, positions 85 come closer together in the ATP-bound state and in the vanadate-trapped intermediate and move back toward the apo-state after ATP hydrolysis. The distance between positions 83 is shown to slightly decrease on ATP binding, and to further decrease after ATP hydrolysis. Results from cross-linking experiments are in agreement with these findings. The data are compared with in silico spin-labeled x-ray structures from both isolated MalK2 and the MalFGK2-E complex. Our results are consistent with a slightly modified “tweezers-like” model of closure and reopening of MalK2 during the catalytic cycle, and show an unforeseen potential interaction between MalK and the transmembrane subunit MalG.  相似文献   

9.
The ATPase components of ATP binding cassette (ABC) transporters power the transporters by binding and hydrolyzing ATP. Major conformational changes of an ATPase are revealed by crystal structures of MalK, the ATPase subunit of the maltose transporter from Escherichia coli, in three different dimeric configurations. While other nucleotide binding domains or subunits display low affinity for each other in the absence of the transmembrane segments, the MalK dimer is stabilized through interactions of the additional C-terminal domains. In the two nucleotide-free structures, the N-terminal nucleotide binding domains are separated to differing degrees, and the dimer is maintained through contacts of the C-terminal regulatory domains. In the ATP-bound form, the nucleotide binding domains make contact and two ATPs lie buried along the dimer interface. The two nucleotide binding domains of the dimer open and close like a pair of tweezers, suggesting a regulatory mechanism for ATPase activity that may be tightly coupled to translocation.  相似文献   

10.
The maltose transporter of Escherichia coli is a member of the ATP‐binding cassette (ABC) transporter superfamily. The crystal structures of maltose transporter MalK have been determined for distinct conformations in the presence and absence of the ligand ATP, and other interacting proteins. Using the distinct MalK structures, normal mode analysis was performed to understand the dynamics behavior of the system. A network of dynamically important residues was obtained from the normal mode analysis and the analysis of point mutation on the normal modes. Our results suggest that the intradomain rotation occurs earlier than the interdomain rotation during the maltose‐binding protein (MBP)‐driven conformational changes of MalK. We inquire if protein motion and functional‐driven evolutionary conservation are related. The sequence conservation of MalK was analyzed to derive a network of evolutionarily important residues. There are highly significant correlations between protein sequence and protein dynamics in many regions on the maltose transporter MalK, suggesting a link between the protein evolution and dynamics. The significant overlaps between the network of dynamically important residues and the network of evolutionarily important residues form a network of dynamically conserved residues. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
The signal-transducing protein EIIAGlc belongs to the phosphoenolpyruvate carbohydrate phosphotransferase system. In its dephosphorylated state, EIIAGlc is a negative regulator for several permeases, including the maltose transporter MalFGK2. How EIIAGlc is targeted to the membrane, how it interacts with the transporter, and how it inhibits sugar uptake remain obscure. We show here that acidic phospholipids together with the N-terminal tail of EIIAGlc are essential for the high affinity binding of the protein to the transporter. Using protein docking prediction and chemical cross-linking, we demonstrate that EIIAGlc binds to the MalK dimer, interacting with both the nucleotide-binding and the C-terminal regulatory domains. Dissection of the ATPase cycle reveals that EIIAGlc does not affect the binding of ATP but rather inhibits the capacity of MalK to cleave ATP. We propose a mechanism of maltose transport inhibition by this central amphitropic regulatory protein.  相似文献   

12.
The nucleotide binding domains (NBDs) are the energy supplying subunits of ATP-binding cassette (ABC) proteins. They power transport by binding and hydrolyzing ATP. Tracing the pathway between different conformational states of the NBDs during ATP binding, hydrolysis, and release has, however, proven difficult. We have used molecular dynamics simulations to study the ATP-driven association of the NBDs of the maltose ABC transporter, MalK, based on the crystal structures of its open and semiopen dimers. When MgATP was introduced into the binding pockets, the semiopen dimer transitioned to a closed conformation, whereas the open dimer evolved to a semiopen state. In the absence of docked MgATP, however, the twin NBDs of both the open and semiopen starting configurations drifted further apart. Both the presence of MgATP and direct cross-interface protein-protein hydrogen bonds, primarily involving the D-loop, quite likely play a key role in initiating closure. The simulations of the MgATP-docked semiopen form indicate that completion of closure is driven mainly by cross-interface contacts between the gamma-phosphate of ATP and residues in the signature motif. Our simulations also give insight into possible interactions of MalK with the regulatory proteins MalT and enzyme IIA(glc).  相似文献   

13.
Catabolite repression is a mechanism that enables bacteria to control carbon utilization. As part of this global regulatory network, components of the phosphoenolpyruvate:carbohydrate phosphotransferase system inhibit the uptake of less favorable sugars when a preferred carbon source such as glucose is available. This process is termed inducer exclusion. In bacteria belonging to the phylum Firmicutes, HPr, phosphorylated at serine 46 (P‐Ser46‐HPr) is the key player but its mode of action is elusive. To address this question at the level of purified protein components, we have chosen a homolog of the Escherichia coli maltose/maltodextrin ATP‐binding cassette transporter from Lactobacillus casei (MalE1‐MalF1G1K12) as a model system. We show that the solute binding protein, MalE1, binds linear and cyclic maltodextrins but not maltose. Crystal structures of MalE1 complexed with these sugars provide a clue why maltose is not a substrate. P‐Ser46‐HPr inhibited MalE1/maltotetraose‐stimulated ATPase activity of the transporter incorporated in proteoliposomes. Furthermore, cross‐linking experiments revealed that P‐Ser46‐HPr contacts the nucleotide‐binding subunit, MalK1, in proximity to the Walker A motif. However, P‐Ser46‐HPr did not block binding of ATP to MalK1. Together, our findings provide first biochemical evidence that P‐Ser‐HPr arrests the transport cycle by preventing ATP hydrolysis at the MalK1 subunits of the transporter.  相似文献   

14.
The complex MalFGK2 hydrolyzes ATP and alternates between inward- and outward-facing conformations during maltose transport. It has been shown that ATP promotes closure of MalK2 and opening of MalFG toward the periplasm. Yet, why the transporter rests in a conformation facing the cytosol in the absence of nucleotide and how it returns to this state after hydrolysis of ATP is unknown. The membrane domain MalFG may be naturally stable in the inward-facing conformation, or the ABC domain may catalyze the transition. We address this question by analyzing the conformation of MalFG in nanodiscs and in proteoliposomes. We find that MalFG alone exists in an intermediate state until MalK binds and converts the membrane domain to the inward-facing state. We also find that MalK, if overly-bound to MalFG, blocks the transition of the transporter, whereas suppressor mutations that weaken this association restore transport. MalK therefore exploits hydrolysis of ATP to reverse the conformation of MalFG to the inward-facing conformation, a step essential for release of maltose in the cytosol.  相似文献   

15.
The maltose transporter FGK2 complex of Escherichia coli was purified with the aid of a glutathione S-transferase molecular tag. In contrast to the membrane-associated form of the complex, which requires liganded maltose binding protein (MBP) for ATPase activity, the purified detergent-soluble complex exhibited a very high level of ATPase activity. This uncoupled activity was not due to dissociation of the MalK ATPase subunit from the integral membrane protein MalF and MalG subunits. The detergent-soluble ATPase activity of the complex could be further stimulated by wild-type MBP but not by a signaling-defective mutant MBP. Wild-type MBP increased the Vmax of the ATPase 2.7-fold but had no effect on the Km of the enzyme for ATP. When the detergent-soluble complex was reconstituted in proteoliposomes, it returned to being dependent on MBP for activation of ATPase, consistent with the idea that the structural changes induced in the complex by detergent that result in activation of the ATPase are reversible. The uncoupled ATPase activity resembled the membrane-bound activity of the complex also with respect to sensitivity to NaN3, as well as a mercurial, p-chloromercuribenzosulfonic acid. Verapamil, a compound that activates the ATPase activity of the multiple drug resistance P-glycoprotein, activated the maltose transporter ATPase as well. The activation of this bacterial transporter by verapamil suggests that a structural feature that is conserved among both eukaryotic and prokaryotic ATP binding cassette transporters is responsible for this activation.  相似文献   

16.
The binding protein-dependent maltose transport system of enterobacteria (MalFGK(2)), a member of the ATP-binding cassette (ABC) transporter superfamily, is composed of two integral membrane proteins, MalF and MalG, and of two copies of an ATPase subunit, MalK, which hydrolyze ATP, thus energizing the translocation process. In addition, an extracellular (periplasmic) substrate-binding protein (MalE) is required for activity. Ligand translocation and ATP hydrolysis are dependent on a signaling mechanism originating from the binding protein and traveling through MalF/MalG. Thus, subunit-subunit interactions in the complex are crucial to the transport process but the chemical nature of residues involved is poorly understood. We have investigated the proximity of residues in a conserved sequence ("EAA" loop) of MalF and MalG to residues in a helical segment of the MalK subunits by means of site-directed chemical cross-linking. To this end, single cysteine residues were introduced into each subunit at several positions and the respective malF and malG alleles were individually co-expressed with each of the malK alleles. Membrane vesicles were prepared from those double mutants that contained a functional transporter in vivo and treated with Cu(1,10-phenanthroline)(2)SO(4) or bifunctional cross-linkers. The results suggest that residues Ala-85, Lys-106, Val-114, and Val-117 in the helical segment of MalK, to different extents, participate in constitution of asymmetric interaction sites with the EAA loops of MalF and MalG. Furthermore, both MalK monomers in the complex are in close contact to each other through Ala-85 and Lys-106. These interactions are strongly modulated by MgATP, indicating a structural rearrangement of the subunits during the transport cycle. These data are discussed with respect to current transport models.  相似文献   

17.
The maltose transport system in Escherichia coli is a member of the ATP-binding cassette superfamily of transporters that is defined by the presence of two nucleotide-binding domains or subunits and two transmembrane regions. The bacterial import systems are unique in that they require a periplasmic substrate-binding protein to stimulate the ATPase activity of the transport complex and initiate the transport process. Upon stimulation by maltose-binding protein, the intact MalFGK(2) transport complex hydrolyzes ATP with positive cooperativity, suggesting that the two nucleotide-binding MalK subunits interact to couple ATP hydrolysis to transport. The ATPase activity of the intact transport complex is inhibited by vanadate. In this study, we investigated the mechanism of inhibition by vanadate and found that incubation of the transport complex with MgATP and vanadate results in the formation of a stably inhibited species containing tightly bound ADP that persists after free vanadate and nucleotide are removed from the solution. The inhibited species does not form in the absence of MgCl(2) or of maltose-binding protein, and ADP or another nonhydrolyzable analogue does not substitute for ATP. Taken together, these data conclusively show that ATP hydrolysis must precede the formation of the vanadate-inhibited species in this system and implicate a role for a high-energy, ADP-bound intermediate in the transport cycle. Transport complexes containing a mutation in a single MalK subunit are still inhibited by vanadate during steady-state hydrolysis; however, a stably inhibited species does not form. ATP hydrolysis is therefore necessary, but not sufficient, for vanadate-induced nucleotide trapping.  相似文献   

18.
As the intracellular part of maltose transporter, MalK dimer utilizes the energy of ATP hydrolysis to drive protein conformational change, which then facilitates substrate transport. Free energy evaluation of the complete conformational change before and after ATP hydrolysis is helpful to elucidate the mechanism of chemical‐to‐mechanical energy conversion in MalK dimer, but is lacking in previous studies. In this work, we used molecular dynamics simulations to investigate the structural transition of MalK dimer among closed, semi‐open and open states. We observed spontaneous structural transition from closed to open state in the ADP‐bound system and partial closure of MalK dimer from the semi‐open state in the ATP‐bound system. Subsequently, we calculated the reaction pathways connecting the closed and open states for the ATP‐ and ADP‐bound systems and evaluated the free energy profiles along the paths. Our results suggested that the closed state is stable in the presence of ATP but is markedly destabilized when ATP is hydrolyzed to ADP, which thus explains the coupling between ATP hydrolysis and protein conformational change of MalK dimer in thermodynamics. Proteins 2017; 85:207–220. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
Understanding the structure and function of the ATP-binding cassette (ABC) transporters is very important because defects in ABC transporters lie at the root of several serious diseases including cystic fibrosis. MalK, the ATP-binding cassette of the maltose transporter of Escherichia coli, is distinct from most other ATP-binding cassettes in that it contains an additional C-terminal regulatory domain. The published structure of a MalK dimer is elongated with C-terminal domains at opposite poles (Diederichs, K., Diez, J., Greller, G., Muller, C., Breed, J., Schnell, C., Vonrhein, C., Boos, W., and Welte, W. (2000) EMBO J. 19, 5951-5961). Some uncertainty exists as to whether the orientation of MalK in the dimer structure is correct. Superpositioning of the N-terminal domains of MalK onto the ATP-binding domains of an alternate ABC dimer, in which ATP is bound along the dimer interface between Walker A and LSGGQ motifs, places both N- and C-terminal domains of MalK along the dimer interface. Consistent with this model, a cysteine substitution at position 313 in the C-terminal domain of an otherwise cysteine-free MalK triggered disulfide bond formation between two MalK subunits in an intact maltose transporter. Disulfide bond formation did not inhibit the function of the transporter, suggesting that the C-terminal domains of MalK remain in close proximity throughout the transport cycle. Enzyme IIAglc still inhibited the ATPase activity of the disulfide-linked transporter indicating that the mechanism of inducer exclusion was unaffected. These data support a model for ATP hydrolysis in which the C-terminal domains of MalK remain in contact whereas the N-terminal domains of MalK open and close to allow nucleotide binding and dissociation.  相似文献   

20.
The binding-protein-dependent maltose-transport system of enterobacteria, a member of the ATP-binding-cassette (ABC) transporter superfamily, is composed of two integral membrane proteins, MalF and MalG, and two copies of an ATPase subunit, MalK, which hydrolyze ATP, thus energizing the translocation process. Isolated MalK displays spontaneous ATPase activity, whereas in the assembled MalFGK2 complex, reconstituted in liposomes, ATP hydrolysis requires stimulation by the substrate-loaded extracellular maltose-binding protein, MalE. The ATPase domains of ABC transporters, including MalK, share a unique sequence motif ('LSGGQ', 'signature sequence' or 'linker peptide') with as yet unknown function. To elucidate its role in the transport process, we investigated the consequences of mutations affecting two highly conserved residues (G137, Q140) in the MalK-ATPase of Salmonella typhimurium, by biochemical means. Residues corresponding to Q140 in other ABC proteins have not yet been studied. All mutant alleles (G137--> A, V, T; Q140--> L, K, N) fail to restore a functional transport complex in vivo. In addition, the mutations increase the repressing activity of MalK on other maltose-regulated genes when compared with wild-type MalK. Purified variants of G137 have lost the ability to hydrolyze ATP but still display nucleotide-binding activity, albeit with reduced affinity. Binding of MgATP results in similar protection against trypsin, as observed with wild-type, indicating no major change in protein structure. In contrast, the variants of Q140 differ in their properties, depending on the chemical nature of the replacement residue. MalKQ140L fails to hydrolyze ATP and exhibits a strong intrinsic resistance to trypsin in the absence of MgATP, suggesting a drastically altered conformation. In contrast, the purified mutant proteins Q140K and Q140N display ATPase activities and MgATP-induced changes in the tryptic cleavage pattern similar to those of wild-type. However, mutant transport complexes containing the Q140K or Q140N variants, when studied in proteoliposomes, are severely impaired in MalE-maltose-stimulated ATPase activity. These results are discussed with respect to the crystal structure of the homologous HisP protein [Hung, L.-W., Wang, I.X., Nikaido, K., Liu, P.-Q., Ames, G.F.-L. & Kim, S.-H. (1998) Nature (London) 396, 703-707] and are interpreted in favor of a role of the signature sequence in activating the hydrolyzing activity of MalK upon substrate-initiated conformational changes in MalF/MalG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号