首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Acute gouty arthritis results from monosodium urate (MSU) crystal deposition in joint tissues. Deposited MSU crystals induce an acute inflammatory response which leads to damage of joint tissue. Pycnogenol (PYC), an extract from the bark of Pinus maritime, has documented antiinflammatory and antioxidant properties. The present study aimed to investigate whether PYC had protective effects on MSU-induced inflammatory and nitrosative stress in joint tissues both in vitro and in vivo. MSU crystals upregulated cyclooxygenase 2 (COX-2), interleukin 8 (IL-8) and inducible nitric oxide synthase (iNOS) gene expression in human articular chondrocytes, but only COX-2 and IL-8 in synovial fibroblasts. PYC inhibited the up-regulation of COX-2, and IL-8 in both articular chondrocytes and synovial fibroblasts. PYC attenuated MSU crystal induced iNOS gene expression and NO production in chondrocytes. Activation of NF-κB and SAPK/JNK, ERK1/2 and p38 MAP kinases by MSU crystals in articular chondrocytes and synovial fibroblasts in vitro was attenuated by treatment with PYC. The acute inflammatory cell infiltration and increased expression of COX-2 and iNOS in synovial tissue and articular cartilage following intra-articular injection of MSU crystals in a rat model was inhibited by coadministration of PYC. Collectively, this study demonstrates that PYC may be of value in treatment of MSU crystal-induced arthritis through its anti-inflammatory and anti-nitrosative activities.  相似文献   

2.
Synthetic hydroxyapatite (HA) and calcium pyrophosphate dihydrate (CPPD) microcrystals are phagocytosed by rabbit articular-cartilage chondrocytes in primary culture. The ingestion of crystals greatly stimulated the release of collagenase, neutral protease, and prostaglandins E2 and F2 alpha into the ambient medium. Lactate dehydrogenase was not released by either crystal despite electron microscopic evidence of cell damage by HA crystals (partial loss of phagolysosomal membrane and increased myelin figures). HA, but not CPPD crystals, stimulated release of beta-glucuronidase. HA crystal concentrations from 50 to 200 micrograms ml-1 induced a dose-dependent release of collagenase and of extracellular protein. Both phagocytosis and collagenase release were greatly attenuated when HA crystals were added to the chondrocyte monolayers in the absence of serum. As HA and CPPD crystals have been identified in human articular cartilage in association with degenerative changes, it is possible that the cell-crystal interaction described here may be pathogenetically important.  相似文献   

3.
4.
Phagocyte ingestion of monosodium urate (MSU) crystals can induce proinflammatory responses and trigger acute gouty inflammation. Alternatively, the uptake of MSU crystals by mature macrophages can be noninflammatory and promote resolution of gouty inflammation. Macrophage activation by extracellular MSU crystals involves apparent recognition and ingestion mediated by TLR2 and TLR4, with subsequent intracellular recognition linked to caspase-1 activation and IL-1beta processing driven by the NACHT-LRR-PYD-containing protein-3 inflammasome. In this study, we examined the potential role in gouty inflammation of CD14, a phagocyte-expressed pattern recognition receptor that functionally interacts with both TLR2 and TLR4. MSU crystals, but not latex beads, directly bound recombinant soluble (s) CD14 in vitro. CD14(-/-) bone marrow-derived macrophages (BMDMs) demonstrated unimpaired phagocytosis of MSU crystals but reduced p38 phosphorylation and approximately 90% less IL-1beta and CXCL1 release. Attenuated MSU crystal-induced IL-1beta release in CD14(-/-) BMDMs was mediated by decreased pro-IL-1beta protein expression and additionally by decreased caspase-1 activation and IL-1beta processing consistent with diminished NACHT-LRR-PYD-containing protein-3 inflammasome activation. Coating of MSU crystals with sCD14, but not sTLR2 or sTLR4, restored IL-1beta and CXCL1 production in CD14(-/-) BMDMs in vitro. Gain of function of CD14 directly enhanced TLR4-mediated signaling in response to MSU crystals in transfected Chinese hamster ovary cells in vitro. Last, MSU crystal-induced leukocyte influx at 6 h was reduced by approximately 75%, and local induction of IL-1beta decreased by >80% in CD14(-/-) mouse s.c. air pouches in vivo. We conclude that engagement of CD14 is a central determinant of the inflammatory potential of MSU crystals.  相似文献   

5.
Calcium pyrophosphate dihydrate (CPPD) crystals are commonly found in osteoarthritic joint tissues, where they predict severe disease. Unlike other types of calcium phosphate crystals, CPPD crystals form almost exclusively in the pericellular matrix of damaged articular cartilage, suggesting a key role for the extracellular matrix milieu in their development. Osteopontin is a matricellular protein found in increased quantities in the pericellular matrix of osteoarthritic cartilage. Osteopontin modulates the formation of calcium-containing crystals in many settings. We show here that osteopontin stimulates ATP-induced CPPD crystal formation by chondrocytes in vitro. This effect is augmented by osteopontin's incorporation into extracellular matrix by transglutaminase enzymes, is only modestly affected by its phosphorylation state, and is inhibited by integrin blockers. Surprisingly, osteopontin stimulates transglutaminase activity in cultured chondrocytes in a dose-responsive manner. As elevated levels of transglutaminase activity promote extracellular matrix changes that permit CPPD crystal formation, this is one possible mechanism of action. We demonstrate the presence of osteopontin in the pericellular matrix of chondrocytes adjacent to CPPD deposits and near active transglutaminases. Thus, osteopontin may play an important role in facilitating CPPD crystal formation in articular cartilage.  相似文献   

6.
Osteoarthritis is characterized by a progressive degradation of articular cartilage leading to loss of joint function. The molecular mechanisms regulating pathogenesis and progression of osteoarthritis are poorly understood. Remarkably, some characteristics of this joint disease resemble chondrocyte differentiation processes during skeletal development by endochondral ossification. In healthy articular cartilage, chondrocytes resist proliferation and terminal differentiation. By contrast, chondrocytes in diseased cartilage progressively proliferate and develop hypertrophy. Moreover, vascularization and focal calcification of joint cartilage are initiated. Signaling molecules that regulate chondrocyte activities in both growth cartilage and permanent articular cartilage during osteoarthritis are thus interesting targets for disease-modifying osteoarthritis therapies.  相似文献   

7.
IntroductionIn gout, monosodium urate (MSU) crystals deposit intra-articularly and cause painful arthritis. In the present study we tested the hypothesis that Transient Receptor Poten-tial Ankyrin 1 (TRPA1), an ion channel mediating nociceptive signals and neurogenic in-flammation, is involved in MSU crystal-induced responses in gout by utilizing three experi-mental murine models.MethodsThe effects of selective pharmacological inhibition (by HC-030031) and genetic depletion of TRPA1 were studied in MSU crystal-induced inflammation and pain by using 1) spontaneous weight-bearing test to assess MSU crystal-induced joint pain, 2) subcutaneous air-pouch model resembling joint inflammation to measure MSU crystal-induced cytokine production and inflammatory cell accumulation, and 3) MSU crystal-induced paw edema to assess acute vascular inflammatory responses and swelling.ResultsIntra-articularly injected MSU crystals provoked spontaneous weight shift off from the affected limb in wild type but not in TRPA1 knock-out mice referring alleviated joint pain in TRPA1 deficient animals. MSU crystal-induced inflammatory cell infiltration and accumulation of cytokines MCP-1, IL-6, IL-1beta, MPO, MIP-1alpha and MIP-2 into subcu-taneous air-pouch (resembling joint cavity) was attenuated in TRPA1 deficient mice and in mice treated with the selective TRPA1 inhibitor HC-030031 as compared to control animals. Further, HC-030031 treated and TRPA1 deficient mice developed tempered inflammatory edema when MSU crystals were injected into the paw.ConclusionsTRPA1 mediates MSU crystal-induced inflammation and pain in experimental models supporting the role of TRPA1 as a potential mediator and a drug target in gout flare.  相似文献   

8.
Gout is a common autoinflammatory disease characterized with elevated serum urate and recurrent attacks of intra-articular crystal deposition of monosodium urate. Accumulating evidence has demonstrated that MSU crystal-induced inflammation is a paradigm of innate immunity and the TLRs, NALP3 inflammasome and IL1R pathways are involved in gout development. Innate immunity components containing TLR2, TLR4, CD14, NALP3, ASC, Caspase-1 and CARD-8 are essential in the development of gouty inflammation. Recent studies suggest that innate immunity component gene functional mutations contribute to the development of autoinflammatory diseases including hereditary periodic fever syndrome, arthritis as well as inflammatory bowel disease. Taking into account these genetic findings, we would like to propose a novel hypothesis that the gene functional mutations might make innate immunity components as attractive susceptibility candidates and genetic markers for gout. Further clinical genetic studies need to be performed to confirm the role of innate immunity in the etiology of gout.  相似文献   

9.
In osteoarthritis (OA), low-grade joint inflammation promotes altered chondrocyte differentiation and cartilage catabolism. S100/calgranulins share conserved calcium-binding EF-hand domains, associate noncovalently as homodimers and heterodimers, and are secreted and bind receptor for advanced glycation end products (RAGE). Chondrocyte RAGE expression and S100A11 release are stimulated by IL-1beta in vitro and increase in OA cartilage in situ. Exogenous S100A11 stimulates chondrocyte hypertrophic differentiation. Moreover, S100A11 is covalently cross-linked by transamidation catalyzed by transglutaminase 2 (TG2), itself an inflammation-regulated and redox stress-inducible mediator of chondrocyte hypertrophic differentiation. In this study, we researched mouse femoral head articular cartilage explants and knee chondrocytes, and a soluble recombinant double point mutant (K3R/Q102N) of S100A11 TG2 transamidation substrate sites. Both TG2 and RAGE knockout cartilage explants retained IL-1beta responsiveness. The K3R/Q102N mutant of S100A11 retained the capacity to bind to RAGE and chondrocytes but lost the capacity to signal via the p38 MAPK pathway or induce chondrocyte hypertrophy and glycosaminoglycans release. S100A11 failed to induce hypertrophy, glycosaminoglycan release, and appearance of the aggrecanase neoepitope NITEGE in both RAGE and TG2 knockout cartilages. We conclude that transamidation by TG2 transforms S100A11 into a covalently bonded homodimer that acquires the capacity to signal through the p38 MAPK pathway, accelerate chondrocyte hypertrophy and matrix catabolism, and thereby couple inflammation with chondrocyte activation to potentially promote OA progression.  相似文献   

10.
Activation of toll-like receptors (TLR) in articular chondrocytes has been reported to increase the catabolic compartment, leading to matrix degradation, while the main consequence of TLR activation in monocytic cells is the expression and secretion of components of the innate immune response, particularly that of inflammatory cytokines. The objective of the work reported here was to obtain a more complete picture of the response repertoire of articular chondrocytes to TLR activation. Mass spectrometry was used to analyse the secretome of stimulated and unstimulated cells. Characterization of TLR expression in rat articular chondrocytes by RT/PCR indicated that TLR4 was the major receptor form. Exposure of these cells to lipopolysaccharide (LPS), the well-characterized TLR4 ligand, induced production not only of the matrix metalloproteinases MMP3 and 13, but also of components traditionally associated with the innate immune response, such as the complement components C1r, C3 and complement factor B, long pentraxin-3 and osteoglycin. Neither TNF-alpha nor IL-1 was detectable in culture media following exposure to LPS. One of the most prominently-induced proteins was the chitinase-like protein, Chi3L1, linking its expression to the innate immune response repertoire of articular chondrocytes. In intact femoral heads, LPS induced expression of Chi3L1 in chondrocytes close to the articular surface, suggesting that only these cells mount a stress response to LPS. Thus articular chondrocytes have a capacity to respond to TLR activation, which results in the expression of matrix metalloproteases as well as subsets of components of the innate immune response without significant increases in the production of inflammatory cytokines. This could influence the erosive processes leading to cartilage degeneration as well as the repair of damaged matrix.  相似文献   

11.
Mitochondrial dysfunction in osteoarthritis   总被引:2,自引:0,他引:2  
In osteoarthritis (OA) a time or age dependent process leads to aberrant cartilage structure which is characterized by reduced number of chondrocytes, loss of existing cartilage extracellular matrix, the production of matrix with abnormal composition and pathologic matrix calcification. Because chondrocyte matrix synthesis and mineralization are modulated by the balance between ATP generation and consumption, the mechanism by which chondrocytes generate energy have been a topic of interest. The analysis of mitochondrial respiratory chain (MRC) activity in OA chondrocytes shows a significant decrease in complexes II and III compared to normal chondrocytes. On the other hand, mitochondrial mass is increased in OA, as demonstrated by a significant rise in CS activity. Furthermore, OA cells show a reduction in the mitochondrial membrane potential (deltapsim) as demonstrated by using the fluorescent probe JC-1. OA cartilage contains high number of apoptotic chondrocytes, and mitochondria play a key role in apoptosis. Interestingly, OA cartilages show markedly elevated Bcl-2 and caspasa-3 expression. This expression is also correlated with chondrocyte apoptosis and OA lesions. The pathogenesis of OA includes elaboration of increased amounts of NO as a consequence of up-regulation of chondrocyte-inducible NO synthase induced by IL-1, TNF-alpha and other factors. NO reduces chondrocyte survival and induces cell death with morphologic changes characteristic of chondrocyte apoptosis. NO reduces the activity of complex IV and decreases the deltapsim as measured as the ratio of red/green fluorescence. Furthermore, NO induces the mRNA expression of caspase-3 and -7, and it reduces the expression of mRNA bcl-2 and the bcl-2 protein synthesis. Some studies suggest that the chondrocyte mitochondria are specialized for calcium transport and are important in the calcification of the extracellular matrix. Mineral formation has been demonstrated in matrix vesicles (MV) and within mitochondria. Direct suppression of mitochondrial respiration promoted MV-mediated mineralization in chondrocytes. Regulation of MRC may be one of the signaling pathways by which NO modulates articular cartilage matrix biosynthesis and pathologic mineralization. After age 40, the incidence of OA in humans increases progressively with increasing age. Studies show a trend to statistic significance between the age and the reduction of complex I activity of human normal chondrocytes. However, the study of relation between age and deltapsim in normal chondrocytes do not demonstrate any significant correlation. It has been reported that as the number of population doublings increased, mitochondrial DNA was degraded and the number of mitochondria per chondrocyte decline. One approach for determining the role of mitochondria in OA is to determine the effects of the MRC inhibition and to compare them with the findings in OA. Inhibition of MRC with antimycin prevents the normal ability of TGFbeta to increase excretion of Pi, thereby worsening deposition of pathologic HA crystals. In chondrocytes, the inhibition of complex IV with NaN3 modified both the deltapsim and the survival of cells inducing apoptosis. Inhibition of complex I with rotenone increases the expression and synthesis of Bcl-2 and Cox-2, both effects are similar effects to produced by IL-1 in human chondrocytes.  相似文献   

12.
13.
Proinflammatory cytokine such as interleukin (IL)-1β causes inflammation of articular cartilage. In this current study, we explored the chondroprotective effects of long noncoding RNA (lncRNA) MALAT-1 on cell proliferation, apoptosis, and matrix metabolism in IL-1β-induced inflammation in articular chondrocytes. Articular chondrocytes from knee joints of normal rats were isolated and cultured, followed by identification through observation of toluidine blue and COL II immunocytochemical stainings. The proliferation of chondrocytes at passage 2 was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The inflammatory chondrocytes induced by 10 ng/mL IL-1β were observed and identified by toluidine blue and COL II immunocytochemical stainings. pcDNA 3.1 and pcDNA-MALAT-1 were transfected in the chondrocytes. Ultrastructure of chondrocytes was observed by using a transmission electron microscope. The MTT assay was carried out to evaluate chondrocyte viability. Hoechst 33258 staining and flow cytometry were adopted to assess chondrocyte apoptosis. The chondrocytes at passage 2 with the biological characteristics of chondrocytes were used for subsequent experiments. In IL-1β-treated chondrocytes, the growth rate of chondrocytes slowed down, the cells became narrow and long, the vacuoles were seen in the cells, and the morphology of the chondrocytes was irregular. The toluidine blue staining and the immunohistochemical staining of COL II became weaker. In response to IL-1β induction, articular chondrocytes showed reduced MALAT-1 expression; moreover, obvious cartilage injury was observed with decreased chondrocyte viability and Col II expression and elevated chondrocyte apoptosis, MMP-13 expression, and p-JNK expression. With the treatment of pcDNA-MALAT-1, the cartilage injury was alleviated with increased chondrocyte viability and type II collagen (Col II) expression and reduced chondrocyte apoptosis, MMP-13 expression and p-JNK expression. Taken together these results, lncRNA MALAT-1 blocked the activation of the JNK signaling pathway; thereby, IL-1β-induced inflammation in articular chondrocytes was reduced with enhanced chondrocyte proliferation and suppressed chondrocyte apoptosis and extracellular matrix degradation.  相似文献   

14.
15.
The interaction of particulates with resident macrophages is a consistent feature in certain forms of crystal-induced inflammation, for example, in synovial tissues, lung, and the peritoneum. The mitogenic activity of basic calcium phosphate (BCP) crystals and calcium pyrophosphate dihydrate (CPPD) crystals on synovial fibroblasts has been considered relevant to the synovial hyperplasia observed in crystal-induced arthritis. The aim of the study was to determine whether microcrystals such as these could enhance macrophage survival and induce DNA synthesis, thus indicating that they may contribute to the tissue hyperplasia.  相似文献   

16.
The articular cartilage of diarthrodial joints experiences a variety of stresses, strains and pressures that result from normal activities of daily living. In normal cartilage, the extracellular matrix exists as a highly organized composite of specialized macromolecules that distributes loads at the bony ends. The chondrocyte response to mechanical loading is recognized as an integral component in the maintenance of articular cartilage matrix homeostasis. With inappropriate mechanical loading of the joint, as occurs with traumatic injury, ligament instability, bony malalignment or excessive weight bearing, the cartilage exhibits manifestations characteristic of osteoarthritis. Breakdown of cartilage in osteoarthritis involves degradation of the extracellular matrix macromolecules and decreased expression of chondrocyte proteins necessary for normal joint function. Osteoarthritic cartilage often exhibits increased amounts of type I collagen and synthesis of proteoglycans characteristic of immature cartilage. The shift in cartilage phenotype in response to altered load yields a matrix that fails to support normal joint function. Mathematical modeling and experimental studies in animal models confirm an association between altered loading of diarthrotic joints and arthritic changes. Both types of studies implicate shear forces as a critical component in the destructive profile. The severity of cartilage destruction in response to altered loads appears linked to expression of biological factors influencing matrix integrity and cellular metabolism. Determining how shear stress alters chondrocyte metabolism is fundamental to understanding how to limit matrix destruction and stimulate cartilage repair and regeneration. At present, the precise biochemical and molecular mechanisms by which shear forces alter chondrocyte metabolism from a normal to a degenerative phenotype remain unclear. The results presented here address the hypothesis that articular chondrocyte metabolism is modulated by direct effects of shear forces that act on the cell through mechanotransduction processes. The purpose of this work is to develop critical knowledge regarding the basic mechanisms by which mechanical loading modulates cartilage metabolism in health and disease. This presentation will describe the effects of using fluid induced shear stress as a model system for stimulation of articular chondrocytes in vitro. The fluid induced shear stress was applied using a cone viscometer system to stimulate all the cells uniformly under conditions of minimal turbulence. The experiments were carried using high-density primary monolayer cultures of normal and osteoarthritic human and normal bovine articular chondrocytes. The analysis of the cellular response included quantification of cytokine release, matrix metalloproteinase expression and activation of intracellular signaling pathways. The data presented here show that articular chondrocytes exhibit a dose- and time-dependent response to shear stress that results in the release of soluble mediators and extracellular matrix macromolecules. The data suggest that the chondrocyte response to mechanical stimulation contributes to the maintenance of articular cartilage homeostasis in vivo.  相似文献   

17.
Identification and characterization of local molecules directing the differentiation of chondrocytes to either transient or permanent cartilage are major issues in cartilage biology. Here, we found CCN family protein 3 (CCN3) was abundantly produced in rat developing epiphyseal cartilage. Evaluations in vitro showed that CCN3 repressed epiphyseal chondrocyte proliferation, while promoting matrix production in multiple assays performed. Furthermore, CCN3 enhanced the articular chondrocytic phenotype; whereas it repressed the one representing endochondral ossification. Additionally, the phenotype of growth plate chondrocytes and chondrogenic progenitors also appeared to be affected by CCN3 in a similar manner. These findings suggest a significant role of CCN3 in inducing chondrocytes to articular ones during joint formation.  相似文献   

18.
Martin JA  Buckwalter JA 《Biorheology》2000,37(1-2):129-140
Throughout life chondrocytes maintain the articular cartilage matrix by replacing degraded macromolecules and respond to focal cartilage injury or degeneration by increasing local synthesis activity. These observations suggest that mechanisms exist within articular cartilage that stimulate chondrocyte anabolic activity in response to matrix degradation or damage. An important cartilage anabolic factor, insulin-like growth factor I (IGF-I), appears to have a role in stimulating chondrocyte anabolic activity. Although IGF-I is ubiquitous, its bioavailability is controlled by a class of secreted proteins, IGF binding proteins (IGFPBs). Of the six known IGFPBs, IGFBP-3 is the most abundant in human articular cartilage. We recently found that with increasing age, articular chondrocytes increase their expression of IGFBP-3. This observation led us to investigate the potential role of IGFBP-3 in chondrocyte-matrix interactions. Using immunofluorescent staining and confocal microscopy we found that IGFBP-3 accumulates with increasing age in the chondrocyte territorial matrix where it co-localizes with fibronectin, but not with tenascin-C or type VI collagen. Using purified proteins we demonstrated that IGFBP-3 binds to fibronectin in a dose dependent manner, but not to tenascin-C. In vitro studies showed that IGFBP-3 alone inhibited chondrocyte synthetic activity while intact fibronectin alone significantly stimulated activity. When fibronectin and IGFBP-3 were combined we found that the inhibitory activity of low concentrations of IGFPB-3 was enhanced. These observations indicate that in mature articular cartilage IGF-I is stored in the chondrocyte territorial matrix through binding to a complex of IGFPB-3 and intact fibronectin. Storage of IGF-I of the territorial matrix may help maintain a relatively constant level of available IGF-I and the local increase in matrix synthesis following matrix damage may result from release of IGF-I. This mechanism may have an important role in maintaining and repairing articular cartilage and failure of this mechanism may lead to progressive articular cartilage degeneration.  相似文献   

19.
A method for determining DNA and chondrocyte content of articular cartilage   总被引:1,自引:0,他引:1  
A novel and precise method was devised to study the DNA and chondrocyte content of articular cartilage. It involved the sequential digestion of cartilage matrix with hyaluronidase, trypsin, and collagenase to release the chondrocytes. A direct cell count and DNA assays were then performed on the cells. The concentration of cells was the quotient of the total number of cells and the weight of cartilage used. The DNA content of cartilage is identical to the amount of DNA in the chondrocytes. Our data also confirmed the earlier findings that cell density and DNA content of articular cartilage decreased gradually to a relatively constant level as animals matured to adulthood.  相似文献   

20.
Mechanical forces influence articular cartilage structure by regulating chondrocyte activity. Mechanical stimulation results in activation of an alpha5beta1 integrin dependent intracellular signal cascade involving focal adhesion kinase and protein kinase C, triggering the release of interleukin-4 from the cell. In normal HAC the response to physiological mechanical stimulation is characterised by increased levels of aggrecan mRNA and a decrease in levels of mRNA for matrix metalloproteinase 3 (MMP-3), the net result of which would be to maintain and optimise cartilage structure and function. This protective/anabolic response is not seen when chondrocytes from osteoarthritic cartilage are subjected to an identical mechanical stimulation regime. Following the observation that the neurotransmitter substance P is involved in chondrocyte mechanotransduction the present study was undertaken to establish potential roles for glutamate receptors in the control of chondrocyte mechanical responses. Using immunohistochemistry and RTPCR normal and OA chondrocytes are shown to express NR1 and NR2a subunits of the NMDA receptor. Addition of NMDA receptor agonists to chondrocytes in primary culture resulted in changes in membrane potential consistent with expression of functional receptors. NMDA receptor antagonists inhibited the hyperpolarisation response of normal chondrocytes to mechanical stimulation but had no effect on the depolarisation response of osteoarthritic chondrocytes to mechanical stimulation. These studies indicate that at least one subset of the NMDA receptor family of molecules is expressed in cartilage and may have important modulatory effects on mechanotransduction and cellular responses following mechanical stimulation. Indeed the results suggest that there is an alteration of NMDA receptor signalling in OA chondrocytes, which may be critical in the abnormal response of OA chondrocytes to mechanical stimulation. Thus NMDA receptors appear to be involved in the regulation of human articular chondrocyte responses to mechanical stimulation, and in OA, mechanotransduction pathways may be modified as a result of altered activation and function of these receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号