首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We isolated a new family of satellite DNA sequences from Hae III- and Eco RI-digested genomic DNA of the Blakistons fish owl ( Ketupa blakistoni). The repetitive sequences were organized in tandem arrays of the 174 bp element, and localized to the centromeric regions of all macrochromosomes, including the Z and W chromosomes, and microchromosomes. This hybridization pattern was consistent with the distribution of C-band-positive centromeric heterochromatin, and the satellite DNA sequences occupied 10% of the total genome as a major component of centromeric heterochromatin. The sequences were homogenized between macro- and microchromosomes in this species, and therefore intraspecific divergence of the nucleotide sequences was low. The 174 bp element cross-hybridized to the genomic DNA of six other Strigidae species, but not to that of the Tytonidae, suggesting that the satellite DNA sequences are conserved in the same family but fairly divergent between the different families in the Strigiformes. Secondly, the centromeric satellite DNAs were cloned from eight Strigidae species, and the nucleotide sequences of 41 monomer fragments were compared within and between species. Molecular phylogenetic relationships of the nucleotide sequences were highly correlated with both the taxonomy based on morphological traits and the phylogenetic tree constructed by DNA-DNA hybridization. These results suggest that the satellite DNA sequence has evolved by concerted evolution in the Strigidae and that it is a good taxonomic and phylogenetic marker to examine genetic diversity between Strigiformes species.An erratum to this article can be found at Communicated by Y. Hiraoka  相似文献   

2.
The structures of guinea pig satellite DNAs I, II, and III have been analyzed by digestion with seven restriction nucleases. From the cleavage patterns it is obvious that the long-range periodicities in these three satellites differ rather characteristically Satellite I is fairly resistant to six nucleases and gives only a number of weak discrete bands which do not show a simple regularity. By the restriction nuclease from Arthrobacter luteus, however, it is cleaved extensively and yields very heterogeneous breakdown products. This is consistent with the high extent of divergence previously found for this satellite, e. g. by sequence analysis. Satellite II is almost completely resistant to all nucleases, indicative of a high degree of sequence homogeneity of this satellite. Satellite III is completely broken by the restriction nuclease from Bacillus subtilis into fragments which form a novel, highly regular series of bands in gel electrophoresis. The patterns show that the satellite is composed of tandem repeats ofapproximately 215 nucleotide pairs length, each repeat unit containing two cleavage sites for this nuclease. The data are consistent with the assumption that 30--40% of all cleavage sites have been eliminated by a random process. Satellite III DNA yields weak degradation patterns of the same periodicity with a number of other restriction nucleases. Cleavage sites for these nuclease are clustered on separatesmall segments of the satellite DNA. In this respect, the satellite is similar to others, notably the mouse satellite DNA. The three guinea pig satellites are examples of more general types of satellite structures also found in othe organisms. Similarities and differences to other satellites are discussed with special consideration to theories on the evolution of this class of DNA.  相似文献   

3.
Summary Mitochondrial (Mt) DNA from mitochondrial mutants of race s Podospora anserina and from senescent cultures of races s and A was examined. In mutants, we observed that fewer full length circles (31 ) were present; instead, smaller circles characteristic for each mutant sudied were found. Eco Rl digestion of these mutant MtDNAs indicated that in certain mutants, although specific fragments were absent, the total molecular weight of the fragments was not much different than wild-type.The properties of senescent MtDNA was strikingly different from either wild-type or mutant Mt DNA. First, a multimeric set of circular DNA was observed for both race s and A, with a monomeric repeat size of 0.89 . These circles ranged in size from 0.89 to greater than 20 ; only one molecule out of some 200 molecules was thought to be of full length (31 ). Density gradient analysis showed that there were two density species: a majority were at the same density as wild-type (1.694 g/cm3) and a second at 1.699 g/cm3. Most of the circular molecules from MtDNA isolated by either total DNA extraction or by extraction of DNA from isolated mitochondria were contained in the heavy DNA fraction. Eco R1 enzymatic digestion indicated that the light DNA had several fragments (amounting to about 23×106 daltons) missing, compared with young, wild-type MtDNA. Heavy senescent MtDNA was not cleaved by Eco R1. Analysis with Hae III restriction endonuclease showed also that light senescent MtDNA was missing certain fragments. Heavy MtDNA of average size 20×106 daltons, yielded only one fragment, 2,500 bp long, by digestion with Hae III restriction endonuclease. Digestion of heavy DNA with Alu I enzyme yielded 10 fragments totalling 2,570 bp. By three criteria, electron-microscopy, Eco R1 and Hae digestion, we conclude that the heavy MtDNA isolated from senescent cultures of Podospora anserina consisted of a monomeric tandemly repeating subunit of about 2,600 bp length.These results on the properties of senescent MtDNA are discussed with regard to the published properties of the rho - mutation in the yeast, S. cerevisiae.  相似文献   

4.
Restriction fragments from purified mitochondrial DNA can be readily detected following rapid end-labeling with [α-³²]nucleoside triphosphates and separation by gel electrophoresis. Mitochondrial DNA from 12 populations of Meloidogyne species was digested with 12 restriction enzymes producing more than 60 restriction fragments for each species. The mitochondrial genome of M. arenaria is the most genetically distinct of the four species compared. M. arenaria shows approximately 2.1-3.1% nucleotide sequence divergence from the mitochondrial genomes of M. javanica, M. incognita, and M. hapla. Among the latter three species, interspecific estimates of sequence divergence range from 0.7 to 2.3%. Relatively high intraspecific variation in mitochondrial restriction fragment patterns was observed in M. hapla. Intraspecific variation in M. incognita resulted in sequence divergence estimates of 0.5-1.0%. Such polymorphisms can serve as genetic markers for discerning mitochondrial DNA genotypes in nematode populations in the same way that allozymes have been used to discern nuclear DNA genotypes.  相似文献   

5.
6.
α-Satellite DNA from African green monkey cells was analysed with restriction nucleases in some detail confirming and complementing our earlier results. With EcoRI and HaeIII (or BsuRI isoschizomer), about 25 and 10%, respectively, of the satellite DNA were cleaved into a series of fragments of the 172 bp repeat length and multiples thereof. To allow studies with fragments of homogeneous sequence unit length, HindIII fragments were covalently joined with the plasmid pBR313. After transformation 19 clones were obtained, containing up to three monomer fragments. Nine of the clones were characterized by digestion with EcoRI. Three of these had cleavage sites for this nuclease in the satellite DNA portion. In the six clones tested with HaeIII no cleavage site was detected in the cloned DNA. The results are discussed in relation to the nucleotide sequence data recently published by Rosenberg et al. (1978) and in the context of random and nonrandom processes in satellite DNA evolution.  相似文献   

7.
Nucleotide sequence of mouse satellite DNA.   总被引:33,自引:20,他引:13       下载免费PDF全文
The nucleotide sequence of uncloned mouse satellite DNA has been determined by analyzing Sau96I restriction fragments that correspond to the repeat unit of the satellite DNA. An unambiguous sequence of 234 bp has been obtained. The sequence of the first 250 bases from dimeric satellite fragments present in Sau96I limit digests corresponds almost exactly to two tandemly arranged monomer sequences including a complete Sau96I site in the center. This is in agreement with the hypothesis that a low level of divergence which cannot be detected in sequence analyses of uncloned DNA is responsible for the appearance of dimeric fragments. Most of the sequence of the 5% fraction of Sau96 monomers that are susceptible to TaqI has also been determined and has been found to agree completely with the prototype sequence. The monomer sequence is internally repetitious being composed of eight diverged subrepeats. The divergence pattern has interesting implications for theories on the evolution of mouse satellite DNA.  相似文献   

8.
Using samples of human cellular DNA digested with restriction endonucleases Eco RI, Hind III, Hinc II, Bam HI, Alu I, or Hae III, we were able to localize globin gene fragments separated by agarose gel electrophoresis. The fragments were transferred to nitro-cellulose filters and identified by hybridization to [32P] cDNA for total adult globin mRNA. The α-globin gene fragments were specifically identified by their presence in normal controls and absence in DNA from homozygous α-thalassemia, a genetic disorder due to deletion of α-globin genes. In addition, the patterns with Hind III indicate a 4.1 kb distance between the centers of the normal duplicated α-globin gene loci.  相似文献   

9.
A highly repetitive satellite DNA sequence from the genome ofDrosophila tristis with a length of 181 bp has been cloned in the pUC plasmid. The sequence hybridizes to the telomeres of all chromosomes but the Y ofD. tristis and produces a ladderlike hybridization pattern with filterbound genomic DNA ofD. tristis digested with Eco RI or Pst I with the hybridization bands at fragment lengths in multiples of 181 bp. A similar pattern is found when the genomic DNA comes fromD. ambigua or, though less clear, fromD. microlabis. Additional bands appear in the zones of high fragment lengths, too. InD. obscura andD. kitumensis, however, the 181 bp sequence is found in fragments with a length of a few kb only. The 181 bp sequence is tandemly arranged in the genome ofD. tristis and has a copy number of about 82,000 per haploid genome (i.e. 10 per cent of the total DNA). A sequence comparison among four independently cloned copies of the family fromD. tristis and another homologous sequence fromD. obscura, found by chance, shows a one to six per cent variation in basepair composition. However, low divergence (only one per cent) between two copies ofD. tristis and between the one ofD. obscura and one ofD. tristis was observed, and high divergence (six per cent) between these two pairs. This is discussed and explained as the evolutionary consequence of an existing homogenization process by unequal crossing over.  相似文献   

10.
Summary A detailed map of the 32 kb mitochondrial genome of Aspergillus nidulans has been obtained by locating the cleavage sites for restriction endonucleases Pst I, Bam H I, Hha I, Pvu II, Hpa II and Hae III relative to the previously determined sites for Eco R I, Hind II and Hind III. The genes for the small and large ribosomal subunit RNAs were mapped by gel transfer hybridization of in vitro labelled rRNA to restriction fragments of mitochondrial DNA and its cloned Eco R I fragment E3, and by electron microscopy of RNA/DNA hybrids.The gene for the large rRNA (2.9 kb) is interrupted by a 1.8 kb insert, and the main segment of this gene (2.4 kb) is separated from the small rRNA gene (1.4 kb) by a spacer sequence of 2.8 kb length.This rRNA gene organization is very similar to that of the two-times larger mitochondrial genome of Neurospora crassa, except that in A. nidulans the spacer and intervening sequences are considerably shorter.  相似文献   

11.
The products of digestion of Drosophila melanogaster satellite IV DNA with restriction endonuclease MboII have been analysed and found to be consistent with a repeating pentamer sequence (A-G-A-A-G)n for satellite IV. More than 95% of the satellite DNA is digested to fragments less than 25 base-pairs in length, suggesting that the DNA sequence is highly conserved.  相似文献   

12.
M Carlson  D Brutlag 《Cell》1977,11(2):371-381
The sequence organization of the 1.688 satellite DNA (density 1.688 g/cm3 in CsCl) has been investigated, and this satellite has been found to differ from the other D. melanogaster satellite DNAs in having a much greater sequence complexity. Purification of 1.688 satellite DNA by successive equilibrium density centrifugations yielded a fraction 77% pure. Segments of satellite DNA were isolated by molecular cloning in the plasmid vector pSC101. One recombinant plasmid contained a segment of 1.688 satellite DNA 5.8 kilobase pairs in size and was stable during propagation in E. coli. Recognition sites for restriction enzymes from Haemophilus aegyptius (Hae III), Haemophilus influenzae f (Hinf) and Arthrobacter luteus (Alu I) were mapped in the satellite DNA of this hybrid plasmid. The spacing of Hae III, Hinf and two Alu I sites at regular intervals of about 365 base pairs is strong evidence that the sequence complexity of this satellite DNA is 365 base pairs. Further evidence comes from the finding that both gradient-purified and cloned 1.688 satellite DNA renature with their Hae III sites in register. The Hae III and Hinf sites in gradient-purified satellite DNA have been shown by Manteuil, Hamer and Thomas (1975) and Shen, Wiesehahn and Hearst (1976) to be distributed at intervals of 365 base pairs and integral multiples thereof. These investigators proposed that some of the sites in an otherwise regular array have been randomly inactivated. Cloned satellite DNA provided a hybridization probe for sensitive studies of the arrangement of these recognition sites in gradient-purified satellite DNA. Some regions of satellite DNA were found to contain many fewer recognition sites than expected from the proposed models. These findings suggest that different regions of 1.688 satellite DNA may exhibit different arrangements of Hae III and Hinf recognition sites.  相似文献   

13.
Recombinant M13Hol phage containing Eco R1 restriction endonuclease fragments B, E, and F of adenovirus type 2 (Ad2) DNA were constructed by cloning into the unique Eco R1 site of the replicative form of the phage M13Hol176 DNA. Polarity of the adenovirus inserts in recombinant molecules was deduced by the following procedures: Viral DNA fragments obtained from Ad2 DNA molecules were purified, denatured, and subjected to electrophoresis. the separated DNA strands were transferred from agarose to nitrocellulose by the Southern procedure and hybridized with radioactive 3'-end labeled Hae III fragments of the recombinant phage DNAs. This procedure provided a rapid test for assaying strandedness of the cloned fragments.  相似文献   

14.
Mitochondrial DNA (mtDNA) from sheep and goat was compared by restriction endonuclease analysis and heteroduplex mapping in the electron microscope. The fragment patterns produced by endonuclease Hae III from three individual sheep and two goat mtDNAs all differed from each other. The three sheep mtDNAs had identical Eco RI and Hind III fragments, but the two goat mtDNA patterns differed from each other as well as from sheep mtDNA. We estimate that each sheep mtDNA differs from each other by 0.5–1% of its nucleotide sequences, the two goat mtDNAs by 1–2%, and there is a 6–11% sequence difference between sheep and goat mtDNAs. We have mapped the Eco RI and Hind III sites of goat and sheep mtDNA and determined the positions of the D loop, which marks the replication origin, relative to the restriction map. The D loops are at homologous positions on the mtDNAs from both species, but the goat D loop is only 75% as long as the sheep D loop. Regions with a high degree of sequence divergence occur at both ends of the D loop. We suggest that a duplication of about 150 base pairs has occurred in the region where the sheep and goat D loops differ in length. We discuss mtDNA evolution in terms of divergence of isolated “mitochondrial DNA clones.”  相似文献   

15.
16.
Summary The hypothesis that highly reiterated satellite DNAs in present-day populations evolve by molecular mechanisms that create, by saltatory amplification steps, new long arrays of satellite DNA, and that such long arrays are used for homogenization purposes, has been tested both in mouse and in humans. In mouse, the data obtained are consistent with this hypothesis. This was tested in more detail on chromosomes 13 and 21 of the human genome. A Centre d'Etudes du Polymorphisme Humain family, which in some individuals exhibits strong supplementary DNA bands following TaqI restriction endonuclease digestion and conventional gel electrophoresis, was analyzed by pulse field gel electrophoresis following restriction by BamHI. The supplementary bands on chromosome 13 (18 times the basic alpha satellite DNA repeat) and on chromosome 21 (a 9.5-mer) segregated with centromeric alpha satellite DNA blocks of 5 and 5.3 megabases, respectively. These are by far the largest alpha satellite block lengths seen in all chromosome 13 and chromosome 21 centrometric sequences so far analyzed in this manner. The possibility that these supplementary alpha satellite sequences were created in single individuals by saltatory amplification steps is discussed in light of our own data and that published by others. It is proposed that deletion events and unequal cross-overs, which both occur in large satellite DNA arrays, contribute to the homogenization of size and sequence of the alpha satellite DNA on most chromosomes of humans.  相似文献   

17.
闫守庆  祝万菊  张雪梅  李冰  孙金海 《遗传》2007,29(12):1504-1508
利用限制性内切酶酶切蓝狐基因组, 经琼脂糖凝胶电泳, 对特异性亮带进行克隆、测序及序列分析。结果获得42个卫星DNA序列, 该卫星DNA单体大小为737 bp, G+C含量为51.9%, 单体之间同源性为91%~97%; 每个单体由3个约245 bp的亚重复串联构成, 亚重复之间的同源性为49%~55%; 在物种进化过程中, 该卫星DNA有G+C含量逐渐降低而A+T含量逐渐上升的趋势; 该卫星DNA为犬科动物种属所特有, 与犬着丝粒相关卫星DNA为同类卫星DNA, 同源性为74%, 命名为α-卫星DNA。  相似文献   

18.
E C Lai  S L Woo  A Dugaiczyk  B W O'Malley 《Cell》1979,16(1):201-211
Two allelic forms of the natural chicken ovalbumin gene have been independently cloned. These alleles differ from each other by an Eco RI restriction cleavage site in one of the seven intervening sequences within the natural ovalbumin gene. Restriction endonuclease mapping and sequence analyses of these cloned genotypic alleles have shown identical sequence organization and molecular structures of the interspersed structural and intervening sequences except for the particular Eco RI cleavage site. Sequencing data of the cloned DNA suggest that this Eco RI site may be created or eliminated by a single base mutation in the intervening sequence of the ovalbumin gene. The occurrence of apparent homozygous and heterozygous allelic forms of the ovalbumin gene in individual hens and roosters within the same breed has been observed. 10 and 40% of the chickens examined are homozygous for the ovalbumin gene with and without the extra Eco RI site, respectively, while 50% of them are heterozygous. Further analysis of individual chicken DNA cleaved by restriction endonuclease Hae III has revealed that there may be a series of such mutational variations within the ovalbumin gene. We have identified two Hae III cleavage sites that do not occur in all of the chickens, thus giving rise to several additional allelic variations of the ovalbumin gene. At least one of these Hae III sites is situated in the intervening sequence of the ovalbumin gene, and its lcoation has been mapped. Such allelic variations must be taken into consideration when determining eucaryotic gene structure by restriction mapping of the genomic DNA. Furthermore, this type of mutation within the intervening sequences of an eucaryotic gene has no known phenotypic manifestation. It represents an extrastructural silent mutation that must be taken account of in studies to estimate the rates of eucaryotic gene sequence divergence during evolution.  相似文献   

19.
We constructed a library in IL47.1 with DNA isolated from flow-sorted human chromosome 22. Over 50% of the recombinants contained the same highly repetitive sequence. When this sequence was used to probe Southern blots of EcoRI-digested genomic DNA, a ladder of bands with increments of about 170 bp was observed. This sequence comigrates with satellite III in Ag+/Cs2SO4 gradients and may account for at least part of the 170 bp Hae III ladder seen in isolated satellite III DNA. Partial sequence analysis revealed homology to the 171 bp monomeric repeat unit of -R1-DNA and the X specific -satellite consensus sequence. After low stringency in situ hybridization, silver grains were found over the centromeres of a number of chromosomes. Under high stringency conditions, however, the labeling was concentrated over the centromeric region of chromosome 22. This localization was confirmed using DNA from a panel of human/hamster cell lines which showed that the homologous 2.1 and 2.8 kb EcoR1 restriction fragments were chromosome 22 specific. These clones therefore contain chromosome 22 derived -satellite sequences analogous to other chromosome-specific satellite sequences described previously.  相似文献   

20.
A class of restriction endonuclease fragments near 185 bp in length and comprising approximately 20% of the genomes of 3 species of Hawaiian Drosophila has been cloned using bacteriophage M13. The nucleotide sequences of 14 clones have been determined and the variation between clones has been found to be due to deletions and base changes. Analyses of uncloned material show that the cloning system itself does not introduce the variation. The variation of the basic repeat within and between species is high; 15% due to deletions and 10% due to base changes. The Drosophila data are similar in many respects to both the 23 bp calf satellite results (Pech et al., 1979b) and those from sequence analyses of the 170 bp primate restriction fragments (Rubin et al, 1979; Donehower et al., 1980, Wu and Manuelidis, 1980). The intraspecies level of base changes and deletions in the calf satellite approaches 25% as does that in the human/African green monkey/baboon comparisons. The between species variation in the primate group is near 35%. Direct sequencing methods thus reveal a widespread sequence heterogeneity in both invertebrate and mammalian satellite systems of long or short repeat length. This heterogeneity does not support the strict sequence conservation implied by the library hypothesis, which claims a functional role in speciation for the rigid conservation of satellite DNA sequences (Fry and Salser, 1977). Furthermore the Drosophila and primate data reveal that satellite DNAs can change rapidly, though nonrandomly, at the nucleotide sequence level in a relatively closely knit group such as the Hawaiian species, as well as in more distantly related species from amongst the primates. We draw two major conclusions. There is no universal attribute of satellite DNA sequence per se, the only biological variable to date being the amount of satellite DNA and its effects in the germ line. Many aspects of satellite DNA evolution conform to Kimura's (1979) concepts of neutrality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号