首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
R E Wolf  Jr  D M Prather    F M Shea 《Journal of bacteriology》1979,139(3):1093-1096
The levels of 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase are subject to metabolic regulation; they increased three- to fivefold with increasing growth rate.  相似文献   

2.
Up-promoter mutations in the lpp gene of Escherichia coli.   总被引:17,自引:3,他引:17       下载免费PDF全文
The promoter of the gene for the major outer membrane lipoprotein, the most abundant protein in Escherichia coli, is considered to be one of the strongest promoters in E. coli. The nucleotide sequences of the -10 and the -35 regions of the lpp promoter were altered in a step-wise manner to conform to their respective consensus sequences by synthetic oligonucleotide-directed site-specific mutagenesis. The mutated promoters were then fused to the lacZ gene to measure promoter activity. The beta-galactosidase activity increased approximately 1.9 and 2.4 fold when the -10 region (AATACT) was altered to TATACT(P1) and TATAAT (consensus sequence; P2), respectively. Similarly, it increased approximately 1.2 and 4.2 fold, when the -35 region (TTCTCA) was altered to TTCACA(R1) and TTGACA (consensus sequence; R2), respectively. When the mutations at the -10 and -35 regions were combined, the overall improvement of the promoter activity for R2-P1 was 4.0 fold over that of the wild-type promoter, while it was only 2.5 fold for R2-P2. These results indicate that substantial improvement of the promoter activity can be achieved by changing either of the two key regions to their respective consensus sequences. However, the complete conformity to consensus sequences at both regions does not necessarily result in the highest activity. With use of the improved lpp promoter in an expression cloning vehicle pIN-III-ompA, staphylococcal nuclease A was produced at a level of approximately 47% of the total cellular protein.  相似文献   

3.
Glucose is metabolized in Escherichia coli chiefly via the phosphoglucose isomerase reaction; mutants lacking that enzyme grow slowly on glucose by using the hexose monophosphate shunt. When such a strain is further mutated so as to yield strains unable to grow at all on glucose or on glucose-6-phosphate, the secondary strains are found to lack also activity of glucose-6-phosphate dehydrogenase. The double mutants can be transduced back to glucose positivity; one class of transductants has normal phosphoglucose isomerase activity but no glucose-6-phosphate dehydrogenase. An analogous scheme has been used to select mutants lacking gluconate-6-phosphate dehydrogenase. Here the primary mutant lacks gluconate-6-phosphate dehydrase (an enzyme of the Enter-Doudoroff pathway) and grows slowly on gluconate; gluconate-negative mutants are selected from it. These mutants, lacking the nicotinamide dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase, grow on glucose at rates similar to the wild type. Thus, these enzymes are not essential for glucose metabolism in E. coli.  相似文献   

4.
5.
The main mechanism causing catabolite repression by glucose and other carbon sources transported by the phosphotransferase system (PTS) in Escherichia coli involves dephosphorylation of enzyme IIAGlc as a result of transport and phosphorylation of PTS carbohydrates. Dephosphorylation of enzyme IIAGlc leads to 'inducer exclusion': inhibition of transport of a number of non-PTS carbon sources (e.g. lactose, glycerol), and reduced adenylate cyclase activity. In this paper, we show that the non-PTS carbon source glucose 6-phosphate can also cause inducer exclusion. Glucose 6-phosphate was shown to cause inhibition of transport of lactose and the non-metabolizable lactose analogue methyl-β- D -thiogalactoside (TMG). Inhibition was absent in mutants that lacked enzyme IIAGlc or were insensitive to inducer exclusion because enzyme IIAGlc could not bind to the lactose carrier. Furthermore, we showed that glucose 6-phosphate caused dephosphorylation of enzyme IIAGlc. In a mutant insensitive to enzyme IIAGlc-mediated inducer exclusion, catabolite repression by glucose 6-phosphate in lactose-induced cells was much weaker than that in the wild-type strain, showing that inducer exclusion is the most important mechanism contributing to catabolite repression in lactose-induced cells. We discuss an expanded model of enzyme IIAGlc-mediated catabolite repression which embodies repression by non- PTS carbon sources.  相似文献   

6.
Glucose 6-phosphate dehydrogenase (G6PD) is a cytosolic enzyme encoded by a housekeeping X-linked gene whose main function is to produce NADPH, a key electron donor in the defense against oxidizing agents and in reductive biosynthetic reactions. Inherited G6PD deficiency is associated with either episodic hemolytic anemia (triggered by fava beans or other agents) or life-long hemolytic anemia. We show here that an evolutionary analysis is a key to understanding the biology of a housekeeping gene. From the alignment of the amino acid (aa) sequence of 52 glucose 6-phosphate dehydrogenase (G6PD) species from 42 different organisms, we found a striking correlation between the aa replacements that cause G6PD deficiency in humans and the sequence conservation of G6PD: two-thirds of such replacements are in highly and moderately conserved (50-99%) aa; relatively few are in fully conserved aa (where they might be lethal) or in poorly conserved aa, where presumably they simply would not cause G6PD deficiency. This is consistent with the notion that all human mutants have residual enzyme activity and that null mutations are lethal at some stage of development. Comparing the distribution of mutations in a human housekeeping gene with evolutionary conservation is a useful tool for pinpointing amino acid residues important for the stability or the function of the corresponding protein. In view of the current explosive increase in full genome sequencing projects, this tool will become rapidly available for numerous other genes.  相似文献   

7.
Six naturally occurring alleles representing four electromorphs of the enzyme glucose-6-phosphate dehydrogenase were transferred by P1- mediated transduction from natural isolates of Escherichia coli into the genetic background of E. coli K12 and were studied in pairwise competition in chemostats limited for glucose in order to estimate differences in growth rate associated with the alleles. Although the level of resolution of such experiments is a growth rate differential of approximately 0.002 h-1, no significant differences among the strains were found. Studies of apparent Km and Vmax in crude enzyme extracts of the strains also failed to reveal any significant differences among the electromorphs. These results support the view that the alleles are selectively neutral or nearly neutral under these conditions.   相似文献   

8.
The complete coding sequence for human glucose-6-phosphate-dehydrogenase (G6PD) was inserted downstream from the tac promoter of a plasmid, pJF118EH, which also carries the lacIq repressor gene. When Escherichia coli strains (that are unable to grow on glucose due to the absence of functional zwf (G6PD-) and pgi genes) were transformed with this plasmid (pAC1), they were able to grow on glucose as sole carbon source. The rate of growth on glucose was faster in the presence of the inducer of the tac promoter, isopropyl-beta-D-thiogalactopyranoside (IPTG). Extracts of the transformed cells contained a G6PD activity that was not detectable in the parental strains and that was inducible by IPTG. The G6PD activities from normal E. coli and from pAC1-transformed cells comigrated with human G6PD when subjected to electrophoresis on agarose gels. However, when denatured, the G6PD produced by pAC1 was, like the human enzyme, distinguishable from the E. coli-encoded enzyme on the basis of its immunoreactivity with antibody specific for human G6PD. Therefore, human G6PD can be expressed in E. coli and can function to complement the bacterial enzyme deficiency.  相似文献   

9.
10.
We describe the selection of a mutation which increases about sixfold the activity of glucose 6-phosphate dehydrogerase in Escherichia coli. In both mutant and wild type the enzyme is constitutive. The new mutation, zwfL1, is closely linked to zwf, the structural gene for the enzyme. According to antibody titration zwfL1 acts to increase the amount of normal enzyme, rather than by specifying an altered enzyme. ZwfL1 is cis-dominant. It might be an “up” promoter mutation.  相似文献   

11.
The mechanism of glucose 6-phosphate transport by Escherichia coli   总被引:5,自引:0,他引:5  
To evaluate anion exchange as the mechanistic basis of sugar phosphate transport, natural and artificial membranes were used in studies of glucose 6-phosphate (Glc-6-P) and inorganic phosphate (Pi) accumulation by the uhpT-encoded protein (UhpT) of Escherichia coli. Experiments with intact cells demonstrated that UhpT catalyzed the neutral exchange of internal and external Pi, and work with everted as well as right-side-out membrane vesicles showed further that UhpT mediated the heterologous exchange of Pi and Glc-6-P. When loaded with Pi, but not when loaded with morpholinopropanesulfonate (MOPS), everted vesicles took up Glc-6-P to levels 100-fold above medium concentration in a reaction unaffected by the ionophores valinomycin, valinomycin plus nigericin, and carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Similarly, right-side-out vesicles were capable of Glc-6-P transport, but only if a suitable internal countersubstrate was available. Thus, in MOPS-loaded vesicles, oxidative metabolism established a proton-motive force that supported proline or Pi accumulation, but transport of Glc-6-P was found only if vesicles could accumulate Pi during a preincubation. After reconstitution of UhpT into proteoliposomes it was possible to show as well that the level of accumulation of Glc-6-P (17 to 560 nmol/mg of protein) was related directly to the internal concentration of Pi. These results are most easily understood if the transport of glucose 6-phosphate in E. coli occurs by anion exchange rather than by nH+/anion support.  相似文献   

12.
13.
Membrane vesicles were characterized for their ability to specifically bind [14C]glucose 6-phosphate. Membranes prepared from a strain carrying a ColE1 uhp hybrid plasmid showed significantly enhanced glucose 6-phosphate binding. It is hypothesized that glucose 6-phosphate binding to these membranes is due to a uhpR-directed, membrane-bound receptor which functions in regulation of the inducible uhpT gene product: the hexose phosphate permease.  相似文献   

14.
15.
D-Mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) and D-glucitol-6-phosphate dehydrogenase (EC 1.1.1.140) were purified to apparent homogeneity in good yields from Escherichia coli. The amino acid compositions, N-terminal amino acid sequences, sensitivities to chemical reagents, and catalytic properties of the two enzymes were determined. Both enzymes showed absolute specificities for their substrates. The subunit molecular weights of mannitol-1-phosphate and glucitol-6-phosphate dehydrogenases were 40,000 and 26,000, respectively; the apparent molecular weights of the native proteins, determined by gel filtration, were 40,000 and 117,000, respectively. It is therefore concluded that whereas mannitol-1-phosphate dehydrogenase is a monomer, glucitol-6-phosphate dehydrogenase is probably a tetramer. These two proteins differed in several fundamental respects.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号