首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Repair of UV-induced DNA lesions in terminally differentiated human hNT neurons was compared to that in their repair-proficient precursor NT2 cells. Global genome repair of (6-4)pyrimidine-pyrimidone photoproducts was significantly slower in hNT neurons than in the precursor cells, and repair of cyclobutane pyrimidine dimers (CPDs) was not detected in the hNT neurons. This deficiency in global genome repair did not appear to be due to denser chromatin structure in hNT neurons. By contrast, CPDs were removed efficiently from both strands of transcribed genes in hNT neurons, with the nontranscribed strand being repaired unexpectedly well. Correlated with these changes in repair during neuronal differentiation were modifications in the expression of several repair genes, in particular an up-regulation of the two structure-specific nucleases XPG and XPF/ERCC1. These results have implications for neuronal dysfunction and aging.  相似文献   

4.
5.
6.
The pattern of preferential DNA repair of UV-induced pyrimidine dimers was studied in repair-deficient Chinese hamster ovary (CHO) cells transfected with the human excision repair gene, ERCC-1. Repair efficiency was measured in the active dihydrofolate reductase (DHFR) gene and in its flanking, non-transcribed sequences in three cell lines: Wild type CHO cells, a UV-sensitive excision deficient CHO mutant, and the transfected line of the mutant carrying the expressed ERCC-1 gene. The CHO cells transformed with the human ERCC-1 gene repaired the active DHFR gene much more efficiently than the non-transcribed sequences, a pattern similar to that seen in wild type CHO cells. This pattern differs from that previously reported in CHO cells transfected with the denV gene of bacteriophage T4, in which both active and non-transcribed DNA sequences were efficiently repaired (Bohr and Hanawalt, Carcinogenesis 8: 1333-1336, 1987). The ERCC-1 gene product may specifically substitute for the repair enzyme present in normal hamster cells while the denV product, T4 endonuclease V, does not be appear to be constrained in its access to inactive chromatin.  相似文献   

7.
DNA labeled for 15 minutes during UV induced repair synthesis is two-fold more sensitive to micrococcal nuclease than the bulk nuclear DNA. As the length of the labeling period increases from 15 minutes to 4 hours the nuclease sensitivity of repair labeled DNA approaches that of bulk chromatin. Pulse-chase experiments indicate that the nuclease sensitivity of the repaired DNA labeled during a brief pulse decreases with a half-life of about 15 minutes. In contrast to previous interpretations, we consider these results to mean that immediately after synthesis, chromatin labeled during repair has a conformation which renders it more susceptible to nuclease digestion than the bulk chromatin. With time these repaired regions are assembled into a nucleosome structure with normal nuclease sensitivity.  相似文献   

8.
The distribution of methyl methanesulfonate induced DNA repair was measured in mouse mammary cell chromatin by digestion of "repair labeled" nuclei with micrococcal nuclease. The results indicate that there is a nonuniform distribution of DNA repair in chromatin. The chromatin fraction digested during the first 5 minutes of incubation with micrococcal nuclease appears to be a primary site of DNA repair after methyl methanesulfoante treatment. The observed nonuniform distribution of DNA repair in chromatin may be due to 1)a nonrandom alkylation of DNA in chromatin by methyl methanesulfonate or 2)areas in chromatin of increased accessibility for the repair enzymes to the DNA lesions.  相似文献   

9.
10.
11.
12.
13.
The positions and relative frequencies of the primary cleavages made by micrococcal nuclease on the DNA of nucleosome core particles have been found by fractionating the double-stranded products of digestion and examining their single-stranded compositions. This approach overcomes the problems caused by secondary events such as the exonucleolytic and pseudo-double-stranded actions of the nuclease and, combined with the use of high resolution gel electrophoresis, enables the cutting site positions to be determined with a higher precision than has been achieved hitherto. The micrococcal nuclease primary cleavage sites lie close (on average, within 0.5 nucleotide) to those previously determined by Lutter (1981) for the nucleases DNase I and DNase II. These similarities show that the accessible regions are the same for all three nucleases, the cleavage sites being dictated by the structure of the nucleosome core. The differences in the final products of the digestion are explained in terms of secondary cleavage events of micrococcal nuclease. While the strongly protected regions of the nucleosome core DNA are common to all three nucleases, there are differences in the relative degrees of cutting at the more exposed sites characteristic of the particular enzyme. In particular, micrococcal nuclease shows a marked polarity in the 3'-5' direction in the cutting rates as plotted along a single strand of the nucleosomal DNA. This is explained in terms of the three-dimensional structure of the nucleosome where, in any accessible region of the double helix, the innermost strand is shielded by the outermost strand on the one side and the histone core on the other. The final part of the paper is concerned with the preference of micrococcal nuclease to cleave at (A,T) sequences in chromatin.  相似文献   

14.
Certain DNA base lesions induced by ionizing radiation or oxidative stress are repaired faster from the transcribed strand of active genes compared to the genome overall. In this study, it was investigated whether radiation-induced DNA strand breaks are preferentially repaired in active genes compared to the genome as a whole in CHO cells. The alkaline unwinding technique coupled to slot-blot hybridization with specific DNA probes was used to study the induction and repair of DNA strand breaks in defined DNA sequences. Results using this technique showed a linear dose response for the formation of radiation-induced DNA strand breaks in the dihydrofolate reductase (DHFR) gene. Furthermore, the half-life of radiation-induced strand breaks was less than 5 min in the DHFR gene, in the ribosomal genes, and in the genome as a whole. These results suggest that the repair of DNA strand breaks is fast and uniform in the genome of mammalian cells.  相似文献   

15.
16.
Structural specificities of five commonly used DNA nucleases   总被引:57,自引:0,他引:57  
Five commonly used nucleases were surveyed for their ability to distinguish among several different DNA backbone configurations. The digestion data suggest that: (1) DNAase I binds across the minor groove; whereas (2) nuclease S1 and (3) micrococcal nuclease bind to an exposed single strand; (4) copper/phenanthroline seeks a base-pair step; and (5) DNAase II requires just a stacked single strand of limited exposure. Only micrococcal nuclease is demonstrably base-specific, with a strong preference for T, A over C, G in any structural context.  相似文献   

17.
Repair of plasmid and genomic DNA in a rad7 delta mutant of yeast.   总被引:3,自引:0,他引:3       下载免费PDF全文
Repair of UV-induced cyclobutane pyrimidine dimers (CPDs) was examined in a yeast plasmid of known chromatin structure and in genomic DNA in a radiation-sensitive deletion mutant of yeast, rad7 delta, and its isogenic wild-type strain. A whole plasmid repair assay revealed that only approximately 50% of the CPDs in plasmid DNA are repaired after 6 h in this mutant, compared with almost 90% repaired in wild-type. Using a site-specific repair assay on 44 individual CPD sites within the plasmid we found that repair in the rad7 delta mutant occurred primarily in the transcribed regions of each strand of the plasmid, however, the rate of repair at nearly all sites measured was less than in the wild-type. There was no apparent correlation between repair rate and nucleosome position. In addition, approximately 55% of the CPDs in genomic DNA of the mutant are repaired during the 6 h period, compared with > 80% in the wild-type.  相似文献   

18.
19.
The formation and removal of UV-induced pyrimidine dimers were measured in restriction fragments near and within the essential dihydrofolate reductase (DHFR) gene in Chinese hamster ovary cells in order to map the genomic fine structure of DNA repair. Dimer frequencies were determined at 0, 8, and 24 h after irradiating the cells with 20 J/m2 UV light (254 nm). Within 8 h, the cells had removed more than 40% of the dimers from sequences near the 5' end of the gene, somewhat fewer from the 3' end, but only 2% from the 3' flanking region and 10% from a region upstream from the gene. The corresponding extent of repair in the genome as a whole is 5-10% in the 8-h period. Isoschizomeric restriction enzyme analysis was used to detect the level of methylation in the fragments in which repair was measured. We found that the only hypomethylated sites in and around the DHFR gene were in the fragment near its 5' end, which displayed maximal DNA repair efficiency. The size of the region of preferential DNA repair at the DHFR locus appears to be in the range of 50-80 kilobases, and this finding is discussed in relation to genomic domains and the structure of mammalian chromatin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号