首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
H Killmann  R Benz    V Braun 《The EMBO journal》1993,12(8):3007-3016
The FhuA receptor protein is involved in energy-coupled transport of Fe3+ via ferrichrome through the outer membrane of Escherichia coli. Since no energy source is known in the outer membrane it is assumed that energy is provided through the action of the TonB, ExbB and ExbD proteins, which are anchored to the cytoplasmic membrane. By deleting 34 amino acid residues of a putative cell surface exposed loop, FhuA was converted from a ligand specific transport protein into a TonB independent and nonspecific diffusion channel. The FhuA deletion derivative FhuA delta 322-355 formed stable channels in black lipid membranes, in contrast to wild-type FhuA which did not increase membrane conductance. The single-channel conductance of the FhuA mutant channels was at least three times larger than that of the general diffusion porins of E. coli outer membrane. It is proposed that the basic structure of FhuA in the outer membrane is a channel formed by beta-barrels. Since the loop extending from residue 316 to 356 is part of the active site of FhuA, it probably controls the permeability of the channel. The transport-active conformation of FhuA is mediated by a TonB-induced conformational change in response to the energized cytoplasmic membrane. The ferrichrome transport rate into cells expressing FhuA delta 322-355 increased linearly with increasing substrate concentration (from 0.5 to 20 microM), in contrast to FhuA wild-type cells, which displayed saturation at 5 microM. This implies that in wild-type cells ferrichrome transport through the outer membrane is the rate-limiting step and that TonB, ExbB and ExbD are only required for outer membrane transport.  相似文献   

2.
The composition of the cell envelope of a heptose-deficient lipopolysaccharide mutant of Escherichia coli, GR467, was studied after fractionation into its outer and cytoplasmic membrane components by means of sucrose density gradient centrifugation. The outer membrane of GR467 had a lower density than that of its parent strain, CR34. Analysis of the fractionated membranes of GR467 indicated that the phospholipid-to-protein ratio had increased 2.4-fold in the outer membrane. The ratio in the mutant cytoplasmic membrane was also increased, although to a lesser extent. By employing a third parameter, the lipid A content of the outer membrane, it was found that the observed phospholipid-to-protein change in the outer membrane was due predominantly to a decrease in the relative amount of protein. This decrease in protein was particularly significant, since it was concomitant with a 68% decrease in the lipid A recovered in the outer membrane of GR467 relative to the lipid A recovered in the outer membrane of CR34. Similar findings were observed in a second heptose-deficient mutant of E. coli, RC-59. The apparent protein deficiency in GR467 was further studied by subjecting solubilized envelope proteins to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was found that major envelope proteins which were localized in the outer membrane were greatly diminished in GR467. Two revertants of GR467 with the wild-type amounts of heptose had wild-type relative levels of protein in their outer membranes. A partial heptose revertant had a relative level of protein in its outer membrane between those of the mutant and wild type.  相似文献   

3.
Escherichia coli K-12 strain PS1-28-37 carries the multicopy plasmid pPSO28-37 containing a DNA fragment coding for two of the proteins that enable bacteria to utilize sucrose as sole carbon source. One of the different gene products of the plasmid is the outer membrane protein, ScrY. This protein was isolated and purified by chromatography across a gel filtration column. Reconstitution experiments with lipid bilayer membrane demonstrated that ScrY formed ion-permeable channels with properties very similar to those of general diffusion pores of enteric bacteria. The presence of sugars in the aqueous phase led to a dose-dependent block of ion transport through the channel, like the situation found with LamB (maltoporin) of Escherichia coli and Salmonella typhimurium. The binding constants of a variety of different sugars were determined. The stability constant for malto-oligosaccharide binding increased with increasing numbers of glucose residues. Disaccharides generally had a larger binding constant than monosaccharides. The binding of different sugars to ScrY and LamB of E. coli is discussed with respect to the kinetics of sugar movement through the channel.  相似文献   

4.
A synthetic peptide corresponding to the signal sequence of wild type Escherichia coli lambda-receptor protein (LamB) inhibits in vitro translocation of precursors of both alkaline phosphatase and outer membrane protein A into E. coli membrane vesicles (half-maximal inhibition at 1-2 microM). By contrast, the inhibitory effect was nearly absent in a synthetic peptide corresponding to the signal sequence from a mutant strain that harbors a deletion mutation in the LamB signal region and displays an export-defective phenotype for this protein in vivo. Two peptides derived from pseudorevertant strains that arose from the deletion mutant and exported LamB in vivo were found to inhibit in vitro translocation with effectiveness that correlated with their in vivo export ability. Controls indicated that these synthetic signal peptides did not disrupt the E. coli membrane vesicles. These results can be interpreted to indicate that the presequences of exported proteins interact specifically with a receptor either in the E. coli inner membrane or in the cytoplasmic fraction. However, biophysical data for the family of signal peptides studied here reveal that they will spontaneously insert into a lipid membrane at concentrations comparable to those that cause inhibition. Hence, an indirect effect mediated by the lipid bilayer of the membrane must be considered.  相似文献   

5.
The ferrichrome-iron receptor encoded by the fhuA gene of Escherichia coli K-12 is a multifunctional outer membrane receptor required for the binding and uptake of ferrichrome and bacteriophages T5, T1, phi 80, and UC-1 as well as colicin M. To identify domains of the protein which are important for FhuA activities, a library of 31 overlapping deletion mutants in the fhuA gene was generated. Export of FhuA deletion proteins to the outer membrane and receptor functions of the deletion proteins were analyzed. All but three of the deletion mutant FhuA proteins cofractionated with the outer membrane; no FhuA proteins were detected in outer membrane preparations or in cell extracts when the deletions spanned amino acids 418 to 440. Most deletion proteins were susceptible to cleavage by endogenous proteolytic activity; some degradation products were detected on Coomassie blue-stained gels and on Western blots (immunoblots). Receptor functions were measured with the mutated genes present on multicopy plasmids. Two deletion mutants, FhuA delta 060-069 and FhuA delta 129-168, conferred wild-type phenotypes: they demonstrated growth promotion by ferrichrome and the same efficiency of plating of bacteriophages as that of wild-type FhuA; killing by colicin M was also unaffected. For FhuA delta 021-128 and FhuA delta 406-417, reduced sensitivity to colicin M was detected; wild-type phenotypes were observed for all other FhuA functions. Deletions from amino acids 169 to 195 slightly reduced sensitivities to bacteriophages and to colicin M; ferrichrome growth promotion was unaffected. When deletions extended into the region of amino acids 196 to 405, all FhuA functions were either reduced or abolished. The results indicate that selected regions of the FhuA protein have receptor activities and demonstrate the presence of both shared and unique ligand-responsive domains.  相似文献   

6.
De Lay NR  Cronan JE 《Genetics》2008,178(3):1327-1337
Strain LH530, a mutant of Escherichia coli K-12, was reported by others to show increased outer membrane permeability, temperature-sensitive growth, and reduced synthesis of lipid A. The unmapped mutant gene was found to be suppressed by high-copy-number plasmids carrying the wild-type acpT gene, which encodes a protein that catalyzes a post-translational protein modification, the attachment of 4'-phosphopantetheine. We mapped the strain LH530 mutation to a gene of unknown function, yejM, known to encode an inner membrane protein. The mutation is a yejM nonsense mutation that produces a truncated protein lacking the predicted periplasmic domain. Reconstruction of the mutation gave a strain having the same phenotypes as LH530. In contrast to the nonsense mutants, deletion of the entire yejM gene was lethal. Suppression by AcpT overexpression of the yejM nonsense mutants encoding the truncated proteins was specific to AcpT. Moreover, AcpT overexpression also suppressed the lethality due to deletion of the entire yejM gene and this suppression also did not require that AcpT be enzymatically active. The mechanism whereby overexpression of a specific cytosolic protein bypasses the essentiality of an inner membrane protein is unknown.  相似文献   

7.
8.
During the molecular analysis of a plasmid-coded sucrose metabolic pathway of enteric bacteria, a gene, scrY, was found whose product, ScrY, had all the properties of a bacterial porin (Schmid et al., 1988). Loss of this protein (Mr 58 kDa), localized in the outer membrane, led, as shown here, to an increase in the apparent Km for sucrose transport in whole cells from 10 microM in wild-type cells to 300 microM in mutant cells. This contrasts with the Km for sucrose phosphorylation as measured in membrane vesicles from mutant and wild-type cells, which remained unchanged at about 10 microM, and reflects the activity of the sucrose-specific Enzymell of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system (PTS) responsible for uptake through the inner membrane. Furthermore, the presence of ScrY restored growth on maltodextrins in cells devoid of LamB, thus complementing the lack of this maltoporin. The amino acid sequence deduced from the DNA sequence was determined for the plasmid-coded and the ScrY porin coded in the chromosome of Klebsiella pneumoniae. Both show high identity (86%) to each other, and to the channel domain of LamB, further corroborating the conclusion that they constitute porins.  相似文献   

9.
Heat-stable enterotoxin Ip (STIp) of Escherichia coli is synthesized as a precursor form consisting of pre- (amino acid residues 1 to 19), pro- (amino acid residues 20 to 54) and mature (amino acid residues 55 to 72) regions. Mature STIp (bioactive STIp) is formed in the periplasmic space after the precursor is proteolytically processed and the mature STIp translocates across the outer membrane through the secretory system including TolC, an outer membrane protein of E. coli. However, it remains unknown how the mature STIp is recognized by this secretory system. In this study, we investigated the amino acid residues of STIp involved in its translocation across the outer membrane. We prepared mutant STIp genes by site-directed mutagenesis and analyzed translocation of the mutant STIps across the outer membrane. Deletion of the Phe or Tyr residue at position 3 or 18, respectively, decreased the efficiency of translocation of STIp across the outer membrane. To confirm the involvement of these amino acid residues, we further mutated the codons for these amino acid residues to that for Gly. These mutations also decreased the efficiency of extracellular secretion of STIp. In contrast, substitution of Phe-3 and Syr-18 with Tyr and Phe, respectively, did not affect the efficiency of translocation of the toxin. These results indicated that the aromatic amino acid residues at positions 3 and 18 in the mature region are important for the ability of STIp to cross the outer membrane.  相似文献   

10.
Using in vitro DNA manipulations, we constructed different lacY alleles encoding mutant proteins of the Escherichia coli lactose carrier. With respect to structural models developed for lactose permease, the truncated polypeptides represent model systems containing approximately one, two, four, and five of the N-terminal membrane-spanning alpha-helices. In addition, a protein carrying a deletion of predicted helices 3 and 4 was obtained. The different proteins were radiolabeled in plasmid-bearing E. coli minicells and were found to be stably integrated into the lipid bilayer. The truncated polypeptides of 50, 71, 143, and 174 N-terminal amino acid residues resembled the wild-type protein in their solubilization characteristics, whereas the mutant protein carrying an internal deletion of amino acid residues 72 to 142 of the lactose carrier behaved differently. Minicell membrane vesicles containing truncated proteins comprising amino acid residues 1 to 143 or 1 to 174 were subjected to limited proteolysis. Upon digestion with proteases of different specificities, the same characteristic fragment that was also produced from the membrane-associated wild-type protein was found to accumulate under these conditions. It has previously been shown to contain the intact N terminus of lactose permease. This supports the idea of an independent folding and membrane insertion of this segment even in the absence of the C-terminal part of the molecule. The results suggest that the N-terminal region of the lactose permease represents a well-defined structural domain.  相似文献   

11.
The cryptic gene bglH from the Escherichia coli chromosome was cloned into a tacOP-driven expression vector. The resulting plasmid was transferred into the porin-deficient E. coli strain KS26 and the protein was expressed by addition of IPTG. The BglH protein was localized in the outer membrane. It was purified to homogeneity using standard methods. Reconstitution experiments with lipid bilayer membranes defined BglH as a channel-forming component, i.e. it is an outer membrane porin. The single-channel conductance of BglH (560 pS in 1 M KCl) was only one-third of that of the general diffusion porins of E. coli outer membrane. The presence of carbohydrates in the aqueous phase led to a dose-dependent block of ion transport through the channel, similar to that found for LamB (maltoporin) of E. coli and Salmonella typhimurium, which means that BglH is a porin specific for the uptake of carbohydrates. The binding constants of a variety of different carbohydrates were calculated from titration experiments of the BglH-induced membrane conductance. The tightest binding was observed with the aromatic beta-D-glucosides arbutin and salicin, and with gentibiose and cellobiose. Binding of maltooligosaccharides to BglH was in contrast to their binding to LamB in that it was much weaker, indicating that the binding site of BglH for carbohydrates is different from that of LamB (maltoporin). The kinetics of cellopentaose binding to BglH was investigated using the carbohydrate-induced current noise and was compared with that of cellopentaose binding to LamB (maltoporin) and ScrY (sucroseporin).  相似文献   

12.
Previous studies showed that when the signal sequence plus 9 amino acid residues from the amino terminus of the major lipoprotein of Escherichia coli was fused to beta-lactamase, the resulting hybrid protein was modified, proteolytically processed, and assembled into the outer membrane as was the wild-type lipoprotein (Ghrayeb, J., and Inouye, M. (1983) J. Biol. Chem. 259, 463-467). We have constructed several hybrid proteins with mutations at the cleavage site of the prolipoprotein signal peptide. These mutations are known to block the lipid modification of the lipoprotein at the cysteine residue, resulting in the accumulation of unprocessed, unmodified prolipoprotein in the outer membrane. The mutations blocked the lipid modification of the hybrid protein. However, in contrast to the mutant lipoproteins, the cleavage of the signal peptides for the mutant hybrid proteins did occur, although less efficiently than the unaltered prolipo-beta-lactamase. The mutant prolipo-beta-lactamase proteins were cleaved at a site 5 amino acid residues downstream of the prolipoprotein signal peptide cleavage site. This new cleavage between alanine and lysine residues was resistant to globomycin, a specific inhibitor for signal peptidase II. This indicates that signal peptidase II, the signal peptidase which cleaves the unaltered prolipo-beta-lactamase, is not responsible for the new cleavage. The results demonstrate that the cleavage of the signal peptide is a flexible process that can occur by an alternative pathway when the normal processing pathway is blocked.  相似文献   

13.
Acinetobacter baumannii secretes outer membrane vesicles (OMVs) during both in vitro and in vivo growth, but the biogenesis mechanism by which A. baumannii produces OMVs remains undefined. Outer membrane protein A of A. baumannii (AbOmpA) is a major protein in the outer membrane and the C-terminus of AbOmpA interacts with diaminopimelate of peptidoglycan. This study investigated the role of AbOmpA in the biogenesis of A. baumannii OMVs. Quantitative and qualitative approaches were used to analyze OMV biogenesis in A. baumannii ATCC 19606T and an isogenic ΔAbOmpA mutant. OMV production was significantly increased in the ΔAbOmpA mutant compared to wild-type bacteria as demonstrated by quantitation of proteins and lipopolysaccharides (LPS) packaged in OMVs. LPS profiles prepared from OMVs from wild-type bacteria and the ΔAbOmpA mutant had identical patterns, but proteomic analysis showed different protein constituents in OMVs from wild-type bacteria compared to the ΔAbOmpA mutant. In conclusion, AbOmpA influences OMV biogenesis by controlling OMV production and protein composition.  相似文献   

14.
In contrast to the situation in enteric bacteria, chemotaxis in Rhodobacter sphaeroides requires transport and partial metabolism of chemoattractants. A chemotaxis operon has been identified containing homologues of the enteric cheA , cheW , cheR genes and two homologues of the cheY gene. However, mutations in these genes have only minor effects on chemotaxis. In enteric species, CheW transmits sensory information from the chemoreceptors to the histidine protein kinase, CheA. Expression of R. sphaeroides cheW in Escherichia coli showed concentration-dependent inhibition of wild-type behaviour, increasing counter-clockwise rotation and thus smooth swimming — a phenotype also seen when E. coli cheW is overexpressed in E. coli . In contrast, overexpression of R. sphaeroides cheW in wild-type R. sphaeroides inhibited motility completely, the equivalent of inducing tumbly motility in E. coli . Expression of R. sphaeroides cheW in an E. coli Δ cheW chemotaxis mutant complemented this mutation, confirming that CheW is involved in chemosensory signal transduction. However, unlike E. coli Δ cheW mutants, in-frame deletion of R. sphaeroides cheW did not affect either swimming behaviour or chemotaxis to weak organic acids, although the responses to sugars were enhanced. Therefore, although CheW may act as a signal-transduction protein in R. sphaeroides , it may have an unusual role in controlling the rotation of the flagellar motor. Furthermore, the ability of a Δ cheW mutant to swim normally and show wild-type responses to weak acids supports the existence of additional chemosensory signal-transduction pathways.  相似文献   

15.
Summary The gene ompA encodes a major outer membrane protein of Escherichia coli. Localized mutagenesis of the part of the gene corresponding to the 21-residue signal sequence and the first 45 residues of the protein resulted in alterations which caused cell lysis when expressed. DNA sequence analyses revealed that in one mutant type the last CO2H-terminal residue of the signal sequence, alanine, was replaced by valine. The proteolytic removal of the signal peptide was much delayed and most of the unprocessed precursor protein was fractioned with the outer membrane. However, this precursor was completely soluble in sodium lauryl sarcosinate which does not solubilize the OmpA protein or fragments thereof present in the outer membrane. Synthesis of the mutant protein did not inhibit processing of the OmpA or OmpF proteins. In the other mutant type, multiple mutational alterations had occurred leading to four amino acid substitutions in the signal sequence and two affecting the first two residues of the mature protein. A reduced rate of processing could not be clearly demonstrated. Membrane fractionation suggested that small amounts of this precursor were associated with the plasma membrane but synthesis of this mutant protein also did not inhibit processing of the wild-type OmpA or OmpF proteins. Several lines of evidence left no doubt that the mature, mutant protein is stably incorporated into the outer membrane. It is suggested that the presence, in the outer membrane, of the mutant precursor protein in the former case, or of the mutant protein in the latter case perturbs the membrane architecture enough to cause cell death.  相似文献   

16.
This paper describes the overproduction and purification of the C-terminus polyhistidine-tagged outer membrane protein OprM, which is a part of the MexA-MexB-OprM active efflux system of Pseudomonas aeruginosa. Renaturation of the protein from inclusion bodies of Escherichia coli was achieved using guanidine-HCl as denaturing agent and n-octylpolyoxyethylene (C8POE) and n-octyltetraoxyethylene (C8E4) as nonionic detergents. The refolded protein was purified by ion-exchange and nickel-affinity chromatography. The final yield was 6 mg of pure histidine-tagged OprM per liter of E. coli culture. Renaturation was monitored by the effects of heating prior to SDS-PAGE, using a typical and exclusive property of outer membrane proteins. Immunoblotting revealed that the recombinant protein is addressed to the outer membrane of E. coli, after maturation by excision of its N-terminal signal sequence. Complementation of an oprM deletion mutant with the plasmid encoded histidine-tagged OprM protein restored antibiotic susceptibilities to wild-type levels, demonstrating functionality of recombinant OprM.  相似文献   

17.
Efficient in vivo translocation of the precursor of Escherichia coli outer membrane protein PhoE across the inner membrane is shown to depend on SecB protein. A set of mutants, carrying internal deletions in the phoE gene, was used to locate a possible SecB-binding site and/or a site that makes the protein dependent on SecB for export. Except for two small mutant PhoE proteins, the in vivo and in vitro translocation of all mutant proteins was more efficient in the presence of SecB. The interaction of SecB protein with wild-type and mutant PhoE proteins, synthesized in vitro, was further studied in co-immunoprecipitation experiments with anti-SecB protein serum. The efficiencies of co-immunoprecipitation of precursor and mature PhoE were very similar, indicating the absence of a SecB-binding site in the signal sequence. Moreover, all mutant proteins with deletions in the mature moiety of the PhoE protein were co-immunoprecipitated in these assays, albeit mostly with reduced efficiency. Taken together, these results indicate the existence of multiple SecB-binding sites in the mature portion of the PhoE protein.  相似文献   

18.
FhuA is a multifunctional protein in the outer membrane of Escherichia coli that actively transports [Fe3+]ferrichrome, the antibiotics albomycin and rifamycin CGP 4832, and mediates sensitivity of cells to the unrelated phages T5, T1, phi80 and UC-1, and to colicin M and microcin J25. The energy source of active transport is the proton motive force of the cytoplasmic membrane that is required for all FhuA functions except for infection by phage T5. The FhuA crystal structure reveals 22 antiparallel transmembrane beta-strands that form a beta-barrel which is closed by a globular N-terminal domain. FhuA still displays active transport and sensitivity to all ligands except microcin J25 when the globular domain (residues 5-160) is excised and supports weakly unspecific diffusion of substrates across the outer membrane. Here it is shown that isolated FhuADelta5-160 supported diffusion of ions through artificial planar lipid bilayer membranes but did not form stable channels. The double mutant FhuADelta5-160 Delta322-336 lacking in addition to the globular domain most of the large surface loop 4 which partially constricts the channel entrance, displayed an increased single-channel conductance but formed no stable channels. It transported in vivo[Fe3+]ferrichrome with 45% of the rate of wild-type FhuA and did not increase sensitivity of cells to antibiotics. In contrast, a second FhuA double mutant derivative which in addition to the globular domain contained a deletion of residues 335-355 comprising one-third of surface loop 4 and half of the transmembrane beta-strand 8 formed stable channels in lipid bilayers with a large single-channel conductance of 2.5 nS in 1 m KCl. Cells that synthesized FhuADelta5-160 Delta335-355 showed an increased sensitivity to antibiotics and supported diffusion of maltodextrins, SDS and ferrichrome across the outer membrane. FhuADelta5-160 Delta335-355 showed no FhuA specific functions such as active transport of [Fe3+]ferrichrome or sensitivity to the other FhuA ligands. It is concluded that FhuADelta5-160 Delta335-355 assumes a conformation that is incompatible with any of the FhuA functions.  相似文献   

19.
The Escherichia coli outer membrane phospholipid:lipid A palmitoyltransferase PagP is normally a latent enzyme, but it can be directly activated in outer membranes by lipid redistribution associated with a breach in the permeability barrier. We now demonstrate that a lipid A myristate deficiency in an E. coli O157:H7 msbB mutant constitutively activates PagP in outer membranes. The lipid A myristate deficiency is associated with hydrophobic antibiotic sensitivity and, unexpectedly, with serum sensitivity, which resulted from O-antigen polysaccharide absence due to a cytoplasmically determined truncation at the first outer core glucose unit of the R3 core oligosaccharide. Mutational inactivation of pagP in the myristate-deficient lipid A background aggravated the hydrophobic antibiotic sensitivity as a result of losing a partially compensatory increase in lipid A palmitoylation while simultaneously restoring serum resistance and O-antigen attachment to intact lipopolysaccharide. Complementation with either wild-type pagP or catalytically inactive pagPSer77Ala alleles restored the R3 core truncation. However, the intact lipopolysaccharide was preserved after complementation with an internal deletion pagPDelta5-14 allele, which mostly eliminates a periplasmic amphipathic alpha-helical domain but fully supports cell surface lipid A palmitoylation. Our findings indicate that activation of PagP not only triggers lipid A palmitoylation in the outer membrane but also separately truncates the R3 core oligosaccharide in the cytoplasm. We discuss the implication that PagP might function as an apical sensory transducer, which can be activated by a breach in the outer membrane permeability barrier.  相似文献   

20.
Analysis of the genome sequence of Caulobacter crescentus predicts 67 TonB-dependent outer membrane proteins. To demonstrate that among them are proteins that transport nutrients other than chelated Fe(3+) and vitamin B(12)-the substrates hitherto known to be transported by TonB-dependent transporters-the outer membrane protein profile of cells grown on different substrates was determined by two-dimensional electrophoresis. Maltose induced the synthesis of a hitherto unknown 99.5-kDa protein, designated here as MalA, encoded by the cc2287 genomic locus. MalA mediated growth on maltodextrins and transported [(14)C]maltodextrins from [(14)C]maltose to [(14)C]maltopentaose. [(14)C]maltose transport showed biphasic kinetics, with a fast initial rate and a slower second rate. The initial transport had a K(d) of 0.2 microM, while the second transport had a K(d) of 5 microM. It is proposed that the fast rate reflects binding to MalA and the second rate reflects transport into the cells. Energy depletion of cells by 100 microM carbonyl cyanide 3-chlorophenylhydrazone abolished maltose binding and transport. Deletion of the malA gene diminished maltose transport to 1% of the wild-type malA strain and impaired transport of the larger maltodextrins. The malA mutant was unable to grow on maltodextrins larger than maltotetraose. Deletion of two C. crescentus genes homologous to the exbB exbD genes of Escherichia coli abolished [(14)C]maltodextrin binding and transport and growth on maltodextrins larger than maltotetraose. These mutants also showed impaired growth on Fe(3+)-rhodotorulate as the sole iron source, which provided evidence of energy-coupled transport. Unexpectedly, a deletion mutant of a tonB homolog transported maltose at the wild-type rate and grew on all maltodextrins tested. Since Fe(3+)-rhodotorulate served as an iron source for the tonB mutant, an additional gene encoding a protein with a TonB function is postulated. Permeation of maltose and maltotriose through the outer membrane of the C. crescentus malA mutant was slower than permeation through the outer membrane of an E. coli lamB mutant, which suggests a low porin activity in C. crescentus. The pores of the C. crescentus porins are slightly larger than those of E. coli K-12, since maltotetraose supported growth of the C. crescentus malA mutant but failed to support growth of the E. coli lamB mutant. The data are consistent with the proposal that binding of maltodextrins to MalA requires energy and MalA actively transports maltodextrins with K(d) values 1,000-fold smaller than those for the LamB porin and 100-fold larger than those for the vitamin B(12) and ferric siderophore outer membrane transporters. MalA is the first example of an outer membrane protein for which an ExbB/ExbD-dependent transport of a nutrient other than iron and vitamin B(12) has been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号