首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Temperature, concentration, and time dependence for the emergence of breaks in the sugar-phosphate backbone in a circular supercoiled DNA (scDNA) was studied for the first time in the presence of topotecan (TPT) and in the absence of human DNA topoisomerase I (topo I). Because TPT is a comptothecin (CPT) derivative, it is the first example for the ability of molecules of CPT family to cause double-stranded breaks in scDNA in the absence of the enzyme. The experiments were carried out in low ionic strength solutions (10 mM sodium cacodylate) at neutral pH (6.8). Incubation time necessary for the appearance of double-stranded breaks in scDNA in the presence of TPT correlated with the time of formation of strong TPT-DNA complex. A model was suggested for the complex composed of two crossed DNA duplexes bound through a bridge of two dimers of TPT lactone form. According to this model, two carbonyl groups of D rings of different TPT dimers form hydrogen bonds with 2-amino groups of guanines located in the neighboring base pairs of diverse strands of one of DNA duplexes. At the same time, two other carbonyl groups of D rings of TPT dimers form hydrogen bonds with 2-amino groups of guanines spaced five bp apart in the same strand of the second DNA duplex.  相似文献   

2.
A study was made of the temperature, concentration, and time dependences for the emergence of breaks in the sugar-phosphate backbone of a circular supercoiled DNA (scDNA) in the presence of a campto-thecin derivative topotecan (TPT) and in the absence of DNA topoisomerase I (topo I). The experiments were carried out in low ionic strength solutions (10 mM sodium cacodylate) at neutral pH (6.8). The incubation time necessary for the appearance of double-strand breaks in scDNA in the presence of TPT correlated with the time of formation of strong TPT–DNA complex. This is the first demonstration that molecules of the camptothecin family can cause double-strand breaks in scDNA in the absence of the enzyme. A model is suggested for the complex composed of two crossed DNA duplexes bound through a bridge of two dimers of the TPT lactone form. According to this model, two carbonyl groups of D rings of different TPT dimers form hydrogen bonds with 2-amino groups of guanines located in the neighboring base pairs of different strands of one DNA duplex. At the same time, two other carbonyl groups of D rings of TPT dimers form hydrogen bonds with 2-amino groups of guanines 5 bp apart in one and the same strand of the second DNA duplex.  相似文献   

3.
Behavior of topotecan, DNA topoisomerase I inhibitor, was studied in aqueous solutions by optical methods. Topotecan absorption spectra were recorded in the pH range 0.5-11.5 and its pKa were determined. Quantum chemical calculations were made for all charge states of the topotecan molecule in lactone and carboxylate form. The calculated absorption maxima agree well with the experimental data. Protonation of the topotecan D ring (pKa = 3.6) was revealed. Comparison of experimental and calculated data showed topotecan structure with a proton at the oxygen atom at C16a rather than N4 to be the most preferable. Topotecan molecules were shown to form dimers at concentrations above 10(-5) M. Topotecan dimerization is accompanied by an increase in the pKa of hydroxy group of the A ring from 6.5 ([TPT] = 10(-6) M) to 7.1 ([TPT] = 10(-4) M), which indicates participation of this group in dimer stabilization, perhaps due to intermolecular hydrogen bonding with N1 of the B ring of a neighboring molecule. Probable dimer structures were proposed. The topotecan dimerization constant was determined, K = (4.0 +/- 0.7) x 10(3) M-1.  相似文献   

4.
Interaction of topotecan (TPT) with synthetic double-stranded polydeoxyribonucleotides has been studied in solutions of low ionic strength at pH = 6.8 by linear flow dichroism (LD), circular dichroism (CD), UV-Vis absorption and Raman spectroscopy. The complexes of TPT with poly(dG-dC).poly(dG-dC), poly(dG).poly(dC), poly(dA-dC).poly(dG-dT), poly(dA).poly(dT) and previously studied by us complexes of TPT with calf thymus DNA and coliphage T4 DNA have been shown to have negative LD in the long-wavelength absorption band of TPT, whereas the complex of TPT with poly(dA-dT).poly(dA-dT) has positive LD in this absorption band of TPT. Thus, there are two different types of TPT complexes with the polymers. TPT has been established to bind preferably to GC base pairs because its affinity to the polymers of different GC composition decreases in the following order: poly(dG-dC).poly(dG-dC) > poly(dG).poly(dC) > poly(dA-dC).poly(dG-dT) > poly(dA).poly(dT). The presence of DNA has been shown to shift monomer-dimer equilibrium in TPT solutions toward dimer formation. Several duplexes of the synthetic polynucleotides bound together by the bridges of TPT dimers may participate in the formation of the studied type of TPT-polynucleotide complexes. Molecular models of TPT complex with linear and ring supercoiled DNAs and with deoxyguanosine have been considered. TPT (and presumably all camptothecin family) proved to be a representative of a new class of DNA-specific ligands whose biological action is associated with formation of dimeric bridges between two DNA duplexes.  相似文献   

5.
This study is a continuation of a series of papers dealing with topotecan interaction with double-stranded polydeoxyribonucleotides. We showed earlier that topotecan molecules form dimers in solution at concentration above 10(-5) (per base pair). Topotecan interaction with calf thymus DNA in solutions of low ionic strength was studied by fluorescence, circular dichroism, and linear flow dichroism. The data obtained indicate that topotecan forms two types of complex with DNA, DNA molecules combining with each other during formation of one of these complexes. The association constant of two topotecan-filled DNA molecules with each other was estimated at 10(4) M-1 (per base pair) in 1 mM sodium cacodylate buffer, pH 6.8, at 20 degrees C. A possibility of modulation of DNA topoisomerase I activity by topotecan due to complexation with several sites of a supercoiled DNA molecule is discussed.  相似文献   

6.
Interaction of topotecan (TPT) with calf thymus DNA, coliphage T4 DNA, and poly(dGdC) · poly(dG-dC) was studied by optical (linear flow dichroism, UV-vis spectroscopy) and quantum chemical methods. The linear dichroism signal of TPT bound to DNA was shown to have positive sign in the range 260–295 nm. This means that the plane of quinoline fragment (rings A and B) of TPT forms an angle less than 54° with the long axis of DNA, and hence the TPT molecule cannot intercalate between DNA base pairs. TPT was established to bind to calf thymus DNA as readily as to coliphage T4 DNA whose cytosines in the major groove were all glycosylated at the 5th position. Consequently, the DNA major groove does not participate in TPT binding. TPT molecule was shown to compete with distamycin for binding sites in the minor groove of DNA and poly(dG-dC) · poly(dG-dC). Thus, it was demonstrated for the first time that TPT binds to DNA at its minor groove.  相似文献   

7.
Behavior of topotecan, DNA topoisomerase I inhibitor, was studied in aqueous solutions by optical methods. Topotecan absorption spectra were recorded in the pH range 0.5–11.5 and its pKa were determined. Quantum chemical calculations were made for all charge states of the topotecan molecule in lactone and carboxylate form. The calculated absorption maxima agree well with the experimental data. Protonation of the topotecan D ring (pKa 3.6) was revealed. Comparison of experimental and calculated data showed topotecan structure with a proton at the oxygen atom at C16a rather than N4 to be the most preferable. Topotecan molecules were shown to form dimers at concentrations above 10–5M. Topotecan dimerization is accompanied by an increase in the pKa of hydroxy group of the A ring from 6.5 ([TPT] = 10–6M) to 7.1 ([TPT] = 10–4M), which indicates participation of this group in dimer stabilization, perhaps due to intermolecular hydrogen bonding with N1 of the B ring of a neighboring molecule. Probable dimer structures were proposed. The topotecan dimerization constant was determined, K = (4.0 ± 0.7)·103M–1.  相似文献   

8.
This study is a continuation of a series of papers dealing with topotecan interaction with double-stranded polydeoxyribonucleotides. We showed earlier that topotecan molecules form dimers in solution at concentration above 10–5(per base pair). Topotecan interaction with calf thymus DNA in solutions of low ionic strength was studied by fluorescence, circular dichroism, and linear flow dichroism. The data obtained indicate that topotecan forms two types of complex with DNA, DNA molecules combining with each other during formation of one of these complexes. The association constant of two topotecan-filled DNA molecules with each other was estimated at 104M–1(per base pair) in 1 mM sodium cacodylate buffer, pH 6.8, at 20°C. A possibility of modulation of DNA topoisomerase I activity by topotecan due to complexation with several sites of a supercoiled DNA molecule is discussed.  相似文献   

9.
CtIP (CtBP-interacting protein) associates with BRCA1 and the Mre11-Rad50-Nbs1 (MRN) complex and plays an essential role in homologous recombination (HR)-mediated DNA double-stranded break (DSB) repair. It has been described that CtIP forms dimers in mammalian cells, but the biological significance is not clear. In this study, we identified a conserved motif in the N terminus of CtIP, which is required for dimer formation. We further showed that CtIP mutants impaired in forming dimers are strongly defective in HR, end resection, and activation of the ataxia telangiectasia and Rad3-related pathway, without notable change of CtIP interactions with BRCA1 or Nbs1. In addition to HR, CtIP dimerization is also required for microhomology-mediated end joining. Live cell imaging of enhanced GFP-tagged CtIP demonstrates that the CtIP dimerization mutant fails to be localized to DSBs, whereas placing a heterologous dimerization motif to the dimerization mutant restores CtIP recruitment to DSBs. These studies suggest that CtIP dimer formation is essential for its recruitment to DSBs on chromatin upon DNA damage. Furthermore, DNA damage-induced phosphorylation of CtIP is significantly reduced in the CtIP dimerization mutants. Therefore, in addition to the C-terminal conserved domains critical for CtIP function, the dimerization motif on the N terminus of CtIP is also conserved and essential for its function in DNA damage responses. The severe repair defects of CtIP dimerization mutants are likely due to the failure in localization to chromosomal DSBs upon DNA damage.  相似文献   

10.
Interaction of topotecan (TPT) with calf thymus DNA, coliphage T4 DNA, and poly(dG-dC). poly(dG-dC) was studied by optical (linear flow dichroism, UV-vis spectroscopy) and quantum chemical methods. The linear dichroism (LD) signal of TPT bound to DNA was shown to have positive sign in the range 260-295 nm. This means that the plane of quinoline fragment (rings A and B) of TPT molecule form an angle lower 54 degrees with the long axis of DNA, and hence TPT molecule can not intercalate between DNA base pairs. TPT was established to bind to calf thymus DNA as readily as to coliphage T4 DNA whose all cytosines in the major groove were glycosylated at the 5th position. Consequently, the DNA major groove does not participate in TPT binding. TPT molecule was shown to compete with distamycin for binding sites in the minor groove of DNA and poly(dG-dC). poly(dG-dC). Thus, it was demonstrated for the first time that TPT binds to DNA at its minor groove.  相似文献   

11.
Co(II) interacts with bleomycin in aqueous solution, in the presence of air, to give a short-lived mononuclear superoxo Co(III) complex (I). Then, two molecules of complex I react together, with the loss of oxygen, to yield the dinuclear mu-peroxo Co(III) complex (II); the dimerization follows a second-order rate law with k2 = 200 +/- 50 M-1 s-1 at 25 degrees C. The rate of dimerization is lowered by a factor of 2000 when DNA is present at a molar ratio of [nucleotide]/[Co] higher than 16. These results and studies of circular dichroism and electron paramagnetic resonance spectra of complexes strongly suggest the binding of the superoxo complex to DNA (I') as well as that of the mu-peroxo complex (II'); the binding of 1 molecule of complex II for every 2.9 base pairs in DNA has been determined with an apparent equilibrium constant of 8.4 x 10(4) M-1.  相似文献   

12.
Interaction of topotecan (TPT) with synthetic double-stranded polydeoxyribonucleotides has been studied in solutions of low ionic strength at pH 6.8 by linear flow dichroism (LD), circular dichroism (CD), UV-Vis absorption, and Raman spectroscopy. The complexes of TPT with poly(dG-dC)·poly(dG-dC), poly(dG)·poly(dC), poly(dA-dC)·poly(dG-dT), and poly(dA)·poly(dT), as well as complexes of TPT with calf thymus DNA and coliphage T4 DNA studied by us previously, have been shown to have negative LD in the long-wavelength absorption band of TPT, whereas the complex of TPT with poly(dA-dT)·poly(dA-dT) has positive LD in this absorption band of TPT. Thus, there are two different types of TPT complex with the polymers. TPT has been established to bind preferably to GC base pairs because its affinity to the polymers of different composition decreases in the following order: poly(dG-dC)·poly(dG-dC) > poly(dG)·poly(dC) > poly(dA-dC)·poly(dG-dT) > poly(dA)·poly(dT). The presence of DNA has been shown to shift the monomer–dimer equilibrium in TPT solutions toward dimer formation. Several duplexes of the synthetic polynucleotides bound together by bridges of TPT dimers may participate in the formation of the studied type of TPT–polynucleotide complex. Molecular models of TPT complex with linear and circular supercoiled DNAs and with deoxyguanosine have been considered. TPT (and presumably the whole camptothecin family) proved to represent a new class of DNA-specific ligands whose biological action is associated with formation of dimeric bridges between two DNA duplexes.  相似文献   

13.
14.
S J Mazur  L Grossman 《Biochemistry》1991,30(18):4432-4443
The initial stages in the repair of damaged DNA by the Escherichia coli uvr system involve the recognition of damage by UvrA. We have examined in detail the binding of UvrA to DNA randomly damaged by ultraviolet light, undamaged DNA, and single-stranded DNA using nitrocellulose filter binding and gel mobility shift assays to arrive at the following model: UvrA dimers bind specifically to damaged DNA both in the presence and in the absence of ATP. The dimerization of UvrA is promoted by UvrA concentrations greater than 1 nM, the presence of ATP, or physiological temperatures, and the dimerization step dominates the temperature dependence of UvrA binding to DNA damaged by ultraviolet light. The apparent association constant for specific binding is dependent on the concentration of UvrA due to coupled dimerization, aggregation, and nonspecific binding reactions. At 1 nM UvrA, either with or without ATP, Kuv approximately 10(9) M-1. The binding of UvrA to undamaged DNA is 10(3)-10(4)-fold weaker than the damage-specific binding. Both the strength of damage-specific binding and the discrimination between damaged and undamaged sites are affected by the salt concentration. The kinetics of association and dissociation reactions indicate that the primary effects of ATP are on the extent of UvrA dimerization rather than on the properties of the UvrA-uvDNA complex. The complexity of the interaction of UvrA, ATP, and DNA is indicated by the opposing effects of ATP binding and hydrolysis on UvrA dimerization.  相似文献   

15.
The antitumor activity of camptothecin (CPT) and its derivatives, including water-soluble topotecan (TPT), is determined by their ability to inhibit human DNA topoisomerase I (top 1). On the other hand, TPT has been recently shown to bind to DNA. The proposed models are based on a two-step mechanism of TPT (CPT) dimer interaction with two spatially close DNA duplexes. At the first step, the CPT lactone form binds to DNA (Streltsov et al., Mol. Biol. vol. 36, no. 5 (2002)) through hydrogen bonding of its C16a carbonyl with the guanine 2-amino group. At the second step, CPT is converted to the carboxylate form. In the absence of top 1, the C17 hydroxyl of CPT is involved in ester exchange (nicking of the DNA sugar-phosphate backbone followed by covalent joining of free phosphate to C17) whereas its C20 carboxyl forms two hydrogen bonds with the same guanine nucleotide at the opposite end of the broken DNA backbone. As a result, CPT binds to both ends of the broken DNA. The resulting CPT-DNA complex is alkali-labile. In the presence of top 1, after CPT conversion to the carboxylate form and DNA nicking, the C17 hydroxyl makes a branching hydrogen bond with N1 and N3 of guanine while the C20 carboxyl makes two hydrogen bonds with the NH of Tyr723 and N(delta2)H(2) of Asp722. Owing to this, rotation of one end of the broken sugar-phosphate backbone about the other becomes impossible; hence the CPT inhibitory effect on top 1. The proposed models are consistent with the current body of experimental data.  相似文献   

16.
Zhao X  Shang Y  Hu J  Liu H  Hu Y 《Biophysical chemistry》2008,138(3):144-149
The interaction between DNA and cationic gemini surfactant trimethylene-1, 3-bis (dodecyldimethylammonium bromide) (12-3-12) has been investigated by the measurements of fluorescence, surface tension, UV spectrum and circular dichroism (CD). Micelle-like structure of 12-3-12 induced by DNA appears at critical aggregation concentration (CAC), which is much lower than critical micelle concentration (CMC) of 12-3-12 in DNA-free solution. CAC is independent of DNA concentration, but the CMC of the mixed solutions of DNA and 12-3-12(CMC(mix)) increases with the increasing of DNA concentration. The surface tensions of the mixed system are higher than that of the pure surfactant solution, much different from the so-called synergistic lowering of the surface tension for other polymer-surfactant systems. Phase separation occurs after the neutralization point and the precipitate redissolves with superfluous 12-3-12. Cationic surfactant 12-3-12 can exclude ethidium bromide (EB) from the DNA/EB complex, and this process does not depend on the DNA concentration but on the charge ratio of 12-3-12 to DNA. The binding constant of EB to DNA decreases sharply at the charge ratio from 0.5 to 1.0. Circular dichroism (CD) spectra show that DNA undergoes a conformational transition from native B-form to chiral psi-phase with increasing of 12-3-12.  相似文献   

17.
18.
An overwhelming number of structural and functional studies on specific protein–DNA complexes reveal the existence of water molecules at the interaction interface. What role does the interfacial water molecules play in determining the specificity of association is thus a critical question. Herein, we have explored the dynamical role of minor groove water molecules and DNA side chain flexibility in lambda repressor–operator DNA interaction using well-characterized DNA minor groove binder dye, Hoechst 33258. The most striking finding of our studies reveals that the solvation time scale corresponding to the minor groove water molecules (∼50 ps) and DNA side chain flexibility (∼10 ns) remain unaltered even in protein–DNA complex in comparison to unbound operator DNA. The temperature dependent study further reveals the slower exchange of minor grove water molecules with bulk water in DNA–protein complex in comparison to the unbound DNA. Detailed structural studies including circular dichroism (CD) and Förster resonance energy transfer (FRET) have also been performed to elucidate the interaction between protein and DNA.  相似文献   

19.
We employed Raman and circular dichroism (CD) spectroscopy to probe the molecular structure of 68-kDa recombinant human DNA topoisomerase I (TopoI) in solution, in a complex with a 16-bp DNA fragment containing a camptothecin-enhanced TopoI cleavage site, and in a ternary complex with this oligonucleotide and topotecan. Raman spectroscopy reveals a TopoI secondary structure transition and significant changes in the hydrogen bonding of the tyrosine residues induced by the DNA binding. CD spectroscopy confirms the Raman data and identifies a DNA-induced (>7%) decrease of the TopoI alpha helix accompanied by at least a 6% increase of the beta structure. The Raman DNA molecular signatures demonstrated a bandshift that is expected for a net change in the environment of guanine C6 [double bond] O groups from pairing to solvent exposure. The formation of a ternary cleavage complex with TopoI, DNA, and topotecan as probed by CD spectroscopy reveals neither additional modifications of the TopoI secondary structure nor of the oligonucleotide structure, compared to the TopoI-oligonucleotide complex.  相似文献   

20.
A flow linear dichroism technique is utilized to study the unwinding of supercoiled DNA induced by the binding of ethidium bromide (EB) and proflavine (PF) at different ratios r (drug added/DNA base). In the case of either EB or PF bound to linear calf thymus DNA, the reduced linear dichroism signals LD/A (LD: linear dichroism; A: absorbance, both measured at the same wavelength), determined at 258, and 520 or 462 nm (corresponding to contributions predominantly from the partially oriented DNA bases, intercalated EB, or PF, respectively) are nearly independent of drug concentration. In the case of supercoiled DNA, the magnitude of LD/A at 258 nm first increases to a maximum value near r = 0.04-0.05, and then decreases as r is increased further, mimicking the behavior of the sedimentation coefficients, viscosities, and gel electrophoresis patterns measured by other workers at similar values of r. However, LD/A at 520 nm, which is due to DNA-bound EB molecules, is constant within the range of r values of 0.02-0.06 in which the magnitude of LD/A determined at 258 nm due to the DNA bases exhibits a pronounced maximum. In contrast, in the case of PF, the magnitudes of LD/A determined at 258 or 462 nm are characterized by similar dependencies on r, both exhibiting pronounced maxima at r = 0.05; this parallel behavior is expected according to a simple intercalation model in which the DNA bases and drug molecules are stacked on top of one another, and in which both are oriented to similar extents in the flow gradient. The unexpected differences in the dependencies of (LD/A)258 and (LD/A)520 on r in the case of EB bound to supercoiled DNA, are attributed to differences in the net overall alignment of the EB molecules and DNA bases in the flow gradient. The magnitude of the LD signal at 258 nm reflects the overall degree of orientation of the supercoiled DNA molecules that, in turn, depends on their hydrodynamic shapes and sizes; the LD signals characterizing the bound EB molecules may reflect this orientation also, as well as the partial alignment of individual DNA segments containing bound EB molecules.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号