首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
2.
3.
4.
The expression of three different actin genes in the sea urchin, Strongylocentrotus purpuratus, was monitored in embryos and adult tissues by using untranslated mRNA sequences as specific hybridization probes. Three distinct patterns of expression were found: muscle specific, embryo specific, and constitutive (i.e., present in all tissues examined). The actin genes encoding the muscle-specific and constitutively expressed genes were each found to be present once in the haploid genome. The embryo-specific probe could derive from either a single gene or a small subset of actin genes. These data demonstrate that at least three members of the sea urchin actin gene family are expressed in distinct ways and thus are probably associated with different regulatory programs of gene expression necessary for development of this metazoan.  相似文献   

5.
6.
7.
8.
9.
The sea urchin embryo is a classical model system for studying the role of the cytoskeleton in such events as fertilization, mitosis, cleavage, cell migration and gastrulation. We have conducted an analysis of gene models derived from the Strongylocentrotus purpuratus genome assembly and have gathered strong evidence for the existence of multiple gene families encoding cytoskeletal proteins and their regulators in sea urchin. While many cytoskeletal genes have been cloned from sea urchin with sequences already existing in public databases, genome analysis reveals a significantly higher degree of diversity within certain gene families. Furthermore, genes are described corresponding to homologs of cytoskeletal proteins not previously documented in sea urchins. To illustrate the varying degree of sequence diversity that exists within cytoskeletal gene families, we conducted an analysis of genes encoding actins, specific actin-binding proteins, myosins, tubulins, kinesins, dyneins, specific microtubule-associated proteins, and intermediate filaments. We conducted ontological analysis of select genes to better understand the relatedness of urchin cytoskeletal genes to those of other deuterostomes. We analyzed developmental expression (EST) data to confirm the existence of select gene models and to understand their differential expression during various stages of early development.  相似文献   

10.
11.
Sea urchin eggs and early cleavage stage embryos provide an example of regulated gene expression at the level of translation. The availability of the sea urchin genome offers the opportunity to investigate the "translational control" toolkit of this model system. The annotation of the genome reveals that most of the factors implicated in translational control are encoded by nonredundant genes in echinoderm, an advantage for future functional studies. In this paper, we focus on translation factors that have been shown or suggested to play crucial role in cell cycle and development of sea urchin embryos. Addressing the cap-binding translational control, three closely related eIF4E genes (class I, II, III) are present, whereas its repressor 4E-BP and its activator eIF4G are both encoded by one gene. Analysis of the class III eIF4E proteins in various phyla shows an echinoderm-specific amino acid substitution. Furthermore, an interaction site between eIF4G and poly(A)-binding protein is uncovered in the sea urchin eIF4G proteins and is conserved in metazoan evolution. In silico screening of the sea urchin genome has uncovered potential new regulators of eIF4E sharing the common eIF4E recognition motif. Taking together, these data provide new insights regarding the strong requirement of cap-dependent translation following fertilization. The genome analysis gives insights on the complexity of eEF1B structure and motifs of functional relevance, involved in the translational control of gene expression at the level of elongation. Finally, because deregulation of translation process can lead to diseases and tumor formation in humans, the sea urchin orthologs of human genes implicated in human diseases and signaling pathways regulating translation were also discussed.  相似文献   

12.
13.
The predicted gene models derived from the sea urchin genome were compared to the gene catalogs derived from other completed genomes. The models were categorized by their best match to conserved protein domains. Identification of potential orthologs and assignment of sea urchin gene models to groups of homologous genes was accomplished by BLAST alignment and through the use of a clustering algorithm. For the first time, an overview of the sea urchin genetic toolkit emerges and by extension a more precise view of the features shared among the gene catalogs that characterize the super-clades of animals: metazoans, bilaterians, chordate and non-chordate deuterostomes, ecdysozoan and lophotrochozoan protostomes. About one third of the 40 most prevalent domains in the sea urchin gene models are not as abundant in the other genomes and thus constitute expansions that are specific at least to sea urchins if not to all echinoderms. A number of homologous groups of genes previously restricted to vertebrates have sea urchin representatives thus expanding the deuterostome complement. Obversely, the absence of representatives in the sea urchin confirms a number of chordate specific inventions. The specific complement of genes in the sea urchin genome results largely from minor expansions and contractions of existing families already found in the common metazoan "toolkit" of genes. However, several striking expansions shed light on how the sea urchin lives and develops.  相似文献   

14.
The only eukaryotic mRNAs that are not polyadenylated are the replication-dependent histone mRNAs in metazoans. The sea urchin genome contains two sets of histone genes that encode non-polyadenylated mRNAs. One of these sets is a tandemly repeated gene cluster with a 5.6-kb repeat unit containing one copy of each of the five alpha-histone genes and is present as a single large cluster which spans over 1 Mb. There is a second set of genes, consisting of 39 genes, containing two histone H1 genes, 34 genes encoding core histone proteins (H2a, H2b, H3 and H4) and three genes expressed only in the testis. Unlike vertebrates where these genes are clustered, the sea urchin late histone genes, expressed in embryos, larvae and adults, are dispersed throughout the genome. There are also genes encoding polyadenylated histone mRNAs, which encode histone variants, including all variants found in other metazoans, as well as a unique set of five cleavage stage histone proteins expressed in oocytes. The cleavage stage histone H1 is the orthologue of an oocyte-specific histone H1 protein found in vertebrates.  相似文献   

15.
16.
The emphasis on the sequencing of genomes seems to make this task an end in itself. However, genome sequences and the genes that are predicted from them are really an opportunity to examine the biological function of the organism constructed by that genome. This point is illustrated here by examples in which the newly annotated gene complement reveals surprises about the way Strongylocentrotus purpuratus, the purple sea urchin, goes about its business. The three topics considered here are the nature of the innate immune system; the unexpected complexity of sensory function implied by genes encoding sensory proteins; and the remarkable intricacy of the regulatory gene complement in embryogenesis.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号