首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental measurements in conjunction with theoretical predictions were used to determine the extent of load supported by the fluid phase of cartilage at the articular surface. The u-p finite element model was used to simulate the loading of six separate porcine knee joints and to predict surface deformations of the cartilage layer on the lateral femoral condyle. Representative geometry for the condyle, contact pressures, and intrinsic material properties of the cartilage layer were supplied from experimental measures (see Part I). The u-p finite element predictions for surface deformations of the cartilage layer were obtained for several load partitioning states between the solid and fluid phases of cartilage at the articular surface. These were then compared to actual surface deformations obtained experimentally. It appeared from the comparison that approximately 75 percent of the applied load was borne by the fluid phase at the articular surface under this loading regime. This was qualitatively in agreement with the hypothesis that an applied load to articular joints is partitioned at the surface to the two phases according to the surface area ratios of the solid and fluid phases. It appeared that the solid phase was shielded from the total applied stress on the articular surface by the fluid and could be a reason for the excellent durability of the tissue under the demanding conditions in a diarthrodial joint.  相似文献   

2.
We have earlier developed a handheld ultrasound indentation instrument for the diagnosis of articular cartilage degeneration. In ultrasound indentation, cartilage is compressed with the ultrasound transducer. Tissue thickness and deformation are calculated from the A-mode ultrasound signal and the stress applied is registered with the strain gauges. In this study, the applicability of the ultrasound indentation instrument to quantify site-dependent variation in the mechano-acoustic properties of bovine knee cartilage was investigated. Osteochondral blocks (n=6 per site) were prepared from the femoral medial condyle (FMC), the lateral facet of the patello-femoral groove (LPG) and the medial tibial plateau (MTP). Cartilage stiffness (dynamic modulus, E(dyn)), as obtained with the ultrasound indentation instrument in situ, correlated highly linearly (r=0.913, p<0.01) with the values obtained using the reference material-testing device in vitro. Reproducibility (standardized coefficient of variation) of the ultrasound indentation measurements was 5.2%, 1.7% and 3.1% for E(dyn), ultrasound reflection coefficient of articular surface (R) and thickness, respectively. E(dyn) and R were site dependent (p<0.05, Kruskall-Wallis H test). E(dyn) was significantly higher (p<0.05, Kruskall-Wallis Post Hoc test) in LPG (mean+/-SD: 10.1+/-3.1MPa) than in MTP (2.9+/-1.4MPa). In FMC, E(dyn) was 4.6+/-1.3MPa. R was significantly (p<0.05) lower at MTP (2.0+/-0.7%) than at other sites (FMC: 4.2+/-0.9%; LPG: 4.4+/-0.8%). Cartilage glycosaminoglycan concentration, as quantified with the digital densitometry, correlated positively with E(dyn) (r=0.678, p<0.01) and especially with the equilibrium Young's modulus (reference device, r=0.874, p<0.01) but it was not associated with R (r=0.294, p=0.24). We conclude that manual measurements are reproducible and the instrument may be used for detection of cartilage quality in situ. Especially, combined measurement of thickness, E(dyn) and R provides valuable diagnostic information on cartilage status.  相似文献   

3.
Fluid transport and mechanical properties of articular cartilage: a review   总被引:17,自引:0,他引:17  
This review is aimed at unifying our understanding of cartilage viscoelastic properties in compression, in particular the role of compression-dependent permeability in controlling interstitial fluid flow and its contribution to the observed viscoelastic effects. During the previous decade, it was shown that compression causes the permeability of cartilage to drop in a functional manner described by k = ko exp (epsilon M) where ko and M were defined as intrinsic permeability parameters and epsilon is the dilatation of the solid matrix (epsilon = tr delta u). Since permeability is inversely related to the diffusive drag coefficient of relative fluid motion with respect to the porous solid matrix, the measured load-deformation response of the tissue must therefore also depend on the non-linearly permeable nature of the tissue. We have summarized in this review our understanding of this non-linear phenomenon. This understanding of these flow-dependent viscoelastic effects are put into the historical perspective of a comprehensive literature review of earlier attempts to model the compressive viscoelastic properties of articular cartilage.  相似文献   

4.
The purpose of this study was to explore the triphasic mechanical properties of osteoarthritic cartilage with different pathological grades. First, samples of cartilage from rabbits with different stages of osteoarthritis (OA) were graded. Following this, the cartilage was strained by a swelling experiment, and changes were measured using a high-frequency ultrasound system. The result, together with fixed charge density and water volume fraction of cartilage samples, was used to estimate the uniaxial modulus of the cartilage tissue, based on a triphasic model. For the control cartilage samples, the uniaxial elastic modulus on the cartilage surface was lower than those in the middle and deep layers. With an increase in the OA grade, the uniaxial elastic modulus of the surface, middle and deep layers decreased. A significant difference was found in the surface elastic modulus of different OA grades (P<0.01), while no significant differences were identified for OA cartilages of Grades 1 and 2 in the middle and deep layers (P<0.01). Compared with Grades 1 and 2, there was a significant reduction in the elastic modulus in the middle and deep layers of Grade 3 OA cartilage (P<0.05). Overall, this study may provide a new quantitative method to evaluate the severity of OA using the mechanical properties of cartilage tissue.  相似文献   

5.
6.
7.
8.
Several investigators have used pulse-echo ultrasonics to measure the thickness of articular cartilage in situ. The underlying assumption in all measurements was that the second reflection used in thickness calculations was from the calcified-cartilage/cartilage boundary (tidemark). To investigate this assumption, the thickness of 24 cartilage plugs excised from a human femoral head was measured both ultrasonically and optically. Measurements established that the second reflection was from the tidemark and validated the ultrasonic technique as a method of mapping the thickness distribution of articular cartilage in synovial joints in situ.  相似文献   

9.
The objective of this study was to investigate the effects of cryopreservation on the components of articular cartilage (AC) matrix by utilizing magnetic resonance imaging (MRI) and biochemical assessments. Porcine AC (10mm osteochondral dowels) was collected into four groups - (1) phosphate buffered saline (PBS) control, (2) PBS snap frozen in liquid nitrogen, (3) slow-cooled in dimethyl sulfoxide (DMSO), and (4) slow cooled in PBS (in absence of DMSO). MRI results demonstrated three distinct zones in the cartilage. After exposure to ice formation during cryopreservation procedures, alterations in MRI determined matrix fixed charged density and magnetization transfer rate were noted. In addition, biochemical assays demonstrated significant alterations in chondroitin sulfate and hydroxyproline content over time without differences in hydration or DNA content. In conclusion, MRI was able to detect some changes in the intact cartilage matrix structure consistent with biochemical assessments after ice formation during cryopreservation of intact porcine AC. Furthermore, biochemical assessments supported some of these findings and changed significantly after incubating the cartilage matrix for 36-72 h in PBS in terms of chondroitin sulfate and hydroxyproline content.  相似文献   

10.
An analytical stereophotogrammetry (SPG) technique has been developed based upon some of the pioneering work of Selvik [Ph.D. thesis, University of Lund, Sweden (1974)] and Huiskes and coworkers [J. Biomechanics 18, 559-570 (1985)], and represents a fundamental step in the construction of biomechanical models of diarthrodial joints. Using this technique, the precise three-dimensional topography of the cartilage surfaces of various diarthrodial joints has been obtained. The system presented in this paper delivers an accuracy of 90 microns in the least favorable conditions with 95% coverage using the same calibration method as Huiskes et al. (1985). In addition, a method has been developed, using SPG, to quantitatively map the cartilage thickness over the entire articular surface of a joint with a precision of 134 microns (95% coverage). In the present study, our SPG system has been used to quantify the topography, including surface area, of the articular surfaces of the patella, distal femur, tibial plateau, and menisci of the human knee. Furthermore, examples of cartilage thickness maps and corresponding thickness data including coefficient of variation, minimum, maximum, and mean cartilage thickness are also provided for the cartilage surfaces of the knee. These maps illustrate significant variations over the joint surfaces which are important in the determination of the stresses and strains within the cartilage during diarthrodial joint function. In addition, these cartilage surface topographies and thickness data are essential for the development of anatomically accurate finite element models of diarthrodial joints.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Compression tests have often been performed to assess the biomechanical properties of full-thickness articular cartilage. We tested whether the apparent homogeneous strain-dependent properties, deduced from such tests, reflect both strain- and depth-dependent material properties. Full-thickness bovine articular cartilage was tested by oscillatory confined compression superimposed on a static offset up to 45%. and the data fit to estimate modulus, permeability, and electrokinetic coefficient assuming homogeneity. Additional tests on partial-thickness cartilage were then performed to assess depth- and strain-dependent properties in an inhomogeneous model, assuming three discrete layers (i = 1 starting from the articular surface, to i = 3 up to the subchondral bone). Estimates of the zero-strain equilibrium confined compression modulus (H(A0)), the zero-strain permeability (kp0) and deformation dependence constant (M), and the deformation-dependent electrokinetic coefficient (ke) differed among individual layers of cartilage and full-thickness cartilage. HiA0 increased from layer 1 to 3 (0.27 to 0.71 MPa), and bracketed the apparent homogeneous value (0.47 MPa). ki(p0) decreased from layer 1 to 3 (4.6 x 10(-15) to 0.50 x 10(-15) m2/Pa s) and was less than the homogeneous value (7.3 x 10(-15) m2/Pa s), while Mi increased from layer 1 to 3 (5.5 to 7.4) and became similar to the homogeneous value (8.4). The amplitude of ki(e) increased markedly with compressive strain, as did the homogeneous value: at low strain, it was lowest near the articular surface and increased to a peak in the middle-deep region. These results help to interpret the biomechanical assessment of full-thickness articular cartilage.  相似文献   

12.
The knee meniscus and hip labrum appear to be important for joint health, but the mechanisms by which these structures perform their functions are not fully understood. The fluid phase of articular cartilage provides compressive stiffness and aids in maintaining a low friction articulation. Healthy fibrocartilage, the tissue of meniscus and labrum, has a lower fluid permeability than articular cartilage. In this study we hypothesized that an important function of the knee meniscus and the hip labrum is to augment fluid retention in the articular cartilage of a mechanically loaded joint. Axisymmetric hyperporoelastic finite element models were analyzed for an idealized knee and an idealized hip. The results indicate that the meniscus maintained fluid pressure and inhibited fluid exudation in knee articular cartilage. Similar, but smaller, effects were seen with the labrum in the hip. Increasing the fibrocartilage permeability relative to that of articular cartilage gave a consolidation rate and loss of fluid load support comparable to that predicted by meniscectomy or labrectomy. The reduced articular cartilage fluid pressure that was calculated for the joint periphery is consistent with patterns of endochondral ossification and osteophyte formation in knee and hip osteoarthritis. High articular central strains and loss of fluid load support after meniscectomy could lead to fibrillation. An intact low-permeability fibrocartilage is important for limiting fluid exudation from articular cartilage in the hip and knee. This may be an important aspect of the role of fibrocartilage in protecting these joints from osteoarthritis.  相似文献   

13.
Osteoarthritis (OA) is a joint disease characterized by cartilage degeneration, a thickening of subchondral bone, and formation of marginal osteophytes. Previous mechanical characterization of cartilage in our laboratory suggests that energy storage and dissipation is reduced in osteoarthritis as the extent of fibrillation and fissure formation increases. It is not clear whether the loss of energy storage and dissipation characteristics is a result of biochemical and/or biophysical changes that occur to hyaline cartilage in joints. The purpose of this study is to present data, on the strain rate dependence of the elastic and viscous behaviors of cartilage, in order to further characterize changes that occur in the mechanical properties that are associated with OA. We have previously hypothesized that the changes seen in the mechanical properties of cartilage may be due to altered mechanochemical transduction by chondrocytes. Results of incremental tensile stress-strain tests at strain rates between 100%/min and 10,000%/min conducted on OA cartilage indicate that the slope of the elastic stress-strain curve increases with increasing strain rate, unlike the reported behavior of skin and self-assembled collagen fibers. It is suggested that the strain-rate dependence of the elastic stress-strain curve is due to the presence of large quantities of proteoglycans (PGs), which protect articular cartilage by increasing the apparent stiffness. The increased apparent stiffness of articular cartilage at high strain rates may limit the stresses borne and prolong the onset of OA. It is further hypothesized that increased compressive loading of chondrocytes in the intermediate zone of articular cartilage occurs as a result of normal wear to the superficial zone or from excessive impact loading. Once the superficial zone of articular cartilage is worn away, the tension is decreased throughout all cartilage zones leading to increased chondrocyte compressive loading and up-regulation of mechanochemical transduction processes that elaborate catabolic enzymes.  相似文献   

14.
The anuran epiphyseal cartilage shows a lateral expansion that covers the external surface of the bone, besides other features that distinguish it from the corresponding avian and mammalian structures. The fibrous structure that attaches the lateral cartilage to the bone was characterized in this work. It was designated osteochondral ligament (OCL) and presented two main areas. There was an inner area that was closer to the periosteal bone and contained a layer of osteoblasts and elongated cells aligned to and interspersed with thin collagen fibers. The thin processes of the cells in this area showed strong alkaline phosphatase activity. The outer area, which was closer to the cartilage, was rich in blood vessels and contained a few cells amongst thick collagen fibers. TRITC-phaloidin staining showed the cells of the inner area to be rich in F-actin, and were observed to form a net around the cell nucleus and to fill the cell processes which extended between the collagen fibers. Cells of the outer area were poor in actin cytoskeleton, while those associated with the blood vessels showed intense staining. Tubulin-staining was weak, regardless of the OCL region. The main fibers of the extracellular matrix in the OCL extended obliquely upwards from the cartilage to the bone. The collagen fibers inserted into the bone matrix as Sharpey's fibers and became progressively thicker as they made their way through the outer area to the cartilage. Immunocytochemistry showed the presence of type I and type III collagen. Microfibrils were found around the cells and amongst the collagen fibrils. These microfibrils were composed of either type VI collagen or fibrilin, as shown by immunocytochemistry. The results presented in this paper show that the osteochondral ligament of Rana catesbeiana is a complex and specialized fibrous attachment which guarantees a strong and flexible anchorage of the lateral articular cartilage to the periosteal bone shaft, besides playing a role in bone growth.  相似文献   

15.
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens IX and XI in this heteropolymer are not yet fully defined but, evidently, they are critically important since mutations in COLIX and COLXI genes result in chondrodysplasia phenotypes that feature precocious osteoarthritis. Collagens XII and XIV are thought also to be bound to fibril surfaces but not covalently attached. Collagen VI polymerizes into its own type of filamentous network that has multiple adhesion domains for cells and other matrix components. Collagen X is normally restricted to the thin layer of calcified cartilage that interfaces articular cartilage with bone.  相似文献   

16.
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens IX and XI in this heteropolymer are not yet fully defined but, evidently, they are critically important since mutations in COLIX and COLXI genes result in chondrodysplasia phenotypes that feature precocious osteoarthritis. Collagens XII and XIV are thought also to be bound to fibril surfaces but not covalently attached. Collagen VI polymerizes into its own type of filamentous network that has multiple adhesion domains for cells and other matrix components. Collagen X is normally restricted to the thin layer of calcified cartilage that interfaces articular cartilage with bone.  相似文献   

17.
X-ray diffraction measurements on native and proteoglycan-free articular cartilage have been made in order to test the dependence of the lateral packing of the collagen molecules on the osmotic pressure gradient, either naturally occurring or externally applied, between the intra- and extrafibrillar compartments. From the information on collagen packing we have been able to calculate, albeit with several assumptions, the amount of intrafibrillar water as a function of pressure. In parallel with the above measurements, we have quantitated, using serum albumin partitioning, the intrafibrillar water in proteoglycan-free cartilage, as a function of mechanically applied pressure. The results of both sets of experiments lead to the conclusion that the molecular packing density, and hence the intrafibrillar water content, are a function of the osmotic pressure difference between the extrafibrillar and intrafibrillar spaces or the equivalent mechanically applied pressure. The determination of intrafibrillar water has enabled us to calculate, from measured values of fixed charge density, the internal osmotic pressure of cartilage specimens, both in compressed and uncompressed states.  相似文献   

18.
The degeneration of articular cartilage is the main cause of osteoarthritis (OA), a common cause of disability among elderly patients. The aim of this study is to understand the correlation between intrinsic fluorescence of articular cartilage and its biomechanical properties in patients with osteoarthritis. Cylindrical samples of articular cartilage 6 mm in diameter were extracted via biopsy punch from the femoral condyles of 6 patients with advanced OA undergoing knee replacement surgery. The mechanical stiffness and fluorescence of each cartilage plug were measured by indentation test and spectrofluorometry. Maps of fluorescence intensity, at excitation/emission wavelengths of 240–520/290‐530 nm, were used to identify wavelengths of interest. The mechanical stiffness and fluorescence intensity were correlated using a Spearman analysis. The excitation/emission maps demonstrated three fluorescence peaks at excitation/emission wavelength pairs 330/390, 350/430 and 370/460 nm. The best correlation between the fluorescence intensity and stiffness of cartilage was obtained for the 330 nm excitation band [R=0.82, p=0.04]. The intrinsic fluorescence of articular cartilage may have application in optically assessing the state of cartilage in patients with osteoarthritis.

  相似文献   


19.
AIM: To study the effect of a single impact on the structure and mechanical properties of cartilage. MATERIALS AND METHOD: Osteochondral plugs harvested from bovine femora were subjected each to a single impact using an in-house designed drop-tower. Impact masses of different values were released from different drop heights in selected combinations to apply stresses at strain rates and impact energies within specific ranges. Changes in the storage and loss moduli were estimated from cyclic compressive loading test undertaken before and after impact. The conditions of these tests were set to those occurring during walking and running. The extent of the damage on cartilage surface and depth was assessed using optical and confocal microscopy. RESULTS: The storage modulus varied slightly at level walking and running after performing impact tests up to the impact energy of 0.736 J. However, the decrease in the storage modulus was considerable at the impact energy of 1.962 J for test conditions representing both walking and running. This impact energy resulted in strain rate of 1500 s(-1), stress of 25 MPa and energy absorbed per unit volume of 12.79 mJ/mm(3). After impact the loss modulus increased over the loading cycles at all energies. Severe fissures were observed across the cartilage surface and through its thickness at levels of impact energy equal or greater than 1.472 J. CONCLUSIONS: This study identified thresholds for the strain rate, impact stress and impact energy, which caused permanent changes in the mechanical properties and damage to structure of cartilage.  相似文献   

20.
Osteoarthritis is characterized by many factors, including proteoglycan loss, decreased collagen stiffness, and increased cartilage hydration. Chondrocyte swelling also occurs, and correlates with the degree of osteoarthritis, however, the cause is unknown but might be related to alterations to their passive osmotic properties. We have used two-photon confocal laser scanning microscopy to measure the passive osmotic characteristics of in situ chondrocytes within relatively non-degenerate and degenerate human tibial plateau cartilage, and in chondrocytes isolated from relatively non-degenerate cartilage. Explants with bone attached were taken from a total of 42 patients undergoing arthroplasty and graded macroscopically and microscopically into two groups, grade 0 + 1 and grade 2 + 3. There was a significant increase in cartilage hydration between these two groups (P < 0.05), however, there was no change when medium osmolarity was varied over approximately 0-480 mOsm. The passive osmotic behavior of in situ chondrocytes (at 4 degrees C) was identical over a range of culture medium osmolarities ( approximately 0-515 mOsm), however, the maximum swelling of cells within degenerate cartilage and isolated chondrocytes was greater compared to those in non-degenerate cartilage. The swelling in the majority of in situ chondrocytes was accounted for by the reduced interstitial osmolarity occurring with cartilage degeneration. There was, however, a small population of in situ chondrocytes whose volume was in excess (>/=2,500 microm(3)) of that predicted from the decreased interstitial osmotic pressure. These results show that for the majority of cells studied, the differences in passive chondrocyte volume between relatively non-degenerate, degenerate, and isolated cells were entirely accounted for by changes to the extracellular osmolarity (180-515 mOsm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号