首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformational properties of bradykinin in five molar excess sodium dodecyl sulfate (SDS) micelles have been examined by two-dimensional nuclear magnetic resonance (NMR) techniques at 500 MHz. Detailed structural information for bradykinin in SDS was obtained from quantitative 2-D nuclear Overhauser enhancement (n.O.e.) analyses, distance geometry, and restrained molecular mechanics and dynamics calculations. The conformation of bradykinin in SDS micelles, as determined by these methods, is characterized by a beta-turn-like structure at residues 6-9. A detailed comparison of the structures derived from distance geometry and restrained molecular mechanics and dynamics is also presented.  相似文献   

2.
The solution conformation of the cardiac stimulatory sea anemone polypeptide anthopleurin-A has been characterised using distance geometry and restrained molecular dynamics calculations. A set of 253 approximate interproton distance restraints and 14 peptide backbone torsion angle restraints derived from two-dimensional 1H-NMR spectra at 500 MHz were used as input for these calculations. 13 structures generated by either metric matrix or variable target function distance geometry calculations were refined using energy minimisation and restrained molecular dynamics. The resulting structures contain a region of twisted antiparellel beta-sheet to which two separate regions of unordered chain are linked by three disulphide bonds. Two loops, one including Pro-41 and the other encompassing residues 10-18, are poorly defined by the NOE data.  相似文献   

3.
The tripeptide sequence arginine-glycine-aspartic acid (RGD) has been shown to be the key recognition segment in numerous cell adhesion proteins. The solution conformation and dynamics in DMSO-d6 of the cyclic pentapeptides, [formula: see text], a potent fibrinogen receptor antagonist, and [formula: see text], a weak fibrinogen receptor antagonist, have been characterized by nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. 1H-1H distance constraints derived from two-dimensional NOE spectroscopy and torsional angle constraints obtained from 3JNH-H alpha coupling constants, combined with computer-assisted modeling using conformational searching algorithms and energy minimization have allowed several low energy conformations of the peptides to be determined. Low temperature studies in combination with molecular dynamics simulations suggest that each peptide does not exist in a single, well-defined conformation, but as an equilibrating mixture of conformers in fast exchange on the NMR timescale. The experimental results can be fit by considering pairs of low energy conformers. Despite this inherent flexibility, distinct conformational preferences were found which may be related to the biological activity of the peptides.  相似文献   

4.
S Edmondson  N Khan  J Shriver  J Zdunek  A Gr?slund 《Biochemistry》1991,30(47):11271-11279
A model of the structure of the 22 amino acid residue gastrointestinal peptide hormone motilin in 30% hexafluoro-2-propanol has been obtained by using distance constraints obtained from two-dimensional nuclear Overhauser enhancements. A set of initial structures have been generated by using the distance geometry program DIANA, and 10 of these structures have been refined by using restrained molecular dynamics (AMBER). The resulting structures are virtually indistinguishable in terms of constraint violations and energies and display less than 0.5-A root mean square deviations (RMSD) of the backbone atom positions from Tyr7 to Lys20. A comparison of back-calculated and experimental NOE intensities indicates that RMSD's are not the best indicators of the goodness of fit or of the precision with which the structure is defined. The structure was further refined by fitting the experimental NOE data using an iterative full relaxation matrix analysis. The mean error between the observed and calculated backbone NOE intensities for the final refined structure was 0.23 for the full length of the molecule, 0.18 for the region from Glu9 to Lys20, and 0.29 for the region from Phe1 to Gly8. R factors for the same regions were 0.27, 0.19, and 0.43, respectively. All of the NOE-determined structures consistently display an alpha-helix which extends from Glu9 to Lys20. Considerable lack of definition of structure exists at the amino and carboxyl ends of the molecule and also in the vicinity of Thr6-Tyr7-Gly8. A tendency to form a wide turn appears to exist over the sequence Pro3-Ile4-Phe5-Thr6, but the structure in this region is not well defined by the NOE data.  相似文献   

5.
The conformational and dynamic properties of a cyclic peptide designed to inhibit human renin have been examined by using NMR and molecular modeling. From a quantitative analysis of a series of two-dimensional NOE data sets, proton-proton distances were calculated. Several different methods were explored and compared to incorporate these distance constraints as well as those derived from vicinal spin-spin coupling constants into computer-generated three-dimensional structures. These methods included interactive manual manipulation of the structures to fit the NMR-determined distance constraints, distance geometry, constrained energy minimizations, and constrained molecular dynamics. The advantages and disadvantages of the methods are discussed. In addition, to gain insight into the conformations accessible to the cyclic peptide and the relative flexibility of the different parts of the molecule, molecular dynamics calculations were performed at three different temperatures. Average interproton distances and dihedral angles were obtained from the structures generated in the dynamics trajectories and compared to those obtained from the NMR experiments. Despite the four methylene groups and ether linkage contained in the cyclic portion of the peptide, our NMR results indicated a preferred conformation for the macrocyclic ring of the peptide and supported the presence of a cis Phe-Ala peptide bond. In contrast, both the molecular dynamics and NMR data indicated a considerable amount of flexibility for the remaining noncyclic portion of the molecule. These results are used to propose an explanation for the cyclic peptide's inability to inhibit human renin.  相似文献   

6.
The conformation of the GM3 ganglioside, Neu5Ac alpha 2-3Gal beta 1-4Glc beta 1-1 Cer, and its analogs containing the Neu5Gc or Neu4Ac5Gc residues (Gc = glycolyl, CH2OHCO) was investigated in Me2SO-d6 solution with the aid of a distance-mapping procedure based on rotating-frame NOE contacts, with hydroxyl protons being used as long-range sensors defining the distance constraints. A pronounced flexibility found for both the Neu-Gal and Gal-Glc linkages was confirmed by 1000-ps molecular dynamics simulations. Similar results, although based on a smaller number of NOE constraints, were obtained for GM3 gangliosides anchored in mixed D2O/dodecylphosphocholine-d38 micelles and for the Neu5Ac-, Neu5Gc-, and Neu5,9Ac2-sialyllactoses dissolved in D2O. No noteworthy differences in conformational behavior of the glycan chains of the three gangliosides or sialyllactoses were observed in either of the media.  相似文献   

7.
A cyclic peptide analogue of somatostatin, including the o-aminomethylphenylacetic acid spacer, was studied by the combined use of two-dimensional nmr spectroscopy, distance geometry, and restrained molecular dynamics. Analysis of distances determined from nuclear Overhauser effect (NOE) buildup rates revealed that these were inconsistent with a unique backbone conformation near the spacer. Assuming that the conformational heterogeneity is localized to the spacer, the NOE distances measured for the remaining part of the molecule were used to generate a large number of structures with the distance geometry algorithm, which were then refined by restrained energy minimization. Four classes of structures emerged, which together account for all observed NOEs. A representative structure of each class was further refined with the restrained molecular dynamics technique, and shown to be stable on a 20-ps time scale. The flexibility of the spacer was examined by simulating interconversions induced by an appropriate restraining potential. As a result, the explanation for the lack of somatostatin activity of the analogue studied was reconsidered.  相似文献   

8.
Song J  Lee MS  Carlberg I  Vener AV  Markley JL 《Biochemistry》2006,45(51):15633-15643
Thylakoid soluble phosphoprotein of 9 kDa (TSP9) has been identified as a plant-specific protein in the photosynthetic thylakoid membrane (Carlberg et al. (2003) Proc. Natl. Acad. Sci. 100, 757-762). Nonphosphorylated TSP9 is associated with the membrane, whereas, after light-induced phosphorylation, a fraction of the phosphorylated TSP9 is released into the aqueous stroma. By NMR spectroscopy, we have determined the structural features of nonphosphorylated TSP9 both in aqueous solution and in membrane mimetic micelles. The results show that both wild type nonphosphorylated TSP9 and a triple-mutant (T46E + T53E + T60E) mimic of the triphosphorylated form of TSP9 are disordered under aqueous conditions, but adopt an ordered conformation in the presence of detergent micelles. The micelle-induced structural features, which are similar in micelles either of SDS or dodecylphosphocholine (DPC), consist of an N-terminal alpha-helix, which may represent the primary site of interaction between TSP9 and binding partners, and a less structured helical turn near the C-terminus. These structured elements contain mainly hydrophobic residues. NMR relaxation data for nonphosphorylated TSP9 in SDS micelles indicated that the molecule is highly flexible with the highest order in the N-terminal alpha-helix. Intermolecular NOE signals, as well as spin probe-induced broadening of NMR signals, demonstrated that the SDS micelles contact both the structured and a portion of the unstructured regions of TSP9, in particular, those containing the three phosphorylation sites (T46, T53, and T60). This interaction may explain the selective dissociation of phosphorylated TSP9 from the membrane. Our study presents a structural model for the role played by the structured and unstructured regions of TSP9 in its membrane association and biological function.  相似文献   

9.
Summary Application of the weak-coupling scheme to restrain the configurations of a molecular system to a set of NOE distance restraints is investigated using two test systems: (i) a 15-atom chain molecule with one distance restraint; and (ii) a protein molecule with hundreds of NOE distance restraints. Atom-atom distance restraining by the weak-coupling technique is possible, but this method does not produce as good results as the penalty function method normally used to maintain NOE distance restraints.Abbreviations NOE nuclear Overhauser effect - MD molecular dynamics - PDB protein data bank  相似文献   

10.
The 600-MHz 1H NMR spectrum of the des-Val-Val mutant of human transforming growth factor alpha (TGF-alpha) was reassigned at pH = 6.3. The conformation space of des-Val-Val TGF-alpha was explored by distance geometry embedding followed by restrained molecular dynamics refinement using NOE distance constraints and some torsion angle constraints derived from J-couplings. Over 80 long-range NOE constraints were found by completely assigning all resolved cross-peaks in the NOESY spectra. Low NOE constraint violations were observed in structures obtained with the following three different refinement procedures: interactive annealing in DSPACE, AMBER 3.0 restrained molecular dynamics, and dynamic simulated annealing in XPLOR. The segment from Phe15 to Asp47 was found to be conformationally well-defined. Back-calculations of NOESY spectra were used to evaluate the quality of the structures. Our calculated structures resemble the ribbon diagram presentations that were recently reported by other groups. Several side-chain conformations appear to be well-defined as does the relative orientation of the C loop to the N-terminal half of the protein.  相似文献   

11.
Y Kim  J H Prestegard 《Proteins》1990,8(4):377-385
Structure determination of small proteins using NMR data is most commonly pursued by combining NOE derived distance constraints with inherent constraints based on chemical bonding. Ideally, one would make use of a variety of experimental observations, not just distance constraints. Here, coupling constant constraints have been added to molecular mechanics and molecular dynamics protocols for structure determination in the form of a psuedoenergy function that is minimized in a search for an optimum molecular conformation. Application is made to refinement of a structure for a 77 amino acid protein involved in fatty acid synthesis, Escherichia coli acyl carrier protein (ACP). 54 3JHN alpha coupling constants, 12 coupling constants for stereospecifically assigned side chain protons, and 450 NOE distance constraints were used to calculate the 3-D structure of ACP. A three-step protocol for a molecular dynamics calculation is described, in analogy to the protocol previously used in molecular mechanics calculations. The structures calculated with the molecular mechanics approach and the molecular dynamics approach using a rigid model for the protein show similar molecular energies and similar agreement with experimental distance and coupling constant constraints. The molecular dynamics approach shows some advantage in overcoming local minimum problems, but only when a two-state averaging model for the protein was used, did molecular energies drop significantly.  相似文献   

12.
The segment 32-47 of the N-terminal extracellular domain of the type A cholecystokinn receptor, CCK(A)-R(32-47), was synthesized and structurally characterized in a membrane mimicking environment by CD, NMR and molecular dynamics calculations. The region of CCK(A)-R(32-47) encompassing residues 39-46 adopted a well-defined secondary structure in the presence of DPC micelles, whereas the conformation of the N-terminal region (segment 32-37) could not be uniquely defined by the NOE derived distance constraints because of local flexibility. The conformation of the binding domain of CCK(A)-R(32-47) was different from that found for the Intact N-terminal receptor tail, CCK(A)-R(1-47). To assess whether CCK(A)-R(32-47) was still able to bind the nonsulfated cholecystokinin C-terminal octapeptide, CCK8, a series of titrations was carried out in SDS and DPC micelles, and the binding interaction was followed by fluorescence spectroscopy. These titrations gave no evidence for complex formation, whereas a high binding affinity was found between CCK(A)-R(1-47) and CCK8. The different affinities for the ligand shown by CCK(A)-R(32-47) and CCK(A)-R(1-47) were paralleled by different interaction modes between the receptor segments and the micelles.The interaction of CCK(A)-R(32-47) with DPC micelles was much weaker than that of CCK(A)-R(1-47), because the former receptor segment lacks proper stabilizing contacts with the micelle surface. In the case of SDS micelles CCK(A)-R(32-47] was found to form non-micellar adducts with the detergent that prevented the onset of a functionally significant Interaction between the receptor segment and the micelle. It is concluded that tertiary structure interactions brought about by the 1-31 segment play a key role in the stabilization of the membrane bound, biologically active conformation of the N-terminal extracellular tail of the CCKA receptor.  相似文献   

13.
The solution conformation of a synthetic snake venom toxin waglerin I, has been determined by using proton nuclear magnetic resonance spectroscopy. By y a combination of various two-dimensional NMR techniques, the 1H-NMR spectrum of waglerin I was completely assigned. A set of 247 interproton distance restraints was derived from nuclear Overhauser enhancement (NOE) measurements. These NOE constraints, in addition to the 2 dihedral angle restraints (from coupling constant measurements) and 7 ω torsion angle restraints for prolines, formed the basis of three-dimensional structure determined by molecular dynamics techniques. The 19 structures that were obtained satisfy the experimental restraints, and display small deviation from idealized covalent geometry. Analysis of converged structures indicates that the toxin has no special secondary structure. In the solution structure of waglerin I, the central ring region is well defined but the N- and C-termini possesses more disorder.  相似文献   

14.
The conformation in solution of porcine brain natriuretic peptide was determined by combined use of NMR spectroscopy and distance geometry. A set of 157 inter-proton-distance constraints was derived from the two-dimensional NOE spectra, and further a set of three hydrogen bond constraints was obtained from analysis of the temperature dependence of labile protons. The five structures with minimal violations were selected after performing distance-geometry calculations starting from 40 random initial conformations. The distance-geometry structures were further refined by the use of restrained energy minimization and restrained molecular dynamics. This structure shows a compact conformation with the carboxy-terminal region, Asn21-Tyr26, folded back to the disulfide-linked loop region, Cys4-Cys20. The characteristics of the conformation determined are as follows: conformations of the three segments interposed by glycine residues, which are Arg7-Ile12, Ser14-Leu18 and Cys20-Arg25, were well defined and the segments Arg7-Ile12 and Cys20-Arg25 are rather close to each other and nearly parallel. The biological significance of these local conformations is discussed on the basis of comparisons with those of atrial natriuretic peptide reported by Kobayashi et al.  相似文献   

15.
Cyclosporin A (CsA), a potent immunosuppressant, is known to bind with high specificity to cyclophilin (CyP), a 17.7 kDa protein with peptidyl-prolyl isomerase activity. In order to investigate the three-dimensional structure of the CsA/CyP complex, we have applied a variety of multidimensional NMR methods in the study of uniformly 13C-labeled CsA bound to cyclophilin. The 1H and 13C NMR signals of cyclosporin A in the bound state have been assigned, and from a quantitative interpretation of the 3D NOE data, the bound conformation of CsA has been determined. Three-dimensional structures of CsA calculated from the NOE data by using a distance geometry/simulated appealing protocol were found to be very different from previously determined crystalline and solution conformations of uncomplexed CsA. In addition, from CsA/CyP NOEs, the portions of CsA that interact with cyclophilin were identified. For the most part, those CsA residues with NOEs to cyclophilin were the same residues important for cyclophilin binding and immunosuppressive activity as determined from structure/activity relationships. The structural information derived in this study together with the known structure/activity relationships for CsA analogues may prove useful in the design of improved immunosuppressants. Moreover, the approach that is described for obtaining the structural information is widely applicable to the study of small molecule/large molecule interactions.  相似文献   

16.
Dynamic averaging effects from internal motions on interproton distances estimated from nuclear Overhauser effects (NOE) are determined by using a molecular dynamics simulation of lysozyme. Generalized order parameters measuring angular averaging and radial averaging parameters are calculated. The product of these two parameters describes the full averaging effects on cross-relaxation. Analysis of 2778 non-methyl NOE interactions from the protein interior and surface indicates that distances estimated by assuming a rigid molecule have less than 10% error for 89% of the NOE interactions. However, analysis of 1854 methyl interactions found that only 68% of the distances estimated from cross-relaxation rates would have less than 10% error. Qualitative evaluation of distances according to strong, medium and weak NOE intensities, when used to define only the upper bound for interproton separation, would misassign less than 1% of the distance constraints because of motional averaging. Internal motions do not obscure the identification of secondary structure, although some instances of significant averaging effects were found for interactions in alpha-helical regions. Interresidue NOEs for amino acids more than three residues apart in the primary sequence are more extensively averaged than intraresidue or short-range interresidue NOEs. Intraresidue interactions exhibit a greater degree of angular averaging than those involving interresidue proton pairs. An internal motion does not equally affect all NOE interactions for a particular proton. Thus, incorporation of averaging parameters in nuclear magnetic resonance structure determination procedures must be made on a proton-pair-wise basis. On the basis of the motional averaging results, particular fixed-distance proton pairs in proteins are suggested for use as distance references. A small percentage of NOE pairs localized to three regions of the protein exhibit extreme averaging effects from internal motions. The regions and types of motions involved are described.  相似文献   

17.
Both the aqueous and the lipid-induced structure of eledoisin, an undecapeptide of mollusk origin, have been studied by two-dimensional proton nuclear magnetic resonance spectroscopy and distance geometry calculations. Unambiguous nuclear magnetic resonance assignments of protons have been made with the aid of correlation spectroscopy experiments and nuclear Overhauser effect spectroscopy experiments. The distance constraints obtained from the nuclear magnetic resonance data have been utilized in a distance geometry algorithm to generate a family of structures, which have been refined using restrained energy minimization and dynamics. These data show that, while in water and dimethyl sulfoxide, eledoisin prefers to be in an extended chain conformation, whereas in the presence of perdeuterated dodecylphosphocholine micelles, a membrane model system, helical conformation is induced in the central core and C-terminal region (K4-M11) of the peptide. N terminus, though less defined, also displays some degree of order and a possible turn structure. The conformation adopted by eledoisin in the presence of dodecylphosphocholine micelles is similar to the structural motif typical of neurokinin-2 selective agonists and with that reported for kassinin in hydrophobic environment.  相似文献   

18.
During the fusion of the influenza virus to the host cell, bending of the HA2 chain of hemagglutinin into a hairpin-shaped structure in a pH-dependent manner facilitates the fusion of the viral envelope and the endosomal membrane. To characterize the structural and dynamical responses of the hinge region of HA2 to pH changes and examine the role of a conserved histidine in this region (the hinge histidine), we have performed an extensive set of molecular dynamics (MD) simulations of 26-residue peptides encompassing the hinge regions of several hemagglutinin subtypes under both neutral and low pH conditions, modeled by the change of the protonation state of the hinge histidine. More than 70 sets of MD simulations (collectively amounting to 25.1 μs) were performed in both implicit and explicit solvents to study the effect of histidine protonation on structural dynamics of the hinge region. In both explicit and implicit solvent simulations, hinge bending was consistently observed upon the protonation of the histidine in all the simulations starting with an initial straight helical conformation, whereas the systems with a neutral histidine retained their primarily straight conformation throughout the simulations. Conversely, the MD simulations starting from an initially bent conformation resulted in the formation of a straight helical structure upon the neutralization of the hinge histidine, whereas the bent structure was maintained when the hinge histidine remained protonated. Finally, mutation of the hinge histidine to alanine abolishes the bending response of the peptide altogether. A molecular mechanism based on the interaction of the hinge histidine with neighboring acidic residues is proposed to be responsible for its role in controlling the conformation of the hinge. We propose that this might present a common mechanism for pH-controlled structural changes in helical structures when histidines act as the pH sensor.  相似文献   

19.
During the fusion of the influenza virus to the host cell, bending of the HA2 chain of hemagglutinin into a hairpin-shaped structure in a pH-dependent manner facilitates the fusion of the viral envelope and the endosomal membrane. To characterize the structural and dynamical responses of the hinge region of HA2 to pH changes and examine the role of a conserved histidine in this region (the hinge histidine), we have performed an extensive set of molecular dynamics (MD) simulations of 26-residue peptides encompassing the hinge regions of several hemagglutinin subtypes under both neutral and low pH conditions, modeled by the change of the protonation state of the hinge histidine. More than 70 sets of MD simulations (collectively amounting to 25.1 μs) were performed in both implicit and explicit solvents to study the effect of histidine protonation on structural dynamics of the hinge region. In both explicit and implicit solvent simulations, hinge bending was consistently observed upon the protonation of the histidine in all the simulations starting with an initial straight helical conformation, whereas the systems with a neutral histidine retained their primarily straight conformation throughout the simulations. Conversely, the MD simulations starting from an initially bent conformation resulted in the formation of a straight helical structure upon the neutralization of the hinge histidine, whereas the bent structure was maintained when the hinge histidine remained protonated. Finally, mutation of the hinge histidine to alanine abolishes the bending response of the peptide altogether. A molecular mechanism based on the interaction of the hinge histidine with neighboring acidic residues is proposed to be responsible for its role in controlling the conformation of the hinge. We propose that this might present a common mechanism for pH-controlled structural changes in helical structures when histidines act as the pH sensor.  相似文献   

20.
Both the aqueous and lipid-induced structure of Kassinin, a dodecapeptide of amphibian origin, has been studied by two-dimensional proton nuclear magnetic resonance (2D 1H-NMR) spectroscopy and distance geometry calculations. Unambiguous NMR assignments of protons have been made with the aid of correlation spectroscopy (DQF-COSY and TOCSY) experiments and nuclear Overhauser effect spectroscopy (NOESY and ROESY) experiments. The distance constraints obtained from the NMR data have been utilized in a distance geometry algorithm to generate a family of structures, which have been refined using restrained energy minimization and dynamics. These data show that, while in water Kassinin prefers to be in an extended chain conformation, in the presence of perdeuterated dodecylphosphocholine (DPC) micelles, a membrane model system, helical conformation is induced in the central core and C-terminal region (K4-M12) of the peptide. N-terminus though less defined also displays some degree of order and a possible turn structure. The conformation adopted by Kassinin in the presence of DPC micelles is consistent with the structural motif typical of neurokinin-1 selective agonists and with that reported for Eledoisin in hydrophobic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号