首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, supercritical fluid carbon dioxide extraction technology was developed to gain the active components from a native plant, Alpinia oxyphylla Miq. We studied the biological effects of A. oxyphylla extracts via multiple assays and demonstrated bio-functions at various concentration ranges. Investigations of A. oxyphylla extracts indicated that anti-oxidative properties in dose-dependant manners on radical scavenging activities, reducing power and metal chelating power. The cultured human normal peripheral blood mononuclear cells (PBMCs) were used to test the properties of the extracts in inflammatory cytokine release, and the data did not induce inflammatory molecule releases from un-stimulated PBMCs. A. oxyphylla extracts were able to induce Th1 cytokine IFN-γ released, but not Th2 cytokine IL-13, showing an enhanced anti-bacterial/viral immune function without possible allergic response mediated by IL-13. The extracts also had in vitro mushroom tyrosinase inhibition and cellular tyrosinase melanin decreasing activities in B16F10 cells. In addition, the cell proliferation assay illustrated anti-growth and anti-migration effects in dose-dependent manners of the extracts on human skin melanoma cells, A375 and A375.S2, indicating that the extracts exerted the anti-cancer properties. To our knowledge, this was the first report presenting these bioactivities on A. oxyphylla extracts including antioxidant, anti-inflammation, de-pigmentation and anti-melanoma  相似文献   

2.
Extraction of squalene from yeast by supercritical carbon dioxide   总被引:2,自引:0,他引:2  
Squalene produced under anaerobic conditions, by a strain of Torulaspora delbrueckii was extracted from the biomass using supercritical carbon dioxide. Minimum use of solvent, lower time of isolation and a higher selectivity of extraction merit use of supercritical fluid extraction (SFE) technique over solvent extraction of squalene, as optimized and reported previously. A maximum squalene yield of 11.12 g g–1 (dry weight) of yeast cells was obtained at a temperature of 60 °C and pressure of 250–255 bar at a constant flow rate of 0.2l min–1 of carbon dioxide. Lyophilization prior to SFE increased the squalene yield to 430.52 g g–1 dry weight of yeast cells, an amount that is far greater than that obtained by (2:1) chloroform–methanol solvent extraction.  相似文献   

3.
The rate of extraction of triacylglycerols with supercritical carbon dioxide can be greatly enhanced by raising the pressure of the fluid to 600 bar, or higher, and its temperature to 60°C, or higher. Both the amount of carbon dioxide and the time required for complete extraction are reduced at such high pressures and temperatures.  相似文献   

4.
水菖蒲(Acorus calamus L.)超临界CO2萃取物对德国小蠊Blattella germanica L.同时具有很好的触杀和驱避活性。采用药膜接触法和滤纸药膜选择法,分别研究水菖蒲超临界CO2萃取物对德国小蠊3龄若虫的触杀和驱避活性。结果表明:水菖蒲超临界CO2萃取物对德国小蠊的生物活性存在着明显的浓度-时间-效应。触杀作用中处理试虫12h后,最高浓度124.00μg/cm2的校正死亡率就达到98.33%,24h后达到100%。试虫在处理12h后的LC50为36.45μg/cm2。驱避活性中,最高浓度815.28μg/cm2的驱避率为67.73%,驱避等级达到了Ⅳ级。  相似文献   

5.
Novel noninvasive techniques for the removal of biological contaminants to generate clean or sterile materials are in demand by the medical, pharmaceutical and food industries. The sterilization method described here uses supercritical fluid carbon dioxide (SF-CO2) containing 3.3% water and 0.1% hydrogen peroxide (v/v/v) to achieve from four to eight log viability reduction of all tested microbial species, including vegetative cells, spores and biofilms. The sterilization method employs moderate pressure and temperature (80 atm, 50 °C) and a short (30-minute) treatment time. The procedure kills various opportunistic pathogens that often persist in biofilm structures, fungal spores commonly associated with nosocomial infections, and Bacillus pumilus SAFR-032 endospores that are notoriously hard to eradicate by conventional sterilization techniques.  相似文献   

6.
A method for the extraction of the alkaloids colchicine, 3-demethylcolchicine and colchicoside from seeds of Colchicum autumnale by supercritical carbon dioxide has been established. Several parameters such as pressure, temperature, percentage of modifier and extraction time have been examined. Two extraction steps with constant carbon dioxide density (0.90 g/mL) and flux (1.5 mL/min) were required to extract the alkaloids in 110 min using 3% methanol as modifier. The quantitative determination of the alkaloids was performed by HPLC; the percentages of recovery were higher than 98% for the three alkaloids. This extraction procedure was compared with a conventional method involving maceration and sonication, and the same levels of alkaloids were obtained in each case. The supercritical carbon dioxide method is, however, very efficient, more rapid and more environmentally friendly than conventional methods.  相似文献   

7.
Samples of the microalgaBotryococcus braunii were submitted to supercritical fluid extraction with carbon dioxide at 40 °C and pressures of 12.5, 20.0 and 30.0 MPa. The extraction yield and the fraction of the hydrocarbons in the extracts both increased with pressure and at 30 MPa these compounds were obtained rapidly. This behaviour is associated with the localization of the hydrocarbons outside the cell wall. In the extracts, which are fluid, golden and limpid, chlorophyll and phospholipids were not detected.Author for correspondence  相似文献   

8.
超临界CO_2萃取冬虫夏草子座挥发性成分的GC-MS研究   总被引:4,自引:0,他引:4  
报道冬虫夏草挥发性成分的组成,为其进一步的研究工作奠定基础。采用超临界CO2萃取法从冬虫夏草子座中提取挥发性成分,气相色谱-质谱联用技术对其化学成分进行分析。超临界流体萃取物共鉴定了39种组分,占总馏出组分的86.6%以上,占色谱总馏出峰面积的98.56%以上。已鉴定组分中,含量最高的为油酸,相对含量25.6%;其次为亚油酸,相对含量22.67%;再次为棕榈酸11.86%。超临界CO2萃取法能更真实、全面的反映药材中的化学成分,适合于珍稀中药材相关组分的测定。  相似文献   

9.
The effects of pressure, temperature and some organic solvents on the recovery of various lipid classes from plant and animal tissues can be assessed by fractional extraction with dense carbon dioxide and consecutive analysis by thin-layer chromatography.  相似文献   

10.
超临界CO_2流体萃取苦瓜总黄酮工艺及其抗氧化活性   总被引:1,自引:0,他引:1  
利用响应面法优化超临界CO2萃取苦瓜总黄酮的工艺参数,在单因素实验基础上,以萃取时间、萃取温度及萃取压力为自变量,总黄酮提取率为响应值,采用中心组合设计的方法,研究各自变量及其交互作用对总黄酮提取率的影响。结果表明,3个因素对总黄酮提取率的影响大小依次为萃取压力、萃取温度、萃取时间。利用SAS软件和响应面分析相结合的方法模拟得到二次多项式回归方程的预测模型,确定最佳工艺条件:采用无水乙醇为夹带剂(4.0 mL/g),萃取压力33.4 MPa、萃取温度46℃、萃取时间53.2 m in。此条件下,苦瓜总黄酮提取率达到84.3%。抗氧化实验表明:超临界CO2萃取能较好保留苦瓜总黄酮的抗氧化活性,采用超临界CO2萃取法提取的苦瓜总黄酮具有较强的抗氧化活性,当质量浓度为1 mg/mL时,对DPPH自由基的清除能力与Vc相当,清除率达到93.1%。  相似文献   

11.
The present study describes the chemical composition and the antibacterial activity of extracts from Cordia verbenacea DC (Borraginaceae), a traditional medicinal plant that grows widely along the southeastern coast of Brazil. The extracts were obtained using different extraction techniques: high-pressure operations and low-pressure methods. The high-pressure technique was applied to obtain C. verbenacea extracts using pure CO2 and CO2 with co-solvent at pressures up to 30 MPa and temperatures of 30, 40 and 50 °C. Organic solvents such as n-hexane, ethyl acetate, ethanol, acetone and dichloromethane were used to obtain extracts by low-pressure processes. The antibacterial activity of the extracts was also subjected to screening against four strains of bacteria using the agar dilution method. The extraction yields were up to 5.0% w/w and up to 8.6% w/w for supercritical fluid extraction with pure CO2 and with ethyl acetate as co-solvent, respectively, while the low-pressure extraction indicates yields up to 24.0% w/w in the soxhlet extraction using water and aqueous mixture with 50% ethanol as solvents. The inhibitory activity of the extracts in Gram-positive bacteria was significantly higher than in Gram-negative. The quantification and the identification of the extracts recovered were accomplished using GC/MS analysis. The most important components identified in the extract were artemetin, β-sitosterol, α-humulene and β-caryophyllene, among others.  相似文献   

12.
13.
The effects of pressure and co-solvent on the extraction of anti-inflammatory faradiol esters in marigold (Calendula officinalis L.) were investigated by supercritical fluid extraction at laboratory and pilot scales. Pressures higher than 300 bar and modifier (ethanol) concentrations ranging from 0 to 20% (v/v) were used at an extraction temperature of 50 degrees C. With an analytical extractor, exhaustive extraction of the drug and highest concentrations in the extracts were achieved with 0.5% ethanol at the maximum pressure of 689 bar. Increased modifier concentrations improved the extractability at lower pressure, but the higher amount of total extractables led to a lower concentration of faradiol esters in the extracts. The HPLC fingerprints of the extracts, the yields of total extract and the concentration of faradiol esters obtained with analytical and pilot scale extractors under the same conditions were comparable.  相似文献   

14.
Two new cycloartenol triterpene saponins, 3β,16α-dihydroxy-12-acetoxy-16,22-cyclo-23-ketone-24R,25-epoxy-cycloartane-3-O-β-d-galactopyranoside (1), 3β,16α-dihydroxy-12-acetoxy-16,22-cyclo-23-ketone-24R,25-epoxy-cycloartane-7-ene-3-O-β-d-xylopyranoside (2), were isolated from the ethyl acetate soluble fraction of the roots of Cimicifuga simplex Wormsk. Their structures were established by detailed spectroscopic analysis, including extensive 2D NMR data. Their anti-proinflammatory activities were also carried out by LPS-stimulated IL-6, IL-23 and TNF-α genes expression in RAW cells in vitro using Q-PCR method.  相似文献   

15.
The extraction of chamomile flowers using supercritical carbon dioxide was investigated with respect to extraction efficiency and compared with solvent extraction. The stability of matricine, a sensitive constituent of the essential oil of chamomile, in these extracts was studied during storage at different temperatures over 6 months. Matricine was stable at -30 degrees C. A slight decrease (80-90% recovery) occurred at +5 degrees C, whereas complete decomposition of matricine took place within 3-4 months at room temperature and at +30 degrees C, respectively. An in-line inclusion of chamomile constituents in beta-cyclodextrin (beta-CD) during the extraction process was assessed and inclusion rates between 40 and 95% were obtained depending on the amount of beta-CD and the type of chamomile constituent. No further stabilization of matricine in the carbon dioxide extract/beta-CD complexes was achieved. High residual water contents in the complexes even after freeze-drying were identified as accelerating the decomposition. In addition, the extractability of flavonoids, such as apigenin and apigenin-7-glucoside, was determined. Apigenin-7-glucoside, the more hydrophilic substance, was not extractable with pure carbon dioxide and showed a recovery of 11% using methanol modified carbon dioxide (18%, w/w) at 60 degrees C and 380 bar. Extraction conditions in the two-phase region of the binary mixture carbon dioxide-methanol (70 degrees C, 100 bar) led to a drastic change in fluid polarity and hence extractability increased to 92-95%.  相似文献   

16.
In present work, Rhizopus oryzae lipase immobilized on a film prepared using blend of hydroxylpropyl methyl cellulose (HPMC) and polyvinyl alcohol (PVA) was investigated for synthesis of citronellol esters with supercritical carbon dioxide (Sc-CO2) as a reaction medium. The transesterification reaction was optimized for various reaction parameters like effect of molar ratio, acyl donor, time, temperature, enzyme concentration, effect of pressure and co-solvent to achieve the maximum yield of desired product. The results obtained signify remarkable increment (about eightfold) in the yield of citronellol acetate (91%) as compared to that of free lipase (11%) in Sc-CO2. The developed biocatalytic methodology provides a substantial advantage of low biocatalyst loading (1.5%, w/v), lower reaction temperature (45 °C) and lower pressure (8 MPa) as compared to previous reports. The immobilization method has significantly enhanced the operational stability of lipase for ester synthesis under Sc-CO2 conditions. The developed methodology was successfully applied for synthesis of three different industrially important citronellol esters namely citronellol acetate (91%), citronellol butyrate (98%), citronellol laurate (99%) with excellent yields using vinyl esters as acyl donor under Sc-CO2 conditions. In addition, the immobilized biocatalyst was effectively recycled for three consecutive recycles.  相似文献   

17.
The fluxes of CH4 and CO2 to the atmosphere, and the relative contributions of ebullition and molecular diffusion, were determined for a small hypertrophic freshwater lake (Priest Pot, UK) over the period May to October 1997. The average total flux of CH4 and CO2 (estimated from 7 sites on the lake) was approximately 52 mmol m–2 d–1 and was apportioned 12 and 40 mmol m–2 d–1 toCH4 and CO2 respectively. Diffusion across the air-water interface accounted for the loss of 0.4and 40 mmol m–2 d–1 of CH4 and CO2 respectively whilst the corresponding figures for ebullition losses were 12.0 (CH4) and 0.23 (CO2) mmol m–2 d–1. Most CH4 (96%) was lost by ebullition, and most CO2 (99%) by diffusive processes. The ebullition of gas, measured at weekly intervals along a transect of the lake, showed high spatial and temporal variation. The CH4 content of the trapped gas varied between 44 and 88% (by volume) and was highest at the deepest points. Pulses of gas ebullition were detected during periods of rapidly falling barometric pressure. Therelevance of the measurements to global estimates ofcarbon emission from freshwaters are discussed.  相似文献   

18.
Efficient conversion of carbon dioxide is of great interests to today's endeavors in controlling greenhouse gas emission. A multienzyme catalytic system that uses carbon dioxide and ethanol to produce L ‐lactate was demonstrated in this work, thereby providing a novel reaction route to convert bio‐based ethanol to an important building block for synthesis biodegradable polymers. The synthetic route has a unique internal cofactor regeneration cycle, eliminating the need of additional chemical or energy for cofactor regeneration. Lactate was successfully synthesized with 41% of ethanol converted in a batch reaction, while a turnover number of 2.2 day−1 was reached for cofactor regeneration in a reaction with continuous feeding of ethanol. A kinetic model developed based on reaction kinetic parameters determined separately for each reaction step predicted well the reaction rates and yields of the multienzyme reaction system. Biotechnol. Bioeng. 2011;108: 465–469. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
In the present study, we identified several process variables that significantly affect the efficiency of supercritical carbon dioxide inactivation of the food-borne pathogen Listeria monocytogenes. Treatment with SC-CO(2) completely disabled the colony-forming activity of the cells (8-log reduction) within specific treatment time (10-50 min), pressure (80-150 bar), and temperature ranges (35-45 degrees C). Microorganism inactivation rates increased proportionally with pressure and temperature, but the inactivation rate decreased significantly when cells were suspended in phosphate-buffered saline rather than in physiological saline. Additionally, when the microbial cell suspension was 80-100% (w/w) of water, the SC-CO(2)-mediated reduction in CFU ml(-1) was 4-8 log higher at the same treatment conditions than in typical cell suspensions (a water content of 800-4000% [w/w]) or dry preparations that had only 2-10% (w/w) of water. The addition of a fatty acid, oleic acid, decreased the effectiveness of the microbial inactivation by SC-CO(2), but the addition of a surfactant, sucrose monolaurate, increased the effectiveness. Therefore, cosolvents for SC-CO(2), including water, a fatty acid, and a surfactant in this study, were found to greatly influence on the inactivation effectiveness. The extraction of cellular substances, such as nucleic acid- and protein-like materials and fatty acids, was monitored by spectrophotometry and GC/MS and increased with SC-CO(2) treatment time. Additionally, using scanning and transmission electron microscopies, we investigated morphological changes in the SC-CO(2)-treated cells. The effects of the variables we have described herein represent a significant contribution to our current knowledge of this method of inactivating food-borne pathogens.  相似文献   

20.
In vivo kinetics of Saccharomyces cerevisiae are studied, in a time window of 150 s, by analyzing the response of O(2) and CO(2) in the fermentor off-gas after perturbation of chemostat cultures by metabolite pulses. Here, a new mathematical method is presented for the estimation of the in vivo oxygen uptake rate (OUR) and carbon dioxide evolution rate (CER) directly from the off-gas data in such perturbation experiments. The mathematical construction allows effective elimination of delay and distortion in the off-gas measurement signal under highly dynamic conditions. A black box model for the fermentor off-gas system is first obtained by system identification, followed by the construction of an optimal linear filter, based on the identified off-gas model. The method is applied to glucose and ethanol pulses performed on chemostat cultures of S. cerevisiae. The estimated OUR is shown to be consistent with the independent dissolved oxygen measurement. The estimated in vivo OUR and CER provide valuable insights into the complex dynamic behavior of yeast and are essential for the establishment and validation of in vivo kinetic models of primary metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号