共查询到20条相似文献,搜索用时 0 毫秒
1.
Han Y Geng J Qiu Y Guo Z Zhou D Bi Y Du Z Song Y Wang X Tan Y Zhu Z Zhai J Yang R 《DNA and cell biology》2008,27(8):453-462
The catalase or catalase-peroxidase activity commonly exists in many pathogens and plays an important role in resisting the oxidative burst of phagocytes helping the pathogen persistently colonize in the host. Yersinia pestis is a facultative pathogen and the causative agent of plague. KatY has been identified as a thermosensing antigen with modest catalase activity in this pathogen. Here Y. pestis KatA and KatY were experimentally confirmed as a monofunctional catalase and bifunctional catalase-peroxidase, respectively. Their expression induced by H2O2 was proven to be mediated by the oxidative regulator, OxyR. Expression of KatA changed with growth phases and was crucial to its traditional physiological role in protecting Y. pestis cells against toxicity of exogenous H2O2. KatY was regulated by temperature and H2O2, two major elements of phagolysosomal microenvironments. Consistent with the above results, gene expression of katY increased significantly during intracellular growth of Y. pestis compared with that in vitro growth. However, a DeltakatY mutant was fully virulent to mice, suggesting that KatY is not required for Y. pestis virulence. 相似文献
2.
A Surface-Focused Biotinylation Procedure Identifies the Yersinia pestis Catalase KatY as a Membrane-Associated but Non-Surface-Located Protein 下载免费PDF全文
Tanya Myers-Morales Clarissa Cowan Michael E. Gray Christine R. Wulff Carol E. Parker Christoph H. Borchers Susan C. Straley 《Applied microbiology》2007,73(18):5750-5759
This study identified major surface proteins of the plague bacterium Yersinia pestis. We applied a novel surface biotinylation method, followed by NeutrAvidin (NA) bead capture, on-bead digestion, and identification by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The use of stachyose during biotinylation focused the reaction to the surface. Coupled with NA pulldown and immunoblot analysis, this method determined whether a protein was accessible to the surface. We applied the method to test the hypothesis that the catalase KatY is a surface protein of the plague bacterium Y. pestis. A rabbit serum recognized the catalase KatY as a major putative outer membrane-associated antigen expressed by Y. pestis cells grown at 37°C. Similar findings by other groups had led to speculations that this protein might be exposed to the surface and might be a candidate for evaluation as a protective antigen for an improved plague vaccine. KatY was obtained only in the total membrane fraction, and stachyose greatly reduced its biotinylation as well as that of the periplasmic maltose binding protein, indicating that KatY is not on the bacterial surface. LC-MS-MS analysis of on-bead digests representing ca. 109 cells identified highly abundant species, including KatY, Pal, and OmpA, as well as the lipoprotein Pcp, all of which bound in a biotin-specific manner. Pla, Lpp, and OmpX (Ail) bound to the NA beads in a non-biotin-specific manner. There was no contamination from abundant cytoplasmic proteins. We hypothesize that OmpX and Pcp are highly abundant and likely to be important for the Y. pestis pathogenic process. We speculate that a portion of KatY associates with the outer membrane in intact cells but that it is located on the periplasmic side. Consistent with this idea, it did not protect C57BL/6 mice against bubonic plague. 相似文献
3.
Myers-Morales T Cowan C Gray ME Wulff CR Parker CE Borchers CH Straley SC 《Applied and environmental microbiology》2007,73(18):5750-5759
This study identified major surface proteins of the plague bacterium Yersinia pestis. We applied a novel surface biotinylation method, followed by NeutrAvidin (NA) bead capture, on-bead digestion, and identification by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The use of stachyose during biotinylation focused the reaction to the surface. Coupled with NA pulldown and immunoblot analysis, this method determined whether a protein was accessible to the surface. We applied the method to test the hypothesis that the catalase KatY is a surface protein of the plague bacterium Y. pestis. A rabbit serum recognized the catalase KatY as a major putative outer membrane-associated antigen expressed by Y. pestis cells grown at 37 degrees C. Similar findings by other groups had led to speculations that this protein might be exposed to the surface and might be a candidate for evaluation as a protective antigen for an improved plague vaccine. KatY was obtained only in the total membrane fraction, and stachyose greatly reduced its biotinylation as well as that of the periplasmic maltose binding protein, indicating that KatY is not on the bacterial surface. LC-MS-MS analysis of on-bead digests representing ca. 10(9) cells identified highly abundant species, including KatY, Pal, and OmpA, as well as the lipoprotein Pcp, all of which bound in a biotin-specific manner. Pla, Lpp, and OmpX (Ail) bound to the NA beads in a non-biotin-specific manner. There was no contamination from abundant cytoplasmic proteins. We hypothesize that OmpX and Pcp are highly abundant and likely to be important for the Y. pestis pathogenic process. We speculate that a portion of KatY associates with the outer membrane in intact cells but that it is located on the periplasmic side. Consistent with this idea, it did not protect C57BL/6 mice against bubonic plague. 相似文献
4.
5.
The effect of the ingredients of a semisynthetic culture medium on the synthesis of Y. pestis antigens (F1, LPS, "mouse" toxin) under the conditions of batch cultivation at 28 degrees C was studied. The study revealed that the amount of antigens produced by bacterial cells depended on the character of the limitation of growth. 相似文献
6.
Oliveira AA Rennó MN de Matos CA Bertuzzi MD Ramalho TC Fraga CA França TC 《Journal of biomolecular structure & dynamics》2011,29(2):351-367
Considering the risk represented by plague today as a potential biological warfare agent, we propose cytosolic Yersinia pestis dihydrofolate reductase (YpDHFR) as a new target to the design of selective plague chemotherapy. This enzyme has a low homology with the human enzyme and its crystallographic structure has been recently deposited in the Protein Data Bank (PDB). Comparisons of the docking energies and molecular dynamic behaviors of five known DHFR inhibitors inside a 3D model of YpDHFR (adapted from the crystallographic structure) and human DHFR (HssDHFR), revealed new potential interactions and suggested insights into the design of more potent HssDHFR inhibitors as well as selective inhibitors for YpDHFR. 相似文献
7.
Immunochemical identity of Y. pestis fibrinolysin and coagulase is demonstrated using monoclonal antibodies. These substances are proven to exist as complex proteins with two independent activities. Possible causes of this phenomenon are discussed. Coagulase antigenic determinants are involved in specific fluorescence of Y. pestis cells grown at 28 degrees C. A new original method for screening the hybridomas producing monoclonal antibodies is proposed, based on inhibition of the functional activity of antigen. 相似文献
8.
Amanda Haymond Chinchu Johny Tyrone Dowdy Brandon Schweibenz Karen Villarroel Richard Young Clark J. Mantooth Trishal Patel Jessica Bases Geraldine San Jose Emily R. Jackson Cynthia S. Dowd Robin D. Couch 《PloS one》2014,9(8)
The methylerythritol phosphate (MEP) pathway found in many bacteria governs the synthesis of isoprenoids, which are crucial lipid precursors for vital cell components such as ubiquinone. Because mammals synthesize isoprenoids via an alternate pathway, the bacterial MEP pathway is an attractive target for novel antibiotic development, necessitated by emerging antibiotic resistance as well as biodefense concerns. The first committed step in the MEP pathway is the reduction and isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to methylerythritol phosphate (MEP), catalyzed by MEP synthase. To facilitate drug development, we cloned, expressed, purified, and characterized MEP synthase from Yersinia pestis. Enzyme assays indicate apparent kinetic constants of KM
DXP = 252 µM and KM
NADPH = 13 µM, IC50 values for fosmidomycin and FR900098 of 710 nM and 231 nM respectively, and Ki values for fosmidomycin and FR900098 of 251 nM and 101 nM respectively. To ascertain if the Y. pestis MEP synthase was amenable to a high-throughput screening campaign, the Z-factor was determined (0.9) then the purified enzyme was screened against a pilot scale library containing rationally designed fosmidomycin analogs and natural product extracts. Several hit molecules were obtained, most notably a natural product allosteric affector of MEP synthase and a rationally designed bisubstrate derivative of FR900098 (able to associate with both the NADPH and DXP binding sites in MEP synthase). It is particularly noteworthy that allosteric regulation of MEP synthase has not been described previously. Thus, our discovery implicates an alternative site (and new chemical space) for rational drug development. 相似文献
9.
目的:评价生物可降解高分子材料多孔微球作为鼠疫亚单位疫苗佐剂的可行性。方法:制备可生物降解的高分子材料多孔微球,将rV270抗原蛋白吸附到多孔微球中制备微球疫苗,肌肉注射免疫BALB/c小鼠,初次免疫后21d加强免疫1次,于初次免疫后第10周用600LD50鼠疫耶尔森氏菌攻毒,攻毒后观察14d。结果:攻毒后,微球疫苗免疫的小鼠全部存活,且健康状况良好,对照组小鼠几乎全部死亡。结论:生物可降解多孔微球可作为免疫佐剂用于鼠疫亚单位疫苗研制。 相似文献
10.
目的:为研制鼠疫亚单位疫苗,克隆、表达并纯化去除产生免疫抑制作用序列后的鼠疫耶尔森氏菌LcrV抗原(rV270)。方法:依据已知的LcrV的核苷酸序列,避开其产生免疫抑制作用的区段设计引物,扩增rV270基因并克隆到pET24a载体中,在大肠杆菌BL21中表达His-rV270融合蛋白:表达产物先后经Co^2+亲和层析和Sephacryl S-200HR凝胶柱纯化,并在纯化过程中应用凝血酶切除His标塔;氢氧化铝佐剂吸附重组抗原后免疫BALB/c小鼠,初次免疫后第21天加强免疫1次,第5周使用104CFU鼠疫菌141强毒株攻毒,测定其免疫保护作用。结果:rV270以可溶性方式表达;应用Co^2+亲和层析柱和Sephacryl S-200HR凝胶柱结合凝血蛋白酶切除His标签的方法可得到不含标签的较高纯度的重组蛋白;攻毒实验中实验组小鼠全部存活,而对照组全部死亡。结论:获得了具有良好免疫保护作用的rV270蛋白,可用于鼠疫亚单位疫苗的研究。 相似文献
11.
Khushiramani R Tuteja U Shukla J Batra HV 《Indian journal of experimental biology》2004,42(5):508-514
The majority of virulence factors including the 12 Yersinia outer membrane proteins (Yops), 29 Yop secretion proteins (Ysc) and few specific Yop chaperone (Syc) are contributed by the 70 kb LCR middle plasmid of Yersinia pestis. Yersinia pestis isolates recovered during 1994 plague outbreak and rodent surveillance samples of Southern states of India were studied for the presence of important Yops by the conventional procedure of partially purifying outer membrane proteins (Omps) after cultivation in calcium deficient media. Prominent bands numbering 4-5 between 34-42 kDa region corresponding to important Yops were seen in all the isolates as well as in other Yersinia and non-Yersinia species by SDS-PAGE. Western blotting with the polyclonal antisera raised against these Omp preparations revealed few immuno-reactive bands that appeared to be shared among Y. pestis, Y. pseudotruberculosis, Y. enterocolitica, Y. fredrocksenii, Y. intermedia, Y. kristensenii and E. coli. Three recombinant Yop proteins namely, YopM, YopB and LcrV were produced and antisera to these proteins could reveal presence of these Yops in the Y. pestis Omp preparations. In order to further characterize the important Yops among Omps, attempts were made to generate monoclonal antibodies against Omp preparation. Three of the 4 stable reactive clones that were obtained, when tested, had extensive cross-reactions among pathogenic Yersinia species, Y. pestis and Y. pseudotuberculosis isolates, other Yersinia species and the members of Enterobacteriaceae in dot-ELISA and Western blotting. One of the monoclonal antibodies, YP1, exhibited reaction to all the pathogenic Yersinia species and the isolates, with restricted cross-reactivity to Y. intermedia, Y. kristensenii, K. pneumoniae. None of the 4 monoclonal antibodies had reactions with the 3 recombinant Yop proteins. It appears that under low calcium response, the Y. pestis not only activates secretion of Yops but also a large number of other proteins, which as per the present observations are cross-reactive within the family Enterobacteriaceae. 相似文献
12.
13.
Yingli Li Yefeng Qiu He Gao Zhaobiao Guo Yanping Han Yajun Song Zongmin Du Xiaoyi Wang Dongsheng Zhou Ruifu Yang 《BMC microbiology》2009,9(1):128-13
Background
The zinc uptake regulator Zur is a Zn2+-sensing metalloregulatory protein involved in the maintenance of bacterial zinc homeostasis. Up to now, regulation of zinc homeostasis by Zur is poorly understood in Y. pestis. 相似文献14.
15.
Characterization of the Antigenic Subunits of the Envelope Protein of Yersinia pestis 总被引:4,自引:0,他引:4
Chemical, physical, and immunological properties of the envelope antigen of Yersinia pestis strains have been investigated. The antigen consists of two components with isoelectric points (pI) of 4.6 and 4.8. One component (pI 4.6) is a protein bound to a small carbohydrate moiety identified as an oligomeric galactan; the other component (pI 4.8) is a simple protein. These two components are antigenically identical. In buffered solution, the antigen exists as aggregates of molecular weights larger than 300,000. The aggregates dissociate into a variety of smaller molecular weight forms depending on the nature of the treatment for dissociation. Each aggregate can be further dissociated into a single antigenic subunit fraction containing protein and glycoprotein species with molecular weights in the range from 15,000 to 17,000. The subunits can be obtained by a dissociation treatment with 0.1% mercaptoethanol in 0.25% sodium dodecyl sulfate at 95 C for 5 min. The subunits will readily reaggregate into a variety of larger molecular weight forms on the removal of dodecyl sulfate. 相似文献
16.
《生物技术通讯》2015,(4)
目的:筛选鼠疫耶尔森菌F1抗原的中和性表位,构建基于鞭毛蛋白佐剂的重组表位疫苗。方法:利用鼠疫菌F1抗原的中和抗体F2H5筛选噬菌体随机12肽库,对得到的阳性克隆采用ELISA进行特异性鉴定,采用竞争抑制ELISA确定具有竞争性的噬菌体单克隆并对其DNA测序,重组表达并纯化获得肽序列与截短型鞭毛蛋白Fli Cdel的融合蛋白,并通过Western印迹和ELISA鉴定重组蛋白与F2H5的结合。结果:获得了2株能够与F1抗原竞争结合F2H5的噬菌体单克隆12-1和12-14,其中12-14的竞争能力较强;通过序列比对,并没有发现这2株噬菌体克隆的插入肽序列与F1抗原序列存在一致性,但这2个插入肽序列与Fli Cdel的重组蛋白在Western印迹和ELISA结果中均显示出能够被抗F1的单克隆抗体识别。结论:F1中和性抗体筛选出的肽序列与截短的鞭毛蛋白融合表达后能够被F2H5特异性识别,为进一步对重组表位抗原进行免疫保护评价奠定了基础。 相似文献
17.
Stable Reagent for the Detection of Antibody to the Specific Fraction I Antigen of Yersinia pestis 总被引:1,自引:1,他引:0 下载免费PDF全文
James H. Rust Jr. Sanford Berman William H. Habig John D. Marshall Jr. Dan C. Cavanaugh 《Applied microbiology》1972,23(4):721-724
A stable hemagglutinating antigen for detection of fraction I (FR-I) antibody of Yersinia pestis (Pasteurella pestis) is described. The antigen was prepared by sensitizing tanned, pyruvaldehyde-treated sheep erythrocytes (PAT SRBC) with FR-I antigen. Preliminary standardization by titration of each lot of FR-I was required to minimize the effect of molecular heterogeneity of specific FR-I antigen and to eliminate nonspecific reactions caused by the presence of a minor antigenic contaminant. In tests with sera from rabbits, dogs, and humans, FR-I PAT SRBC were as reactive as the previously employed standard antigen, FR-I-sensitized tanned erythrocytes. Fluid suspensions of FR-I PAT SRBC stored at 4 C for 3 months, or lyophilized preparations stored at ambient temperature for 6 months, showed no loss in antigenic activity. 相似文献
18.
19.
迄今所发现的唯一的戊型肝炎病毒(HEV)中和表位定位于开放读码框架2(ORF2)编码蛋白的第578和第607氨基酸(aa)之间的区域。将对应此区域的基因片段通过一段柔性的甘氨酸铰链与乙型肝炎病毒(HBV)表面抗原(HBsAg)基因的3′端相连,构建成HBV/HEV融合基因。该融合基因在毕赤酵母细胞内的表达产物物为分子量约29kDa的融合蛋白,具有组装成嵌合病毒样颗粒(VLP)的能力。此嵌合VLP具有与HBsAgVLP相似的特性且保留了天然HBV/HEV双重抗原性。对此嵌合VLP特性的初步研究提示其可能具有HBV/HEV双价重组疫苗的潜在应用前景。 相似文献
20.
Cosman M Pesavento JB Zemla A Beernink PT Balhorn R Barsky D 《Protein and peptide letters》2008,15(9):887-894
Here we present modeling and NMR spectroscopic evidence that the function of a Yersinia pestis pMT1 plasmid protein, designated as orf38, is most likely a glutamine binding protein. The modeling was homology-based at a very low level of sequence identity ( approximately 16%) and involved structural comparison of multiple templates, as well as template-substrate interaction analyses. Transferred nuclear Overhauser and saturation transfer difference experiments were used to characterize the binding of sugars and amino acids to orf38. The identification and characterization of an unknown protein function using the strategy presented here has applicability to a variety of research areas, including functional genomics and proteomics efforts. 相似文献