首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria.   总被引:2,自引:2,他引:0       下载免费PDF全文
Addition of Ruthenium Red to energized rat liver mitochondria that have previously accumulated Ca2+ and phosphate from the external medium induces a parallel efflux of both these ions. Mersalyl or dithioerythritol, which decrease Ruthenium Red-insensitive Ca2+ efflux, also decrease phosphate efflux to the same extent. Conversely diazenedicarboxylic acid bis(NN-dimethylamide) (DDBA), which increases the Ruthenium Red-induced Ca2+ efflux concurrently increases phosphate release. Dithioerythritol and DDBA, reducing and oxidizing agents of thiol groups respectively, modify Ca2+ and Pi efflux without penetrating the mitochondrial inner membrane. Under all the adopted conditions the membrane potential is preserved. The release of resting respiration and the parallel efflux of Mg2+ and adenine nucleotides, events closely correlated to Ca2+ cycling, are equally prevented either by mersalyl, which inhibits phosphate transport, or dithioerythritol; DDBA has the opposite effect. These findings and the observation that suggest that Ca2+ and phosphate transport in energized liver mitochondria are closely related and dependent on the redox state of membrane-bound thiol groups.  相似文献   

2.
The values of influx (Ji) and efflux (Jo) of phosphates through intact maize roots (primary, seed roots) have confirmed the dependence of the P concentration in nutrient medium on the activity and efficiency of transport mechanism with respect to the accumulation of phosphates (J) by roots. The phosphate accumulation is about 97–99 % of the total uptake. If the P concentration is < 1 mM the efflux is negligible, and Ji <=g Jo. In contrast, if the P concentration is τ 1 mM, the proportion of efflux significantly increases, up to 45 % of the whole influx. The approximation to the conditions of equilibrium of phosphate flows ( Ji = Jo) depends on the P concentration in root cells, the accumulation of phosphates being determined by the relation Ji τ Jo. In the roots growing in P-containing medium the values of efflux are much higher than in the roots lacking P. The positive effect of Ca2+ ions on the accumulation of phosphates is caused by the decreased proportion of efflux. The factors instigating the integrity or non-integrity of the cell structure (Ca2+, SDS, EDTA, Sorbitol,etc.) and thus its effectiveness determine the accumulation of phosphates by roots. Analogously, the factors stimulating the ability of accepted phosphate to be metabolized, and their use in the form of organic compounds decrease the proportion of efflux; these activities are shown in the increased efficiency of the phosphate uptake. The presented results show the importance of the integrity of the cell structure, the functioning of membranes and of metabolism efficiency for the accumulation of phosphates by plant roots. The main form of phosphorus transport in xylem exudate is inorganic phosphorus. Its share is from 79 to 82 % of the total amount of transported P. The utilization of P in the roots in the form of organic, slowly motabolizable P compounds (mannose-6-phosphate) and inhibition of acid phosphatase activity effectively restrains P transport over long distances. The correlation of P transport from roots into shoots with phosphatase activity was established (correlation coefficient is 0.74++). It can be summarized that long-distance P tran sport is a function of dephosphorylating reactions.  相似文献   

3.
Substrate-dependent changes in vascular smooth muscle energy metabolism and contractile function were investigated in isolated porcine carotid arteries. In media containing glucose glycogen catabolism accounted for all the estimated high-energy phosphate turnover that occurred in conjunction with contraction induced by 80 mM KCl. However, in glucose-free media glycogen catabolism accounted for only a portion of the estimated ATP utilization in resting and contracting arteries, even though glycogen stores were not depleted. The glycogenolysis and lactate production that ordinarily accompanies contraction was completely inhibited by 5 mM 2-deoxyglucose (2-DG). However, there was no decrease in the high-energy phosphate levels when compared to control resting arteries similarly treated with 2-DG. The results suggest that an endogenous non-carbohydrate source may be an important substrate for energy metabolism. Treatment of arteries with 50 microM iodoacetate (IA) in media containing glucose resulted in a marked reduction of high energy phosphate levels and an accumulation of phosphorylated glycolytic intermediates, as demonstrated by 31P-NMR spectroscopy. In glucose-free media, 50 microM IA had only a slight effect on high-energy phosphate levels, while glycogenolysis proceeded unhindered. With 1 mM IA in glucose-free media, the oxidative metabolism of glycogen was inhibited as evidenced by the depletion of high-energy phosphates and the appearance of sugar phosphates in the 31P-NMR spectra. Thus, the titration of enzyme systems with IA reveals a structural partitioning of carbohydrate metabolism, as suggested by previous studies.  相似文献   

4.
Ca2+ efflux from rat liver mitochondria in the presence of glutamate is stimulated by a decrease in pH from 7.3 to 6.8 and the rate is dependent on the phosphate concentration. During Ca2+ (13 μm) uptake and release at low pH (+ phosphate), swelling is minimal, but a large oxidation of pyridine nucleotides and sustained membrane depolarization occurs. The depolarization (but not Ca2+ efflux) is reversed by ruthenium red. An absolute requirement for phosphate to support Ca2+ efflux is demonstrated by using acetate or lactate to support Ca2+ uptake (efflux is depressed at pH 6.8). Preincubation with mersalyl, to block phosphate movements, with subsequent phosphate addition preceeding Ca2+ uptake also inhibits efflux. β-Mercaptoethanol then stimulates efflux concomittent with membrane repolarization. Ca2+ efflux is not a simple result of collapse of ΔpH since nigericin inhibits phosphate transport and Ca2+ release. Following Ca2+ uptake at pH 6.8, respiratory inhibition occurs, but oxygen consumption coupled to ATP synthesis can be stimulated by succinate (+ rotenone). Addition of succinate allows reuptake of Ca2+, reduction of pyridine nucleotides, and repolarization of the membrane potential. Respiratory inhibition is also seen with nigericin, but no Ca2+ efflux is observed. Coupled respiration with glutamate is seen at pH 6.8 following Ca2+ uptake in the presence of lactate with subsequent addition of phosphate to promote Ca2+ efflux. We conclude that Ca2+ efflux is not a consequence of respiratory inhibition, but is mediated solely by phosphate movements. The inhibitory effect of Mg2+ on Ca2+ efflux is probably due to Mg2+-dependent inhibition of the Ca2+ diffusion potential so that the compensatory increase in ΔpH due to membrane depolarization does not occur and phosphate entry is slowed.  相似文献   

5.
The 7315a tumour secretes prolactin, but is refractory to enhancement of prolactin release by thyrotrophin-releasing hormone (TRH). In order to investigate further this refractoriness of the 7315a tumour cell, we compared cells from the tumour and from the normal pituitary with regard to TRH-enhanced fractional 45Ca2+ efflux and inositol phosphate production. TRH caused a large efflux of calcium from normal pituitary cells, but only mildly enhanced calcium efflux from the tumour cells. In contrast, TRH enhanced total inositol phosphate generation in both groups of cells to a similar degree. We therefore conclude that prolactin release from 7315a tumour cells is refractory to TRH due, at least in part, to impaired mobilisation of intracellular calcium by inositol phosphates.  相似文献   

6.
31P-nuclear magnetic resonance was applied to living muscles of bullfrogs, and the time courses of metabolic changes of ATP, creatine phosphate, inorganic phosphate, and sugar phosphates were studied under anaerobic and aerobic conditions. A decrease in creatine phosphate was observed in the resting muscle under anaerobic conditions with a concomitant decrease in the intracellular pH, while the ATP level remained constant. With the use of 2,4-dinitro-1-fluorobenzene and iodoacetic acid, ATP disappeared quickly. When the resting muscle was perfused with oxygen-saturated glucose-Ringer's solution, the amount of creatine phosphate increased gradually. These findings indicate that anaerobic glycolysis is insufficient for even the resting energy consumption whereas oxidative phosphorylation is sufficient. The effects of tetanic stimulation on living muscles were also studied. When glycolysis and oxidative phosphorylation were suppressed, the intracellular energy store was depleted by the tetanic contraction. Anaerobic glycolysis produced rapid recovery of the energy store level, although it was insufficient to reach the initial level. Aerobic oxidative phosphorylation produced sufficient energy to reach the initial level, and this level was never exceeded. This finding suggests the existence of a regulatory mechanism for the energy store level.  相似文献   

7.
Summary The efflux of phosphate was measured in rabbit vagus nerve loaded with radiophosphate. The efflux was found to depend on the K concentration of the bathing solutions; increasing the K from 5.6 up to 150mm produced a maximal lowering of 28%; K-free solution produced a transient increase whose peak was 86% above the normal efflux. In the presence of Na, the K-free effect could be repeated; in Na-free solution, it was found only for the first application of the K-free solution. The phosphate efflux was not altered when K was replaced by Rb; replacement with Cs showed that this ion only partially mimics the effect of K.The results suggest that the transient increase in phosphate efflux is due to release of label from a K-dependent saturable binding site, which is distinct from the main intracellular pool. The binding site appears to be labeled from the inside by the Na-dependent phosphate efflux previously described. It may correspond to the phosphorylation of membrane phospholipids. A mathematical model of this system is developed and curves simulated by an analog computer are compared to the experimental results.Measurements of the membrane potential and the internal inorganic phosphate showed that the effect of K on the phosphate efflux could not be explained by changes in the membrane potential or in the internal phosphate pool.  相似文献   

8.
The polyamine spermine is transported into the mitochondrial matrix by an electrophoretic mechanism having as driving force the negative electrical membrane potential (ΔΨ). The presence of phosphate increases spermine uptake by reducing ΔpH and enhancing ΔΨ. The transport system is a specific uniporter constituted by a protein channel exhibiting two asymmetric energy barriers with the spermine binding site located in the energy well between the two barriers. Although spermine transport is electrophoretic in origin, its accumulation does not follow the Nernst equation for the presence of an efflux pathway. Spermine efflux may be induced by different agents, such as FCCP, antimycin A and mersalyl, able to completely or partially reduce the ΔΨ value and, consequently, suppress or weaken the force necessary to maintain spermine in the matrix. However this efflux may also take place in normal conditions when the electrophoretic accumulation of the polycationic polyamine induces a sufficient drop in ΔΨ able to trigger the efflux pathway. The release of the polyamine is most probably electroneutral in origin and can take place in exchange with protons or in symport with phosphate anion. The activity of both the uptake and efflux pathways induces a continuous cycling of spermine across the mitochondrial membrane, the rate of which may be prominent in imposing the concentrations of spermine in the inner and outer compartment. Thus, this event has a significant role on mitochondrial permeability transition modulation and consequently on the triggering of intrinsic apoptosis.  相似文献   

9.
An energy-dependent efflux system for potassium ions in yeast   总被引:3,自引:0,他引:3  
An efflux of potassium ions was demonstrated in mutants of yeast cells lacking a functional high affinity carrier system for monovalent cations. This efflux showed the following characteristics: (a) It was stimulated by the presence of a substrate, either glucose or ethanol. (b) It was stimulated by several cationic organic molecules, such as ethidium bromide, dihydrostreptomycin, diethylaminoethyldextran, and also by trivalent cations, such as Al3+ and lanthanides; this stimulation also depended on the presence of a substrate. (c) K+ efflux was decreased in yeast mutants with decreased ATPase activity, which generated a lower membrane potential. (d) Although the efflux appeared to be of an electrogenic nature, producing hyperpolarization of cells, it was accompanied by the efflux of phosphate, probably as an anion partially compensating for the large amount of cations leaving the cell. (e) K+ efflux was also accompanied by an uptake of protons. (f) The efflux appeared more clearly in cells grown in YPD medium, and not in more complex media nor in the same YPD medium if supplemented with Ca2+ or Mg2+. Efflux of monovalent cations produced by Tb3+ and organic cationic agents was also demonstrated in wild type strains. This efflux system appears to be, at least partially, electrogenic, but seems to be also an exchange system for protons and to function as a symport with phosphate; it may be involved in the regulation of the internal pH of the cell, and appears to be regulated by its link to the energetic status of the cell, probably through the membrane potential.  相似文献   

10.
The effect of inorganic phosphate on Ca2+ retention has been investigated using phosphate-depleted liver mitchondria. Phosphate induces the release of Ca2+ through an efflux route insensitive to ruthenium red. This effect is not due to functional or structural damage, since mitochondria maintain their membrane potential during phosphate-induced Ca2+ efflux. Direct enzymatic measurement of mitochondria pyridine nucleotides has established that changes in their redox state (i.e. increased oxidation) do not play a role in the phosphate-effect. The phosphate-induced Ca2+ efflux requires transport of phosphate out of mitochondria. However, the fluxes of Ca2+ and phosphate do not coincide: the release of phosphate preceeds that of Ca2+.  相似文献   

11.
Characterization of the phosphate transport system across the basolateral membrane of renal proximal tubule has been attempted using isolated proximal tubule cells prepared from chicks. The Pi efflux system is independent of Na+ ions and is not influenced by the nature of the chief anion present in the bathing medium. Pi efflux is not sensitive to DIDS and it is concluded that a generalized anion transporter of band III type is not the chief agent for facilitating Pi exit from the cell across the basolateral membrane. Inhibition of efflux by vanadate is evidence for a specific carrier protein in the membrane. The carrier probably possesses thiol group(s) that are essential for activity. The carrier may effect electroneutral transport of Pi possibly in exchange for OH- ions. The activity of the transport process is not stimulated by depleting the cells of phosphate or inhibited by rearing the chicks on a vitamin D-deficient diet. The system is unlikely to be of great importance for the expression of various regulatory mechanisms that act on the kidney to control the excretion of Pi. The activity declines as the chicks mature however.  相似文献   

12.
The release of amino acids from their vacuolar store was studied in situ, i.e. in cells with selectively permeabilized plasma membrane and functionally intact vacuoles. As we previously described [Roos et al., J. Biol. Chem. 272 (1997) 15849-15855], this transport process is regulated by extravacuolar adenylates at their physiological concentrations. We now show, using our test object Penicillium cyclopium, that not only purine but also pyrimidine nucleotides are involved in the control of efflux of vacuolar phenylalanine. At 0.1 mM adenosine or guanosine phosphates inhibit, whereas cytidine or uridine phosphates stimulate the rate of efflux. At 1 mM the same nucleotides have no measurable impact on efflux but abolish the effects of other nucleotides present at 0.1 mM. This argues for at least two interacting binding sites with different nucleotide affinities. The minimum structural requirement for any of the observed effects is a non-cyclic ribonucleoside monophosphate. In intact cells, cytosolic concentrations of ATP (representing purine nucleotides) and CTP (representing pyrimidine nucleotides) are 1-2 mM and 0.05-0.2 mM, respectively. ATP is therefore assumed to dominate transport control and allow optimum efflux (and uptake) rates. Short-time starvation of carbon and nitrogen adjusts CTP and ATP at levels that cause declining efflux rates. During prolonged starvation both nucleotides fall below their transport-controlling concentrations and thus allow increasing rates of efflux from the still maintained vacuolar pool. Hence, efflux control under nutrient limitation includes an interplay of purine and pyrimidine nucleotides which precisely regulates the release of vacuolar amino acids and enables flexible adjustment to either amino acid saving or cell survival.  相似文献   

13.
The mitogens serum, vasopressin and bradykinin stimulate a significant rise in the inositol phosphate content of cultured human fibroblasts within 10 seconds, while serum- and bradykinin-stimulated arachidonic acid release does not occur until after 30 seconds. The release of inositol phosphates is not secondary to a rise in Ca activity since the Ca ionophore ionomycin does not stimulate release of inositol phosphates. Moreover, we show that phospholipase C in human fibroblasts is activated by these mitogens at resting Ca levels since TMB-8, which blocks the mitogen-induced rise in Ca activity, does not affect the serum-stimulated accumulation of inositol phosphates.  相似文献   

14.
Acylphosphatase, one of the smallest enzymes, is expressed in all organisms. It displays hydrolytic activity on acyl phosphates, nucleoside di- and triphosphates, aryl phosphate monoesters, and polynucleotides, with acyl phosphates being the most specific substrates in vitro. The mechanism of catalysis for human acylphosphatase (the organ-common type isoenzyme) was investigated using both aryl phosphate monoesters and acyl phosphates as substrates. The enzyme is able to catalyze phosphotransfer from p-nitrophenyl phosphate to glycerol (but not from benzoyl phosphate to glycerol), as well as the inorganic phosphate-H(2)18O oxygen exchange reaction in the absence of carboxylic acids or phenols. In short, our findings point to two different catalytic pathways for aryl phosphate monoesters and acyl phosphates. In particular, in the aryl phosphate monoester hydrolysis pathway, an enzyme-phosphate covalent intermediate is formed, whereas the hydrolysis of acyl phosphates seems a more simple process in which the Michaelis complex is attacked directly by a water molecule generating the reaction products. The formation of an enzyme-phosphate covalent complex is consistent with the experiments of isotope exchange and transphosphorylation from substrates to glycerol, as well as with the measurements of the Br?nsted free energy relationships using a panel of aryl phosphates with different structures. His-25 involvement in the formation of the enzyme-phosphate covalent complex during the hydrolysis of aryl phosphate monoesters finds significant confirmation in experiments performed with the H25Q mutated enzyme.  相似文献   

15.
There are no reports of the effect of stretch on inositol phosphates in smooth muscle. Phosphoinositide and inositol phosphate metabolism was studied in cultured rat vascular smooth muscle cells subjected to stretching. The masses of inositol trisphosphate and tetrakisphosphate increased (+34 +/- 7% and +58 +/- 12%, respectively; p less than 0.001) after 25 s of a single 20% stretch and had returned to control levels by 45 s; phosphatidylinositol, phosphatidylinositol phosphate and bisphosphate did not change. Repetitive stretch did not alter the masses of any of the compounds. A single stretch also increased 45Ca2+ efflux (+52 +/- 5%, p less than 0.01). These data suggest that stretch of cultured vascular smooth muscle can elicit a rapid, short-lived increase in inositol phosphates, which may subsequently affect Ca2+.  相似文献   

16.
The level of inositol phosphates was measured in rat hepatocytes treated with 2-methyl-1,4-naphthoquinone (menadione) or tert-butyl hydroperoxide, which cause Ca2+ mobilization from intracellular stores and an increase in cytosolic free Ca2+ concentration. Although neither agent produced any apparent changes in the resting level of inositol phosphates, pretreatment of hepatocytes with either menadione or tert-butyl hydroperoxide, as well as with several sulfhydryl reagents, markedly inhibited the increase in inositol phosphates induced by both hormonal and nonhormonal stimuli. Addition of dithiothreitol to menadione- or tert-butyl hydroperoxide-treated hepatocytes reversed this inhibition and reestablished responsiveness to extracellular stimuli. Our findings suggest that the inhibition of the inositol phosphate response by menadione and tert-butyl hydroperoxide occurs through the modification of critical sulfhydryl group(s) and that the alterations in intracellular Ca2+ homeostasis occurring during the metabolism of menadione and tert-butyl hydroperoxide in hepatocytes are not mediated by inositol phosphates.  相似文献   

17.
Soybean (Glycine max L. Merr) seeds lose their tolerance of dehydration between 6 and 36 hours of imbibition. Soybean axes and cotyledons were excised 6 hours (tolerant of dehydration) and 36 hours (susceptible) after commencing imbibition and subsequently dehydrated to 10% moisture. Kinetics of the efflux of potassium, phosphate, amino acid, sugar, protein, and total electrolytes were compared in the four treatments during rehydration. Only slight differences were observed in the kinetics of solute efflux between the two cotyledon treatments dehydrated at 6 and 36 hours suggesting that the cotyledons may retain their tolerance of dehydration at this stage of germination. Several symptoms of injury were observed in the axes dehydrated at 36 hours. An increase in the initial leakage of solutes during rehydration, as quantified by the y-intercept of the linear regression line for solute efflux between 2 and 8 hours suggests an increased incidence of cell rupture. An increase in the rate of solute efflux (slope of regression line between 2 and 8 hours) from fully rehydrated axes was observed in comparison to axes dehydrated at 6 hours. The Arrhenius activation energy for potassium, phosphate, and amino acid efflux decreased and for protein remained unchanged. Both observations indicate an increase in membrane permeability in dehydration-injured tissue. Increasing the H+ concentration of the external solution increased K+ efflux from both control and dehydrated/rehydrated samples, increased sugar efflux from axes at 6 hours imbibition but decreased sugar efflux from axes at 36 hours imbibition, indicating changes in membrane properties during germination. The dehydration treatment did not alter the pattern of the pH response of axes dehydrated at 6 or 36 hours but did increase the quantity of potassium and sugar efflux from dehydration injured axes. These results are interpreted as indicating that dehydration of soybean axes at 36 hours of imbibition increased both the incidence of cell rupture during rehydration and altered membrane permeability of the rehydrated tissue.  相似文献   

18.
When incubated with intact erythrocytes, low density lipoproteins (LDL) decrease the phosphate content of erythrocyte spectrin allowing the cells to undergo morphological transformation. The phosphate content of spectrin depends on the balance between the activity of membrane-associated cyclic AMP-independent protein kinases and phosphoprotein phosphates. LDL do not influence the activity of membrane-associated cyclic AMP-independent protein kinases; these lipoproteins activate by 2-fold and greater membrane-associated phosphatases as determined by hydrolysis of p-nitrophenyl phosphate and by phosphate hydrolysis of phosphorylated erythrocyte membrane proteins. We conclude that LDL interact at the exterior surface of the erythrocyte to stimulate dephosphorylation of spectrin. The significance of this conclusion is augmented by the fact that spectrin, the target for LDL-induced dephosphorylation, specifies cell morphology and modulates the distribution of cell-surface receptors. LDL also render erythrocyte acetylcholinesterase less susceptible to inhition by F-. Lipoproteins in the high density class (HDL) do not stimulate dephosphorylation of spectrin, and they are consequently unable to alter erythrocyte morphology. HDL do prevent the LDL-induced activation of membrane phosphatase. The inhibitory capacity of HDL is observed over the range of LDL:HDL (w/w) which exists in the plasma of normolipemic humans.  相似文献   

19.
Upon the addition of inorganic phosphate, isolated rat-heart mitochondria released endogenous adenine nucleotides. To elucidate the mechanism of this phosphate-induced efflux, we evaluated the relative roles of three inner mitochondrial membrane carriers: the adenine nucleotide translocase, the phosphate/hydroxyl exchanger, and the dicarboxylate carrier. Atractyloside (a specific inhibitor of the adenine nucleotide translocase) prevented this efflux, but did not inhibit mitochondrial swelling. Inhibitors of the phosphate/hydroxyl exchanger (200 microM n-ethylmaleimide and 10 microM mersalyl) did not inhibit phosphate-induced efflux. 200 microM mersalyl (which inhibited both the phosphate/hydroxyl exchanger and the dicarboxylate carrier) inhibited the rate of efflux approx. 65% Phenylsuccinate and 2-n-butylmalonate (inhibitors of the dicarboxylate carrier) partially inhibited phosphate-induced efflux and adenine nucleotide translocase activity. Mersalyl (200 microM) had no effect on adenine nucleotide translocase activity. Partial inhibition of the adenine nucleotide translocase by phenylsuccinate and butylmalonate could not explain the extent of inhibition of phosphate-efflux by these agents. Moreover, the rates of adenine nucleotide efflux in the presence of phenylsuccinate, butylmalonate, or mersalyl correlated well with the ability of these agents to inhibit succinate-supported respiration. We conclude that phosphate-induced efflux of adenine nucleotides from rat heart mitochondria occurs over the adenine nucleotide translocase, and that the site of action of the phosphate is not the phosphate/hydroxyl exchanger, but is likely the dicarboxylate carrier.  相似文献   

20.
Brain extracellular levels of glutamate, aspartate, GABA and glycine increase rapidly following the onset of ischemia, remain at an elevated level during the ischemia, and then decline over 20-30 min following reperfusion. The elevated levels of the excitotoxic amino acids, glutamate and aspartate, are thought to contribute to ischemia-evoked neuronal injury and death. Calcium-evoked exocytotic release appears to account for the initial (1-2 min) efflux of neurotransmitter-type amino acids following the onset of ischemia, with non-vesicular release responsible for much of the subsequent efflux of these and other amino acids, including taurine and phosphoethanolamine. Extracellular Ca(2+)-independent release is mediated, in part by Na(+)-dependent amino acid transporters in the plasma membrane operating in a reversed mode, and by the opening of swelling-induced chloride channels, which allow the passage of amino acids down their concentration gradients. Experiments on cultured neurons and astrocytes have suggested that it is the astrocytes which make the primary contribution to this amino acid efflux. Inhibition of phospholipase A(2) attenuates ischemia-evoked release of both amino and free fatty acids from the rat cerebral cortex indicating that this group of enzymes is involved in amino acid efflux, and also accounting for the consistent ischemia-evoked release of phosphoethanolamine. It is, therefore, possible that disruption of membrane integrity by phospholipases plays a role in amino acid release. Recovery of amino acid levels to preischemic levels requires their uptake by high affinity Na(+)-dependent transporters, operating in their normal mode, following restoration of energy metabolism, cell resting potentials and ionic gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号