首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The comparative Na+ tolerance of Chora buckellii cultured in freshwater (FW) or artificial Waldsea water (AWW, which contains about 110 mol m?3 each Na +, Mg2+, Cl? and SO2-4 was tested with respect to the external Na+ to Ca2+ ratio (Na: Ca). Fifty per cent of FW cells subjected to 70 mol m?3 NaCl, which raised Na:Ca from 10: 1 to 700: 1 and the external osmotic pressure from 0.024 to 0.402 MPa, died within 6 d. Death was associated with the loss of Na/K selectivity, H+ -pump activity and turgor. Restoration of Na:Ca to 10:1 in high Na+ medium with CaCl2 ensured 100% survival and maintained H+-pump activity and Na/K selectivity of FW cells. Turgor was regulated within 3 d with net uptake of Na +, K+ and Cl? in the vacuolc. Mg2+ was not as effective as Ca2+ in enhancing survival or maintaining H+ -pump activity and Na/K selectivity of FW cells in the presence of elevated Na+. However, turgor was regulated within 3 d by accumulation of Cl? and an unknown cation in the vacuole. All AWW cells subjected to an increase of 70 mol m ?3 NaCl, which raised Na: Ca from 16:1 to 25: 1 and the external osmotic pressure from 0.915 to 1.22 MPa, survived and maintained H + -pump activity. Turgor was regulated within 6d by accumulating Na +, K+ and Cl? in the vacuole. All AWW cells subjected to 70molm?3 NaCl in a medium in which Na:Ca was equal to 700:1 survived and maintained H + -pump activity, but showed loss of Na/K selectivity. Turgor was regulated with an unknown osmoticum(a) within 6 d.  相似文献   

2.
The salt-tolerant alga Chara longifolia (Robinson) is capable of regulating its turgor in response to hypotonic stress resulting from a decrease in the osmotic pressure of the medium. This regulatory process takes only 40 min in small cells (length ≤ 10 mm), but requires 3d in large cells (length ≥30mm). Turgor regulation in small cells is comprised of two phases, a fast phase reducing the increased turgor by about 25% in the First 5 min, and a second phase reducing the turgor to near the original value within 40 min. The second phase is inhibited by reducing the concentration of Ca2+ in the external medium from 4.6 to 0.01 mol m?3; the first phase is less affected by the reduction of Ca2+. In the first 5 min of stress, the membrane depolarizes in a voltage-dependent fashion, electrical conductance of the membrane increases transiently and cytoplasmic streaming is inhibited. When the external Ca2+ concentration is lowered, conductance does not increase and streaming continues unaffected. In a low ionic strength medium, Ca2+ is not required in the medium for turgor regulation. To test the hypothesis that there is increased Ca2+ entry from the medium during turgor regulation, we measured the influx of 45Ca2+ into the cell. We found an increased influx of Ca2+, from 18 to 36 nmol m?2 s?1 during the first 30 to 90 s following osmotic stress. This increase was evident only in cells below about 7 mm in length, and was more marked in smaller cells.  相似文献   

3.
Abstract. Net NO3 uptake by NO3 deficient Chara cells was used to calculate [NO3]c assuming that the cytoplasm occupies 10% total volume and that nitrate reduction and storage are negligible (i.e. maximum [NO3]c was calculated). A linear relationship was found between NO3 efflux and [NO3]c. There was an initial burst of NO3 efflux when NH+4 was added, followed by a slower efflux rate which matched influx rate such that net NO3 uptake was zero. Over 50% of NO3 that had been taken up in 2 h was lost within the first 5 min of NH+4 addition. The Nernst equation was used to predict the direction of the electrochemical driving force for NO3 entry. Under the experimental conditions used NO3 efflux is actively transported. The differential involvement of both NO3 influx and NO3 efflux in the regulation of NO3 uptake is discussed and a model is proposed to account for these results which envisages discrete NO3 influx and NO3 efflux carriers.  相似文献   

4.
Cell-to-cell communication has been studied in lateral branches and developing antheridia of male Chara corallina plants. The moving cytoplasm is specialized to include essentially separate ascending and descending cytoplasmic streams within the inter-nodes. The neutral line which demarcates the ascending from the descending stream is established by the divisions of the nodal initial, which gives rise to both the node and internode. The ascending stream is located beneath the first-formed node-cells and the descending stream beneath the last-formed cells. The cells destined to develop into antheridia were always located on the same side as the descending internodal stream, and thus, were derived from the cells last formed during divisions of the nodal initial. Three stages of anther idial development have been defined: (1) young antheridia from the initial division of a node-cell to the formation of an octant structure; (2) maturing antheridia where differentiation into shield, manubria and capitular cells has occurred, including antheridia where an internal cavity has formed but contains filaments of less than 32 cells; and (3) mature antheridia where filaments contain more than 32 cells and spermatid production commences. Internodal cells of branches bearing young antheridia had similar characteristics to spring branches, including high plasmalemma potential differences (-217·7±31·5mV, [K+]o 0·5 mol m?3; pH 7·6) and extensive cell-to-cell communication (frequency of intercellular transport of 6 carboxyfluorescein 86%). The small probe 6 carboxy fluorescein moved into the entire young antheridium in 100% of injections. The molecular exclusion limit for internodes and the nodal complex lay between 874 and 1678Da whereas the exclusion limit for the young antheridium was smaller (between 750 and 874Da). Internodal cells of branches bearing maturing antheridia had similarly high PDs (–221·7±40mV; [K+]o 0·5 mol m?3; pH 7·6). Cell-to-cell communication between internodes bearing maturing antheridia was extensive (frequency of intercellular transport of 6 carboxyfluorescein 100%). The shield cells were isolated from the symplast of the thallus at this stage since they did not admit 6 carboxyfluorescein. Internodal cells of branches bearing only mature antheridia showed different characteristics. Intercellular communication between internodes was restricted to a level similar to that found in winter (frequency of intercellular transport of 6 carboxyfluorescein = 57%). The mature antheridium was entirely isolated from the symplast of the thallus. A period of extensive cell-to-cell communication and high PDs in internodal cells commences in vegetative lateral branches in spring, immediately before reproductive structures are initiated. These features persist throughout summer whilst reproductive structures develop, until the antheridial filaments contain 32 or more cells (mature stage), at which point spermatid production commences and the antheridium is isolated from the thallus. In autumn, following the stage of mature antheridia, no further antheridia are initiated. Internodes are subsequently vegetative throughout winter and their lateral branches are characterized by restricted cell-to-cell communication, low internodal PDs, and little obvious growth, all features consistent with winter dormancy.  相似文献   

5.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

6.
Measurements were made of the influx of 45Ca into internodal cells of Chara corallina in solutions containing high concentrations of NaCl. Increasing salinity in the range 4–100mol m?3 NaCl resulted in a doubling of Ca2+ influx at the plasmalemma. A time-course of Ca2+ influx in 50 mol m?3 NaCl, 0.5mol m?3 CaCl2 showed that while influx at the plasmalemma increased only 1.5-fold, influx to the vacuole increased by up to 15-fold. This was interpreted as being due to inhibition of active Ca2+ efflux from the cell. The stimulation of Ca2+ influx by increasing salinity appeared to be principally a response to reduced turgor since similar stimulations were obtained when turgor was reduced by NaCl, Na2SO4 or mannitol. When cells were plasmolysed Ca2+ influx increased by 10–20-fold. The increased permeability was relatively specific for Ca2+ and was inhibitable by La3+. Survival of cells in high salt conditions was increased by 30 mmol m?3 La3+, which inhibited Ca2+ influx. Paradoxically, survival can also be extended by increasing external Ca2+ which leads to a higher influx. Therefore, it seems unlikely that the ameliorative effect of Ca2+ on the sensitivity of plants to high NaCl is mediated by Ca2+ entry across the plasmalemma. It seems more likely that the principal role of Ca2+ under these conditions is exerted externally through the control of membrane voltage and permeability.  相似文献   

7.
Abstract: The Na+ sensitivity of whole brain membrane Na+,K+-ATPase isoenzymes was studied using the differential inhibitory effect of ouabain (α1, low affinity for ouabain; α2, high affinity; and α3, very high affinity). At 100 m M Na+, we found that the proportion of isoforms with low, high, and very high ouabain affinity was 21, 38, and 41%, respectively. Using two ouabain concentrations (10−5 and 10−7 M ), we were able to discriminate Na+ sensitivity of Na+, K+-ATPase isoenzymes using nonlinear regression. The ouabain low-affinity isoform, α1, exhibited high Na+ sensitivity [ K a of 3.88 ± 0.25 m M Na+ and a Hill coefficient ( n ) of 1.98 ± 0.13]; the ouabain high-affinity isoform, α2, had two Na+ sensitivities, a high ( K a of 4.98 ± 0.2 m M Na+ and n of 1.34 ± 0.10) and a low ( K a of 28 ± 0.5 m M Na+ and an n of 1.92 ± 0.18) Na+ sensitivity activated above a thresh old (22 ± 0.3 m M Na+); and the ouabain very-high-affinity isoform, α3, was resolved by two processes and appears to have two Na+ sensitivities (apparent K a values of 3.5 and 20 m M Na+). We show that Na+ dependence in the absence of ouabain is the result of at least of five Na+ reactivities. This molecular functional characteristic of isoenzymes in membranes could explain the diversity of physiological roles attributed to isoenzymes.  相似文献   

8.
A comparison was made between the releasability of eight neurotransmitters from eight regions of mouse brain in response to either 60 mM-K+ or 20 microM-ouabain, a specific inhibitor of the Na+,K+-ATPase. With few exceptions, all transmitters were released by either or both agents from each brain region examined. Potassium was superior in releasing the biogenic amines and acetylcholine, while the putative amino acid transmitters were generally releasable by both agents. Measurements of tissue depolarization using [3H]-tetraphenylphosphonium uptake indicated that 60 mM-K+ is capable of depolarizing brain tissue above the threshold necessary for initiating an action potential, but 20 microM-ouabain is not. The pattern of release by ouabain coupled with its failure to depolarize brain tissue at 20 microM suggests that inhibition of the Na+,K+-ATPase is capable of releasing cytoplasmic neurotransmitters in a voltage-independent manner.  相似文献   

9.
The effects of Ca2+ and cell turgor on Na+ influx were examined in two charophytes, lamprothamnium papulo-SUM (salt-tolerant) and Chara corallina (salt-sensitive), to try to identify causes of salinity toxicity. Mortality was associated with Na+ influx, with the two species showing similar sensitivities to high Na+ influx. In Lamprothamnium, toxic influxes of Na+ occurred at much higher external Na+ concentrations than in Chara. The differences in Na+ influx at the same Na+ concentration were not due to different responses to external Ca2+. Lamprothamnium adjusts its turgor in response to increasing NaCl whereas Chara cannot. In solutions of KC1 up to at least 200 mol m-3, however, Chara regulated turgor, and when KC1 was subsequently replaced with NaCl, Na+ influx was low and similar to that in Lamprothamnium at the same Na* concentration. Chara cells which were not turgor-adjusted in KCI had Na+ influxes 2-5-fold higher than the turgid cells. Thus, it appears that turgor is a major determinant of Na+ influx, and therefore of cell survival. We found no evidence that the mechanism of Na+ influx in Chara is different from that in Lamprothamnium. Higher susceptibility of Chara to NaCl seems to result from inability to regulate turgor, in turn leading to toxic Na+ influx.  相似文献   

10.
It was shown in previous studies that the giant freshwater alga Chara corallina does not control its Na+‐dependent Pi uptake by monitoring the internal Pi concentration and it was hypothesized that Chara may instead detect changes in Pi supply from the environment. The present work investigated the conditions that control the induction and inactivation of high affinity Na+/Pi influx in Chara. Withdrawal of Pi from the external medium resulted in a gradual increase in the rate of uptake measured immediately after Pi was resupplied. The increase continued for at least 7 d of starvation. In the initial stages, 0·5 or 1 µm Pi were more effective at inducing transport activity than no Pi, suggesting that low levels of Pi are actually required for induction. The high Na+‐dependent Pi uptake observed in Pi‐starved cells was inactivated by treatment with as little as 1 µm Pi over 6 d. External Na+ plays a major role in controlling the capacity for Na+/Pi cotransport activity, and in the absence of Na+, both induction and inactivation were either delayed or abolished. Na+ starvation stimulated Na+ uptake even though there were no measurable changes in the concentrations of Na+, or of K+ or Pi in either the vacuole or cytoplasm. It was concluded that both substrate (Pi) and driver ion (Na+) are required at adequate concentrations for the induction of the cotransporter. In the case of Pi, it was suggested that passive leakage of Pi from the cell into the apoplast is sufficient for this purpose but that supplementation by up to 1 µm Pi is more effective at the earlier stage. A mechanism for sensing the external supply of Pi is proposed.  相似文献   

11.
The effects of 16 group-specific, amino acid-modifying agents were tested on ouabain binding, catalytical activity of membrane-bound (rat brain microsomal), sodium dodecyl sulfate-treated Na+,K(+)-ATPase, and Na+,K(+)-pump activity in intact muscle cells. With few exceptions, the potency of various tryptophan, tyrosine, histidine, amino, and carboxy group-oriented drugs to suppress ouabain binding and Na+,K(+)-ATPase activity correlated with inhibition of the Na+,K(+)-pump electrogenic effect. ATP hydrolysis was more sensitive to inhibition elicited by chemical modification than ouabain binding (membrane-bound or isolated enzyme) and than Na+,K(+)-pump activity. The efficiency of various drugs belonging to the same "specificity" group differed markedly. Tyrosine-oriented tetranitromethane was the only reagent that interfered directly with the cardiac receptor binding site as its inhibition of ouabain binding was completely protected by ouabagenin preincubation. The inhibition elicited by all other reagents was not, or only partially, protected by ouabagenin. It is surprising that agents like diethyl pyrocarbonate (histidine groups) or butanedione (arginine groups), whose action should be oriented to amino acids not involved in the putative ouabain binding site (represented by the -Glu-Tyr-Thr-Trp-Leu-Glu- sequence), are equally effective as agents acting on amino acids present directly in the ouabain binding site. These results support the proposal of long-distance regulation of Na+,K(+)-ATPase active sites.  相似文献   

12.
Abstract An alkaliphilic cyanobacterium characterized as a Synechocystis species was purified from a soil sample taken from a village in Java, Indonesia, by its preferential growth at elevated pH; it grew optimally at pH 9.5. Phosphorus nuclear magnetic resonance studies showed that the organism can maintain a ΔpH of over 2 pH units at an external pH of 10. It was observed that the viability of the organism in the dark was dependent on sodium ions. Evidence from experiments in which the extrusion of Na+ was measured from cells subjected to an alkali shock suggests that the organism possesses a Na+ / H+ electrogenic antiporter which is used for the maintenance of pH homeostasis.  相似文献   

13.
Abstract: The acute effects of serum on sodium-potassium (Na+-K+) pump activity and glucose uptake in cultured rat skeletal muscle were studied. Addition of serum to myo-tubes in phosphate-buffered saline caused Na+-K+ pump activity (as measured by changes in the ouabain-sensitive component of both membrane potential and 86Rb uptake) to increase, with peak effects obtained after 30 min. The effect was blocked completely by treatment with amiloride, but not by tetrodotoxin, which blocks voltage-dependent Na+ channels. On transfer of myotubes to Na+-free, choline buffer, resting Na+-K+ pump activity decreased to about 10% of that in phosphate-buffered saline. Addition of regular serum, but not Na+-free serum, caused Na+-K+ pump activity to increase slightly. Similar results were obtained with serum on glucose uptake, the peak effect being reached within 15 min. Stimulation of glucose uptake by serum was partially reduced by amiloride and was not altered by tetrodotoxin. Removal of external Na+ also eliminated serum effects on glucose uptake. The results demonstrate that there are similar signals involving Na+-H+ exchange for serum-induced increases in Na+-K+ pump activity and glucose transport. The lack of complete blockade of serum-induced elevation of glucose transport suggests an additional, as yet undefined, intracellular signal for stimulation of this transport system.  相似文献   

14.
Abstract: We have previously demonstrated that activation of the Na+-Ca2+ exchanger in the reverse mode causes Ca2+ influx in astrocytes. In addition, we showed that the exchange activity was stimulated by nitric oxide (NO)/cyclic GMP and inhibited by ascorbic acid. The present study demonstrates that the Na+-Ca2+ exchanger is involved in agonist-induced Ca2+ signaling in cultured rat astrocytes. The astrocytic intracellular Ca2+ concentration ([Ca2+]i) was increased by l -glutamate, noradrenaline (NA), and ATP, and the increases were all attenuated by the NO generator sodium nitroprusside (SNP). SNP also reduced the ionomycin-induced increase in [Ca2+]i. The Na-induced Ca2+ signal was also attenuated by S-nitroso-l -cysteine and 8-bromo cyclic GMP, whereas it was enhanced by 3,4-dichlorobenzamil, an inhibitor of the Na+-Ca2+ exchanger. Treatment of astrocytes with antisense, but not sense, deoxynucleotides to the sequence encoding the Na+-Ca2+ exchanger enhanced the ionomycin-induced increase in [Ca2+]i and blocked the effects of SNP and 8-bromo cyclic GMP in reducing the NA-induced Ca2+ signal. Furthermore, the ionomycin-induced Ca2+ signal was enhanced by removal of extracellular Na+ and pretreatment with ascorbic acid. These findings indicate that the Na+-Ca2+ exchanger is a target for NO modulation of elevated [Ca2+]i and that the exchanger plays a role in Ca2+ efflux when [Ca2+]i is raised above basal levels in astrocytes.  相似文献   

15.
To gain some understanding of the regulatory mechanism involved in caffeine-induced Ca2+ release in adrenal chromaffin cells, we took advantage of the paradoxical observation that removal of divalent cations potentiated the secretory response to caffeine. We measured the concentration of cytosolic free Ca2+ ([Ca]in) in isolated cat chromaffin cells, by fura-2 microfluorometry, to see whether there was any correlation between the secretory response and the rise in [Ca]in. The caffeine-induced [Ca]in rise and catecholamine secretion were increased by treatment of cells with a divalent cation-deficient solution. These potentiated responses were strongly inhibited either by pretreatment with ryanodine, by the reduction of the external Na+ concentration, or by the addition of Ca2+ channel blockers. Removal of divalent cations caused a large rise in the cytosolic free Na+ concentration ([Na]in), which was measured using SBFI microfluorometry. This rise in [Na]in was reduced either by adding Ca2+ channel blockers or by reducing the external Na+ concentration. These results show a good correlation between caffeine-induced Ca2+ release and [Na]in at the time of stimulation, suggesting that caffeine-induced Ca2+ release is regulated by [Na]in.  相似文献   

16.
17.
Abstract: The effects of peroxides were investigated on the membrane potential, intracellular Na+ ([Na+]i) and intracellular Ca2+ ([Ca2+]i) concentrations, and basal glutamate release of synaptosomes. Both H2O2 and the organic cumene hydroperoxide produced a slow and continuous depolarization, parallel to an increase of [Na+]i over an incubation period of 15 min. A steady rise of the [Ca2+]i due to peroxides was also observed that was external Ca2+ dependent and detected only at an inwardly directed Ca2+ gradient of the plasma membrane. These changes did not correlate with lipid peroxidation, which was elicited by cumene hydroperoxide but not by H2O2. Resting release of glutamate remained unchanged during the first 15 min of incubation in the presence of peroxides. These alterations may indicate early dysfunctions in the sequence of events occurring in the nerve terminals in response to oxidative stress.  相似文献   

18.
Detrimental effects of salinity on plants are known to be partially alleviated by external Ca2+. Previous work demonstrated that the Arabidopsis SOS3 locus encodes a Ca2+‐binding protein with similarities to CnB, the regulatory subunit of protein phosphatase 2B (calcineurin). In this study, we further characterized the role of SOS3 in salt tolerance. We found that reduced root elongation of sos3 mutants in the presence of high concentrations of either NaCl or LiCl is specifically rescued by Ca2+ and not Mg2+, whereas root growth is rescued by both Ca2+ and Mg2+ in the presence of high concentrations of KCl. Phenocopies of sos3 mutants were obtained in wild‐type plants by the application of calmodulin and calcineurin inhibitors. These data provide further evidence that SOS3 is a calcineurin‐like protein and that calmodulin plays an important role in the signalling pathways involved in plant salt tolerance. The origin of the elevated Na : K ratio in sos3 mutants was investigated by comparing Na+ efflux and influx in both mutant and wild type. No difference in Na+ influx was recorded between wild type and sos3; however, sos3 plants showed a markedly lower Na+ efflux, a property that would contribute to the salt‐oversensitive phenotype of sos3 plants.  相似文献   

19.
Lactacidosis is a common feature of ischaemic brain tissue, but its role in ischaemic neuropathology is still not fully understood. Na(+)/H(+) exchange, a mechanism involved in the regulation of intracellular pH (pH(i)), is activated by low pH(i). The role of Na(+)/H(+) exchange subtype 1 was investigated during extracellular acidification and subsequent pH recovery in the absence and presence of (4-isopropyl-3-methylsulphonyl-benzoyl)-guanidine methanesulfonate (HOE642, Cariporid), a new selective and powerful inhibitor of the Na(+)/H(+) exchanger subtype 1 (NHE-1). It was compared for normoxia and hypoxia in two glioma cell lines (C6 and F98). pH(i) was monitored by fluorescence spectroscopy using the intracellularly trapped pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Alterations in glial cell metabolism were characterized using high-resolution (1)H, (13)C and (31)P NMR spectroscopy of perchloric acid extracts. NHE-1 contributed to glial pH regulation, especially at pathologically low pH(i) values. NHE-1 inhibition with HOE642 during acidification caused exacerbated metabolic disorders which were prolonged during extracellular pH recovery. However, NHE-1 inhibition during hypoxia protected the energy state of glial cells.  相似文献   

20.
The effects of nerve growth factor (NGF) on induction of Na+,K+-ATPase were examined in a rat pheochromocytoma cell line, PC12h. Na+,K+-ATPase activity in a crude particulate fraction from the cells increased from 0.37 +/- 0.02 (n = 19) to 0.55 +/- 0.02 (n = 20) (means +/- SEM, mumol Pi/min/mg of protein) when cultured with NGF for 5-11 days. The increase caused by NGF was prevented by addition of specific anti-NGF antibodies. Epidermal growth factor and insulin had only a small effect on induction of Na+,K+-ATPase. A concentration of basic fibroblast growth factor three times higher than that of NGF showed a similar potency to NGF. The molecular form of the enzyme was judged as only the alpha form in both the untreated and the NGF-treated cells by a simple pattern of low-affinity interaction with cardiotonic steroids: inhibition of enzyme activity by strophanthidin (Ki approximately 1 mM) and inhibition of Rb+ uptake by ouabain (Ki approximately 100 microM). As a consequence, during differentiation of PC12h cells to neuron-like cells, NGF increases the alpha form of Na+,K+-ATPase, but does not induce the alpha(+) form of the enzyme, which has a high sensitivity for cardiotonic steroid and is a characteristic form in neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号